首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increase of the contour length of the low molecular linear duplex DNA in the complex with an alkaloid sanguinarine has been evidenced by the viscometric method. The enzymatic hydrolysis of modified DNA by pancreatic deoxyribonuclease I and RNA synthesis of DNA by rat liver nuclear RNA polymerase were studied. Sanguinarine has been shown to inhibit the first stages of DNA hydrolysis. This alkaloid is a weaker inhibitor than ethidium bromide, a more potent inhibitor than actinomycin D and exerts an inhibiting effect similar to that of distamycin A. Sanguinarine also decreases the rate of the labelled precursor incorporation into the acid-insoluble fractions by nuclear RNA polymerase from rat liver. A 50% inhibition by sanguinarine was observed at the same alkaloid concentration as that of ethidium bromide.  相似文献   

2.
A natural DNA-intercalator plant benzo-c-phenanthridine alkaloid sanguinarine is more toxic for mouse transformed fibroblast L-cells in culture than synthetic DNA-intercalator ethidium bromide (EtB) and alkaloid berberine. Dimidium bromide is also an inhibitor of the L-cell growth. In assay conditions, growth of L-cells is stopped by 1.5 x 10(-5) M of sanguinarine. Lebr-625 cells, resistant to 25 micrograms/ml of EtB, have sanguinarine sensitivity close to that of L-cells, but Lebr-625 cells are resistant to dimidium bromide. Sanguinarine is more toxic for L-cells in culture than the anticancer drug cis-PtNH3)2Cl2. Trans-Pt(NH3)2Cl2 is less toxic for these cells. The strong toxicity of sanguinarine for L- and Lebr-625 cells in culture, as compared to other DNA-complexing drugs, seems to be associated with the wide range of potential cell targets for sanguinarine influence. Besides the inhibition of nucleic acid metabolism reactions, characteristic of DNA-intercalators, and disruption the mitochondrial ATP synthesis, also characteristic of organic heterocyclic cationic molecules of DNA-intercalators, sanguinarine can modify the thiol groups of enzymes including SH-sensitive membrane-bound Na+, K(+)-ATPase of cerebral cortex and Ca2(+)-ATPase of skeletal muscle sarcoplasmic reticulum fragments.  相似文献   

3.
Based on our recent findings that piperine is a potent Staphylococcus aureus NorA efflux pump inhibitor (EPI), 38 piperine analogs were synthesized and bioevaluated for their EPI activity. Twenty-five of them were found active with potentiating activity equivalent or more than known EPIs like reserpine, carsonic acid and verapamil. The inhibitory mechanism of the compounds was confirmed by efflux inhibition assay using ethidium bromide as NorA substrate. The present communication describes the synthesis, bioevaluation and structure related activity of these efflux pump inhibitors.  相似文献   

4.
Effects of inhibitors of energy metabolism and protein synthesis on Neutral red segregation in frog erythrocytes were studied. Inhibitors of both glycolysis and respiration significantly reduced formation of segregation zones. This influence was most striking with antimycin A, rotenone and cyanide. This indicates that intact respiratory pathways may play an important part in the process of Neutral red segregation. Such uncouplers as FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone) and 2,4-dinitrophenol (DNP) as well as inhibitors of oxidative phosphorylation (arsenate and azide) are also very effective in inhibiting the Neutral red segregation at low concentrations. The effects of these uncouplers and of olygomycin suggest an important role of ATP as an energy source for the segregation process. An inhibitor of protein synthesis, such as cycloheximide, produces some reduction in segregation zones formation. Trapping of Neutral red by protonation could readily explain the high level of this dye accumulation in nucleated erythrocytes. The fact that low concentrations of FCCP and DNP inhibit the process of segregation brings a supporting evidence for the possibility of the ATP-driven proton pump involved in Neutral red segregation.  相似文献   

5.
Two classes of inhibitors of histone methyltransferase I from calf thymus are reported. High concentrations (≧ 10 mM) of various alkyl or aralkyl amines and polyamines were inhibitory to the enzyme. Spermine and spermidine were among the most potent compounds in this group. The best monoamine inhibitor was 2-phenylethylamine, which gave 47% inhibition at 10 mM.The substituted phenanthridinium compound ethidium bromide was also an inhibitor of the enzyme. A number of analogs of ethidium bromide were tested, and the most potent compound (17) gave 50% inhibition at 0.125 mM. S-Adenosyl-l-ethionine (SAM) showed competitive inhibition of the enzyme as determined from a Lineweaver-Burke plot, while ethidium bromide was noncompetitive.  相似文献   

