首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Bovine myelin/oligodendrocyte glycoprotein (MOG) was purified from a Wolfgram protein fraction of brain myelin by molecular sieving and preparative gel electrophoresis. The N-terminal sequence of this wheat germ agglutinin reacting glycoprotein was determined. Antibodies against purified MOG and synthetic N-terminal octapeptide of MOG were produced in rabbits. Respective affinity purified antibody preparations gave identical results on Western blots. Treatment with specific glycosidases indicated that the oligosaccharide chains of MOG are only of N-chain type. This glycoprotein seems to be restricted to mammalian species since it was not detected in other animal species, ranging from fish up to reptiles. Immunohistochemical investigations on rat brain sections revealed that MOG is restricted to myelin sheaths and oligodendrocytes, thus corroborating previous results obtained with the MOG 8-18C5 monoclonal antibody. Decreased staining pattern in Jimpy brain further attested its specific localization in myelin-related structures. The octapeptide site-specific antibodies were not reactive on brain sections which may be attributed to the burying of this N-terminal sequence in the membrane. These MOG polyclonal antibodies appear to be valuable tools for further studies concerning this minor glycoprotein.Abbreviations BSA bovine serum albumin - CNS central nervous system - DM-20 minor myelin proteolipid protein - MAG Myelin-associated glycoprotein - MBP myelin basic proteins - MOG Myelin/oligodendrocyte glycoprotein - OMgp Oligodendrocyte/Myelin glycoprotein - PAGE polyacrylamide gel electrophoresis - PBS phosphate buffered saline - PeptMOG n-terminal octapeptide of MOG - PLP major myelin proteolipid protein - PMSF phenylmethylsulfonylfluoride - SDS sodium dodecylsulphate - TBS Tris buffered saline - WPF Wolfgram protein fraction - WGA Wheat germ agglutinin  相似文献   

2.
3.
In a light and electron microscopic immunocytochemical study we have examined the distribution of myelin basic protein (MBP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), and myelin/oligodendroglial glycoprotein (MOG) within CNS myelin sheaths and oligodendrocytes of adult Sprague-Dawley rats. Ultrastructural immunocytochemistry allowed quantitative analysis of antigen density in different myelin and oligodendrocyte zones: MBP was detectable in high density over the whole myelin sheath, but not in regions of loops, somata, or the oligodendrocyte plasma membrane. CNP reactivity was highest at the myelin/axon interface, and found in lower concentration over the outer lamellae of myelin sheaths, at the cytoplasmic face of oligodendrocyte membranes, and throughout the compact myelin. MOG was preferentially detected at the extracellular surface of myelin sheaths and oligodendrocytes and in only low amounts in the lamellae of compacted myelin and the myelin/axon border zone. Our studies, thus, indicate further the presence of different molecular domains in compact myelin, which may be functionally relevant for the integrity and maintenance of the myelin sheath.  相似文献   

4.
The Structure and Function of Myelin Oligodendrocyte Glycoprotein   总被引:7,自引:4,他引:3  
Abstract : Myelin oligodendrocyte glycoprotein (MOG) is a quantitatively minor component of CNS myelin whose function remains relatively unknown. As MOG is an autoantigen capable of producing a demyelinating multiple sclerosis-like disease in mice and rats, much of the research directed toward MOG has been immunological in nature. Although the function of MOG is yet to be elucidated, there is now a relatively large amount of biochemical and molecular data relating to MOG. Here we summarize this information and include our recent findings pertaining to the cloning of the marsupial MOG gene. On the basis of this knowledge we suggest three possible functions for MOG : (a) a cellular adhesive molecule, (b) a regulator of oligodendrocyte microtubule stability, and (c) a mediator of interactions between myelin and the immune system, in particular, the complement cascade. Given that antibodies to MOG and to the myelin-specific glycolipid galactocerebroside (Gal-C) both activate the same signaling pathway leading to MBP degradation, we propose that there is a direct interaction between the membrane-associated regions of MOG and Gal-C. Such an interaction may have important consequences regarding the membrane topology and function of both molecules. Finally, we examine how polymorphisms and/or mutations to the MOG gene could contribute to the pathogenesis of multiple sclerosis.  相似文献   