6.
The interaction of sanguinarine and ethidium with right-handed (B-form), left-handed (Z-form) and left-handed protonated (designated as H(L)-form) structures of poly(dG-dC).poly(dG-dC) and poly(dG-me5dC).poly(dG-me5dC) was investigated by measuring the circular dichroism and UV absorption spectral analysis. Both sanguinarine and ethidium bind strongly to the B-form DNA and convert the Z-form and the H(L)-form back to the bound right-handed form. Circular dichroic data also show that the conformation at the binding site is right-handed, even though adjacent regions of the polymer have a left-handed conformation either in Z-form or in H(L)-form. Both the rate and extent of B-form to Z-form transition were decreased by sanguinarine and ethidium under ionic conditions that otherwise favour the left-handed conformation of the polynucleotides. The rate of decrease is faster in the case of ethidium as compared to that of sanguinarine. Scatchard analysis of the spectrophotometric data shows that sanguinarine binds strongly to both the polynucleotides in a non-cooperative manner under B-form conditions, in sharp contrast to the highly-cooperative binding under Z-form and H(L)-form conditions. Correlation of binding isotherms with circular dichroism data indicates that the cooperative binding of sanguinarine under the Z-form and the H(L)-form conditions is associated with a sequential conversion of the polymer from a left-handed to a bound right-handed conformation. Determination of bound alkaloid concentration by spectroscopic titration technique and the measurement of circular dichroic spectra have enabled us to calculate the number of base pairs of Z-form and H(L)-form that adopt a right-handed conformation for each bound alkaloid. Analysis reveals that 2-3 base pairs (bp) of Z-form of poly(dG-dC).poly(dG-dC) and poly(dG-me5dC).poly(dG-me5dC) switch to the right-handed form for each bound sanguinarine, while approximately same number of base pairs switch to the bound right-handed form in complexes with H(L)-form of these polynucleotides. Comparative binding analysis shows that ethidium also converts approximately 2 bp of Z-form or H(L)-form to bound right-handed form under same experimental conditions. Since sanguinarine binds preferentially to alternating GC sequences, which are capable of undergoing the B to Z or B to H(L) transition, these effects may be an important part in understanding its extensive biological activities.  相似文献   

7.
A meiotic segregant (oliPR1) was isolated with a phenotype of multiple cross resistance and collateral sensitivity. Strain oliPR1 has increased sensitivity to ethidium bromide, dequalinium chloride, acriflavin, paromomycin and neomycin, and increased resistance to oligomycin, rutamycin, venturicidin, triethyltin bromide, antimycin, carbonylcynamide-m-chlorophenylhydrazone, tetra-N-butylammonium bromide, dibenzyldimethylammonium chloride, triphenylmethylphosphonium bromide, chloramphenicol, carbomycin, tetracycline, triton-X-165 and cycloheximide. Single gene inheritance of the cross resistance and collateral sensitivity was shown by 2:2 parental ditype segregation and reversion of the complete phenotype by a spontaneous revertant. The locus conferring the oliPR1 phenotype was mapped 11.7 units from an unspecified centromere. Antibiotic resistance showed incomplete dominance, with the level of hybrid resistance dependent upon the inhibitor tested. Resistant diploids that produced four resistant ascospores were the result of mitotic recombination prior to meiosis. A partial revertant phenotype (sensitive to all inhibitors except oligomycin, antimycin and carbonylcyanide-m-chlorophenylhydrazone) was shown to be due to a single nuclear gene causing partial suppression of oliPR1. Anaerobic pretreatment, 37° and 0.5 M KCl were observed to reduce the growth of oliPR1 when challenged with seven diverse inhibitors (antimycin, carbonylcyanide-m-chlorophenylhydrazone,-chloramphenicol, cycloheximide, oligomycin, triethyltin bromide, and triphenylmethylphosphonium bromide). Resistance to cycloheximide was not altered by the [rho—] state. A revertant of oliPR1 (sensitive to the above inhibitors but resistant to ethidium bromide, paromycin and neomycin) showed anaerobic and temperature sensitization to ethidium bromide, paromomycin and neomycin. Continuous monitoring of oxygen uptake by the revertant after anaerobic pretreatment revealed that anaerobiosis sensitized respiratory adaptation of the revertant to neomycin. It is proposed that oliPR1 is a mutation resulting in the alteration of plasma membrane premeability to many diverse inhibitors.  相似文献   

8.
Proteinases and their inhibitors have become the subject of intense research interest recently, since they control a multitude of very important biological processes, from the development of lambda phage to hypertension in humans. We have developed a simple and sensitive assay for detecting the activity of proteinases and of their proteinase inhibitors. The assay is based on ethidium bromide fluorescence, according to the following principles: (i) Ethidium bromide increases its fluorescence by 25-fold when it intercalates between base pairs of double-stranded DNA. (ii) Histones prevent this large increase in fluorescence by binding with high affinity to DNA thus blocking ethidium bromide intercalation. (iii) A proteinase that digests histones will make more DNA available for ethidium bromide intercalation, thereby producing an increase of fluorescence. Proteinase activity can easily be determined, in the presence of a DNA/histone complex, from the rate of ethidium fluorescence increase. In contrast, activity of a proteinase inhibitor is quantitated by the inhibition of fluorescence gain in the presence of a known amount of proteinase. This assay is rapid, simple, inexpensive, and, at the same time, accurate and sensitive enough to allow quantitation of nanogram amounts of various broad-specificity proteinases and their inhibitors. We show some possible applications of the assay (i) in testing column fractions during protein purifications, (ii) quantitation of alpha 1-antitrypsin in human serum, and (iii) detection of proteinase activity in cell extracts.  相似文献   

9.
Ethidium bromide, in addition to combination with mitochondrial nucleic acids, is a phosphorylation inhibitor during glutamate and succinate respiration by mitochondria. Exhaustive washing of ethidium bromide-treated mitochondria did not relieve the inhibition nor significantly decrease the amount of bound dye. Dialysis against a cation exchange resin at 3 degrees for 17 hr removed about 97% of bound dye. This restored phosphorylating capacity to that of untreated mitochondria which had also been dialyzed against the resin. Since state 3 respiration was diminished and state 4 was unaffected by the presence of the acridine dye, and since neither swelling of mitochondria nor release of latent ATPase was observed, then ethidium bromide was not an electron transport inhibitor nor an uncoupler of oxidative phosphorylation. Inhibition of metabolic processes by ethidium bromide may be due in part to depressed generation of mitochondrial ATP.  相似文献   

10.
S. Madle  J. Nowak  G. Obe 《Human genetics》1976,34(2):143-149
Summary Cells containing X-ray induced micronuclei were treated for a few hours before fixation with inhibitors of DNA synthesis (cytosine arabinoside; azathioprine; thymidine; trenimon), of RNA synthesis (actinomycin D; ethidium bromide), and of protein synthesis (puromycin). Only the inhibitors of DNA synthesis lead to a significant suppression of the frequencies of mitoses with micronucleus derived premature chromosome condensation (PCC). We tend to interprete the result as follows: Micronuclei that are in the G1 phase of their cell cycles are accumulated at the G1/S border or in the early S phase of their cell cycles under the influence of the inhibitors of the DNA synthesis. Micronuclei blocked in this way cannot be induced to undergo PCC and seem to disappear from the cells.  相似文献   

11.
ATP hydrolysis by F1-ATPase is strongly inhibited by cationic rhodamines; neutral rhodamines are very poor inhibitors. Rhodamine 6G is a noncompetitive inhibitor of purified F0F1-ATPase and submitochondrial particles, however, an uncompetitive inhibitor of F1-ATPase (KI approximately equal to 2.4 microM for all three enzyme forms). Ethidium bromide is a noncompetitive inhibitor of F0F1-ATPase, submitochondrial particles and also F1-ATPase (KI approximately equal to 270 microM). Neither of the inhibitors affects the negative cooperativity (nH approximately equal to 0.7). The non-identical binding sites for rhodamine 6G and ethidium bromide are located on the F1-moiety and are topologically distinct from the catalytic site. Binding of the inhibitors prevents the conformational changes essential for energy transduction. It is concluded that the inhibitor binding sites are involved in proton translocation. In F1-ATPase, binding of MgATP at a catalytic site causes conformational changes, which allosterically induce the correct structure of the rhodamine 6G binding site. In F0F1-ATPase, this conformation of the F1-moiety exists a priori, due to allosteric interactions with F0-subunits. The binding site for ethidium bromide on F1-ATPase does not require substrate binding at the catalytic site and is not affected by F0F1-subunit interactions.  相似文献   