5.
The presence of degradation products of the myelin/oligodendrocyte glycoprotein (MOG) and a new myelin/oligodendrocyte associated protein, FD1, defined by a monoclonal antibody was established in a subfraction (the floating fraction, or FF) of adult rabbit CNS. The histochemical distribution of FD1 was determined by indirect immunofluorescense using conventional and confocal microscopy. FD1 was found to be present in oligodendrocytes, and at the outer rim of CNS myelin sheaths. Strong antibody reactivity was noted at nodes of Ranvier, as well as in regions with a high nodal density. No staining of compact myelin was seen. In the PNS, inner and outer cytoplasmic compartments of the Schwann cells as well as their cell bodies were stained, with no staining of compact myelin. The FF has previously been shown to be highly enriched in Marchi-positive bodies. These structures are situated paranodally in the CNS of myelinated nerve fibers, and their presence has been interpreted as reflections of myelin breakdown and turnover occurring in association with myelin sheath segments situated close to nodes at Ranvier in adult, normal vertebrate CNS. The present findings extend previous observations of partially degraded myelin-associated proteins in the FF, and give further results indicating that Marchi-positive bodies are aspects of intermediate stages in myelin catabolism.  相似文献   

6.
The etiology of multiple sclerosis (MS) is believed to involve environmental factors, but their identity and mode of action are unknown. In this study, we demonstrate that Ab specific for the extracellular Ig-like domain of myelin oligodendrocyte glycoprotein (MOG) cross-reacts with a homologous N-terminal domain of the bovine milk protein butyrophilin (BTN). Analysis of paired samples of MS sera and cerebrospinal fluid (CSF) identified a BTN-specific Ab response in the CNS that differed in its epitope specificity from that in the periphery. This effect was statistically significant for the Ab response to BTN(76-100) (p = 0.0026), which cosequestered in the CSF compartment with Ab to the homologous MOG peptide MOG(76-100) in 34% of MS patients (n = 35). These observations suggested that intratheccal synthesis of Ab recognizing BTN peptide epitopes in the CNS was sustained by molecular mimicry with MOG. Formal evidence of molecular mimicry between the two proteins was obtained by analyzing MOG-specific autoantibodies immunopurified from MS sera. The MOG-specific Ab repertoire cross-reacts with multiple BTN peptide epitopes including a MOG/BTN(76-100)-specific component that occurred at a higher frequency in MS patients than in seropositive healthy controls, as well as responses to epitopes within MOG/BTN(1-39) that occur at similar frequencies in both groups. The demonstration of molecular mimicry between MOG and BTN, along with sequestration of BTN-reactive Ab in CSF suggests that exposure to this common dietary Ag may influence the composition and function of the MOG-specific autoimmune repertoire during the course of MS.  相似文献   

7.
Multiple sclerosis is an inflammatory disease of the CNS that involves immune reactivity against myelin oligodendrocyte glycoprotein (MOG), a type I transmembrane protein located at the outer surface of CNS myelin. The epitope MOG92-106 is a DR4-restricted Th cell epitope and a target for demyelinating autoantibodies. In this study, we show that the immune response elicited by immunization with this epitope is qualitatively different from immune responses induced by the well-defined epitopes myelin basic protein (MBP) 84-96 and proteolipid protein (PLP) 139-151. Mice with MOG92-106-, but not with MBP84-96- or PLP139-151-induced experimental autoimmune encephalomyelitis developed extensive B cell reactivity against secondary myelin Ags. These secondary Abs were directed against a set of encephalitogenic peptide Ags derived from MBP and PLP as well as a broad range of epitopes spanning the complete MBP sequence. The observed diversification of the B cell reactivity represents a simultaneous spread toward a broad range of antigenic epitopes and differs markedly from T cell epitope spreading that follows a sequential cascade. The Abs were of the isotypes IgG1 and IgG2b, indicating that endogenously recruited B cells receive help from activated T cells. In sharp contrast, B cell reactivity in MBP84-96- and PLP139-151-induced experimental autoimmune encephalomyelitis was directed against the disease-inducing Ag only. These data provide direct evidence that the nature of the endogenously acquired immune reactivity during organ-specific autoimmunity critically depends on the disease-inducing Ag. They further demonstrate that the epitope MOG92-106 has the specific capacity to induce a widespread autoimmune response.  相似文献   

8.
Autoantibodies to myelin oligodendrocyte glycoprotein (MOG) can induce demyelination and oligodendrocyte loss in models of multiple sclerosis (MS). Whether anti-MOG Abs play a similar role in patients with MS or inflammatory CNS diseases by epitope spreading is unclear. We have therefore examined whether autoantibodies that bind properly folded MOG protein are present in the CNS parenchyma of MS patients. IgG was purified from CNS tissue of 14 postmortem cases of MS and 8 control cases, including cases of encephalitis. Binding was assessed using two independent assays, a fluorescence-based solid-phase assay and a solution-phase RIA. MOG autoantibodies were identified in IgG purified from CNS tissue by solid-phase immunoassay in 7 of 14 cases with MS and 1 case of subacute sclerosing panencephalitis, but not in IgG from noninflamed control tissue. This finding was confirmed with a solution-phase RIA, which measures higher affinity autoantibodies. These data demonstrate that autoantibodies recognizing MOG are present in substantially higher concentrations in the CNS parenchyma compared with cerebrospinal fluid and serum in subjects with MS, indicating that local production/accumulation is an important aspect of autoantibody-mediated pathology in demyelinating CNS diseases. Moreover, chronic inflammatory CNS disease may induce autoantibodies by virtue of epitope spreading.  相似文献   

9.
Experimental autoimmune encephalomyelitis (EAE) induced by sensitization with myelin oligodendrocyte glycoprotein (MOG) is a T cell-dependent autoimmune disease that reproduces the inflammatory demyelinating pathology of multiple sclerosis. We report that an encephalitogenic T cell response to MOG can be either induced or alternatively suppressed as a consequence of immunological cross-reactivity, or "molecular mimicry" with the extracellular IgV-like domain of the milk protein butyrophilin (BTN). In the Dark Agouti rat, active immunization with native BTN triggers an inflammatory response in the CNS characterized by the formation of scattered meningeal and perivascular infiltrates of T cells and macrophages. We demonstrate that this pathology is mediated by a MHC class II-restricted T cell response that cross-reacts with the MOG peptide sequence 76-87, I GEG KVA LRIQ N (identities underlined). Conversely, molecular mimicry with BTN can be exploited to suppress disease activity in MOG-induced EAE. We demonstrate that not only is EAE mediated by the adoptive transfer of MOG74-90 T cell lines markedly ameliorated by i.v. treatment with the homologous BTN peptide, BTN74-90, but that this protective effect is also seen in actively induced disease following transmucosal (intranasal) administration of the peptide. These results identify a mechanism by which the consumption of milk products may modulate the pathogenic autoimmune response to MOG.  相似文献   

10.
11.
Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the CNS with associated axonal loss. There is strong evidence for an autoimmune pathogenesis driven by myelin-specific T cells. Myelin oligodendrocyte glycoprotein (MOG) induces a type of experimental autoimmune encephalomyelitis in animals which is very MS-like since there are demyelinating CNS lesions and axonal loss. This underscores the potential role of MOG in MS pathogenesis. We performed a T cell reactivity pattern analysis of MS patients at the onset of relapse or progression of neurological deficits and controls that were stratified for the genetic risk factor HLA-DRB1*1501. For the first time, we show that there is an HLA-DR-restricted promiscuous dominant epitope for CD4(+) T cells within the transmembrane/intracellular part of MOG comprising aa 146-154 (FLCLQYRLR). Surprisingly, controls had broader T cell reactivity patterns toward MOG peptides compared with MS patients, and the transmembrane and intracellular parts of MOG were much more immunogenic compared with the extracellular part. Measurements of in vitro binding affinities revealed that HLA-DRB1*1501 molecules bound MOG 146-154 with intermediate and HLA-DRB1*0401 molecules with weak affinities. The binding of MOG 146-154 was comparable or better than myelin basic protein 85-99, which is the dominant myelin basic protein epitope in context with HLA-DRB1*1501 molecules in MS patients. This is the first study in which the data underscore the need to investigate the pathogenic or regulatory role of the transmembrane and intracellular part of MOG for MS in more detail.  相似文献   