12.
代谢抑制剂对萌发绿豆超弱发光的影响   总被引:18,自引:2,他引:18  
本文报导了A.D(actinomycin D)、EB(ethidium bromide)、CHI(cycloheximide)及NaN_3,对萌发绿豆(胚根长1.5cm左右)的自发性超弱发光强度的影响的研究结果,提供了DNA分子和/或RNA合成代谢对超弱发光有贡献的证据.  相似文献   

13.
The effect of ethidium bromide on the growth of a yeast mutant with an impaired mitochrondrial translocation system of adenine nucleotides (op-1 mutant) was investigated. It was found that the op-1 mutant stops growing both under growing and non-growing conditions after treatment with ethidium bromide and that the growth cannot be restored by adding low-molecular compounds to the growth medium. It was the aim of the experiments to clarify whether the cessation of growth of the op-1 mutant after induction of the rho- mutation can be simulated by inhibitors phenotypically changing the mitochondrial function. It appears likely that the op-1 mutant stops growing only after the rho- mutation has been induced, because the phenotypic simulation of the rho- mutation does not lead the cessation of growth of the op-1 mutant.  相似文献   

14.
A ciprofloxacin-resistant mutant of Clostridium perfringens, strain VPI-C, which had stable mutations in the topoisomerase genes, accumulated less norfloxacin and ethidium bromide than the wild type, strain VPI. Efflux pump inhibitors both increased the accumulation of ethidium bromide by cells of the mutant and enhanced their sensitivity to this toxic dye. Cloning a gene, which codes for a putative ABC transporter protein (NP_562422) of 527 amino acids, from the mutant strain VPI-C into the wild-type strain VPI not only reduced the accumulation of ethidium bromide by the recombinant strain but also reduced its sensitivity to norfloxacin and ciprofloxacin. Efflux pump inhibitors decreased the rate at which ethidium bromide was removed from the cells of the recombinant strain. It appears that the putative ABC transporter protein (NP_562422) may contribute to extrusion of drugs from C. perfringens.  相似文献   

15.
It has been shown that the major alkaloids from plants Chelidonium majus L. and Macleaya (Bocconia) cordata and microcarpa, namely, berberine, sanguinarine, chelidonine, and drugs "Ukrain" (thiophosphoric acid derivative of a sum of the alkaloids isolated from Ch. majus L.) and "Sanguirythrine" (a mixture of the alkaloids sanguinarine and chelerythrine, w/w 3:7, isolated from Macleaya), are irreversible inhibitors of oxidative deamination reaction of serotonin and tyramine as substrates, catalyzed by rat liver mitochondrial monoamine oxidase (MAO). At the same time these substances do not influence the oxidative deamination reaction of benzylamine as substrate (in concentration 1 mM or less). The substrate specificity of this inhibition manifests that mainly the oxidative deamination reactions catalyzed by MAO form A are inhibited by the agents studied. Among the examined agents, alkaloid chelidonine and drug "Ukrain" are the strongest inhibitors of the reaction. Alkaloids berberine and sanguinarine and drug "Sanguirythrine" exhibit a weaker action. Judging from the data obtained, sanguinarine and chelerythrine appear to exert similar inhibitory effects in this reaction, since sanguinarine and "Sanguirythrine" have similar values of bimolecular rate constants of their interaction with mitochondrial MAO. As it is well known, the MAO inhibitors appear to be, as a rule, pronounced antidepressants. The combination of malignotoxicity and antidepressive activity in drug "Ukrain" seems to be favourable for its clinical applications.  相似文献   

16.
It has been shown, that some benzo[c]-phenanthridine and diisoquinoline alkaloids isolated from Chelidonium majus L. and Macleaya (Bocconia) cordata and M. microcarpa (berberine, sanguinarine, chelidonine) and of drugs ("Ukrain" and "Sanguirythrine") inhibited the enzyme activity of acetylcholinesterase from human erythrocyte and monoamine oxidase from the rat liver. All agents under study have been shown to be reversible inhibitors of the enzymatic hydrolysis of acetylthiocholine. It has been determined that chelidonine belonged to reversible inhibitors of a competitive type, all other examined agents have been demonstrated to be inhibitors of a mixed competitive-noncompetitive type, and a greater contribution to the inhibition was made by the competitive constituent. Among all examined agents berberine, sanguinarine and "Sanguirythrine" were the strongest inhibitors of this reaction and chelidonine and "Ukrain" were much weaker. All agents under study have been shown to be irreversible inhibitors of the oxidative deamination reaction of serotonine and tyramine and not to influence the oxidative deamination reaction of benzylamine as a substrate. Among the examined agents, alkaloid sanguinarine and drug "Ukrain" are the strongest inhibitors of the reaction, alkaloids berberine, sanguinarine and "Sanguirythrine" exhibit a weaker action.  相似文献   