12.
A Molecular Model of Myelin Oligodendrocyte Glycoprotein   总被引:1,自引:0,他引:1  
Abstract: Myelin oligodendrocyte glycoprotein (MOG) is a protein on the surface of myelin sheaths. It is a putative target of the autoimmune attack in the inflammatory and demyelinating CNS disease multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. MOG belongs to the immunoglobulin superfamily (IgSF), and its extracellular N-terminal domain contains many conserved IgSF consensus residues seen in immunoglobulin variable region folds. The aim of the present study was to create a molecular model of the extracellular N-terminal domain of mouse MOG. No crystal structure is yet available of MOG, and thus a molecular model would be useful in providing insight into its structure and binding characteristics. Molecular graphics techniques and molecular dynamics with secondary structure-based restraints were used in the construction and refinement of the MOG model. Regions of high prediction confidence were identified, and possible glycosylation, dimerization, complement binding, and antibody-binding regions in MOG were mapped and analyzed.  相似文献   

13.
C57BL/6 mice immunized with the extracellular Ig-like domain of rat myelin oligodendrocyte glycoprotein (MOG) developed experimental autoimmune encephalomyelitis (EAE) resembling that induced by rodent MOG 35-55 in its B cell independence and predominantly mononuclear CNS infiltrate. In contrast, human MOG protein-induced EAE was B cell dependent with polymorphonuclear leukocytes. Human MOG differs from rat MOG at several residues, including a proline for serine substitution at position 42. Human MOG 35-55 was only weakly encephalitogenic, and a proline substitution in rat MOG at position 42 severely attenuated its encephalitogenicity. However, human MOG 35-55 was immunogenic, inducing proliferation and IFN-gamma and IL-13 to human, but not rodent MOG 35-55 [corrected]. The B cell dependence of EAE induced by human MOG protein was not due to a requirement for Ag presentation by B cells, because spleen cells from B cell-deficient mice processed and presented human and rat MOG proteins to T cells. The different pathogenic mechanisms of human and rat MOG proteins might result from different Abs induced by these proteins. However, rat and human MOG proteins induced Abs to mouse MOG that were equivalent in titer and IgG subclass. These data demonstrate that EAE can be induced in C57BL/6 mice by two mechanisms, depending on the nature of the immunogen: an encephalitogenic T cell response to rat MOG or rodent MOG 35-55, or an encephalitogenic B cell response to epitopes on human MOG protein that most likely cross-react with mouse determinants.  相似文献   

14.
Our lab has demonstrated that encephalitogenic T cells can be effectively anergized by treatment with MHC variant peptides, which are analogues of immunogenic peptides containing an amino acid substitution at an MHC anchor residue. The MHC variant peptide of myelin oligodendrocyte glycoprotein (MOG)(35-55) proves an effective treatment as it does not induce symptoms of experimental autoimmune encephalomyelitis and fails to recruit macrophages or MOG(35-55)-specific T cells to the CNS. In this study, we sought to characterize the signaling pathways required for the induction of anergy by building upon the observations identifying the tyrosine phosphatase SHP-1 as a critical regulator of T cell responsiveness. Motheaten viable heterozygous mice, which contain a mutation in the SHP-1 gene resulting in a reduction in functional SHP-1, were challenged with MOG(35-55) or the MOG(35-55) MHC variant 45D. These mice display symptoms of experimental autoimmune encephalomyelitis upon immunization with MHC variant peptide and have significant CNS infiltration of tetramer-positive CD4(+) cells and macrophages, unlike B6 mice challenged with the variant peptide. The effects of SHP-1 are directly on the T cell as Motheaten viable heterozygous mice autoreactive T cells are not anergized in vitro. Lastly, we demonstrate no distinguishable difference in the initial interaction between the TCR and agonist or MHC variant. Rather, an unstable interaction between peptide and MHC attenuates the T cell response, seen in a decreased half-life relative to MOG(35-55). These results identify SHP-1 as a mediator of T cell anergy induced by destabilized peptide:MHC complexes.  相似文献   