17.
The incubation of frog erythrocytes in the Ringer solution with novocaine (4.6 x 10(-3) M) during 24 hours at 10 degrees C provoked vacuole formation (segregation zones). Changes of the novocaine solution for a fresh Ringer solution and the following 48 hour incubation was accompanied by a decrease in the number of vacuoles both electron-translucent and containing membranous material. Simultaneously, the number of vacuoles with amorphous material only and with amorphous and membranous substances was seen to increase. Under the action of cycloheximide (1.10(-2) M) or oligomycin (2.5 x 10(-6) M) on erythrocytes with preformed vacuoles for 48 hours the total number of vacuoles and their dimensions decreased, with numerous amorphous inclusions appearing. Vacuoles with amorphous and membranous material increased in size. Similar ultrastructural changes in the segregation zones under the influence of both the inhibitors were observed showing the appearance of thick threads and a decreased share of electron-translucent vacuoles. A specific effect of cycloheximide, compared to that of oligomycin, involved the expansion of smooth endoplasmic reticulum cisternae. Under the influence of novocaine, 3H-leucin incorporation in proteins of frog erythrocytes was intensified. However, this incorporation was considerably inhibited by cycloheximide. Erythrocytes with segregation zones were more inhibitor susceptible than erythrocytes without vacuoles. The inhibitory effect was stronger early after their administration to the incubation medium, compared to the later periods.  相似文献   

18.
A comparative study has been carried out on effects of berberine (diisoquinoline alkaloid) and sanguinarine and chelidonine (benzophenanthridine alkaloids( on erythrocyte acetylcholinesterase and serum butyrylcholinesterase from human blood. The studied alkaloids have been shown to be strong reversible inhibitors of the cholinesterase activity. Acetylcholinesterase is more sensitive to their action, than butyrylcholinesterase. The type of reversible inhibition was determined, and inhibitor constants were calculated. It is revealed that the character of inhibition is identical for the both cholinesterases. Berberine and sanguinarine are competitive-noncompetitive inhibitors, whereas chelidonine, a competitive inhibitor.  相似文献   

19.
Flow injection analysis was used to study the reactions occurring between DNA and certain compounds that bind to its double helix, deforming this and even breaking it, such that some of them (e.g., cisplatin) are endowed with antitumoral activity. Use of this technique in the merging zones and stopped-flow modes afforded data on the binding parameters and the kinetic characteristics of the process. The first compound studied was ethidium bromide (EtdBr), used as a fluorescent marker because its fluorescence is enhanced when it binds to DNA. The DNA-EtdBr binding parameters, the apparent intrinsic binding constant (0.31+/-0.02 microM(-1)), and the maximum number of binding sites per nucleotide (0.327+/-0.009) were determined. The modification introduced in these parameters by the presence of proflavine (Prf), a classic competitive inhibitor of the binding of EtdBr to the DNA double helix, was also studied, determining the value of the intrinsic binding constant of Prf (K(Prf) = 0.119+/-9x10(-3) microM(-1)). Finally, we determined the binding parameters between DNA and EtdBr in the presence of the antitumor agent cisplatin, a noncompetitive inhibitor of such binding. This provided information about the binding mechanism as well as the duration and activity of the binding of the compound in its pharmacological use.  相似文献   

20.
在小鼠艾氏腹水癌细胞中存在着一种DNA多聚酶及其与DNA模板的复合体。以不同药物对部分纯化的酶蛋白和复合体进行抑制实验,发现Aphidicolin、溴化乙锭、新生霉素和肝素均不同程度地抑制复合体和酶蛋白的活性;但酶蛋白和复合体对双脱氧胸苷三磷酸(ddTTP)不敏感。另外还发现复合体较酶蛋白对抑制剂有较强的抗性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号