15.
Inflammation plays an important role in ischemic stroke and in humans IL-10 may have a beneficial effect in stroke. We mucosally administered myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide to C57BL/6 mice before middle cerebral artery occlusion (MCAO) to induce an anti-inflammatory T cell response directed at CNS myelin. Nasal and oral administration of MOG(35-55) peptide decreased ischemic infarct size at 24 and 72 h after MCAO surgery. Nasal MOG(35-55) peptide was most efficacious and reduced infarct size by 70% at 24 h and by 50% at 72 h (p 相似文献   

16.
Multiple sclerosis (MS) is an autoimmune disease characterized by infiltration of pathogenic immune cells in the CNS resulting in destruction of the myelin sheath and surrounding axons. We and others have previously measured the frequency of human myelin-reactive T cells in peripheral blood. Using T cell cloning techniques, a modest increase in the frequency of myelin-reactive T cells in patients as compared with control subjects was observed. In this study, we investigated whether myelin oligodendrocyte glycoprotein (MOG)-specific T cells could be detected and their frequency was measured using DRB1*0401/MOG(97-109(107E-S)) tetramers in MS subjects and healthy controls expressing HLA class II DRB1*0401. We defined the optimal culture conditions for expansion of MOG-reactive T cells upon MOG peptide stimulation of PMBCs. MOG(97-109)-reactive CD4(+) T cells, isolated with DRB1*0401/MOG(97-109) tetramers, and after a short-term culture of PMBCs with MOG(97-109) peptides, were detected more frequently from patients with MS as compared with healthy controls. T cell clones from single cell cloning of DRB1*0401/MOG(97-109(107E-S)) tetramer(+) cells confirmed that these T cell clones were responsive to both the native and the substituted MOG peptide. These data indicate that autoantigen-specific T cells can be detected and enumerated from the blood of subjects using class II tetramers, and the frequency of MOG(97-109)-reactive T cells is greater in patients with MS as compared with healthy controls.  相似文献   

17.
The recombinant human (rh) myelin/oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) model in the common marmoset is characterized by 100% disease incidence, a chronic disease course, and a variable time interval between immunization and neurological impairment. We investigated whether monkeys with fast and slow disease progression display different anti-MOG T or B cell responses and analyzed the underlying pathogenic mechanism(s). The results show that fast progressor monkeys display a significantly wider specificity diversification of anti-MOG T cells at necropsy than slow progressors, especially against MOG(34-56) and MOG(74-96). MOG(34-56) emerged as a critical encephalitogenic peptide, inducing severe neurological disease and multiple lesions with inflammation, demyelination, and axonal injury in the CNS. Although EAE was not observed in MOG(74-96)-immunized monkeys, weak T cell responses against MOG(34-56) and low grade CNS pathology were detected. When these cases received a booster immunization with MOG(34-56) in IFA, full-blown EAE developed. MOG(34-56)-reactive T cells expressed CD3, CD4, or CD8 and CD56, but not CD16. Moreover, MOG(34-56)-specific T cell lines displayed specific cytotoxic activity against peptide-pulsed B cell lines. The phenotype and cytotoxic activity suggest that these cells are NK-CTL. These results support the concept that cytotoxic cells may play a role in the pathogenesis of multiple sclerosis.  相似文献   

18.
We demonstrate the absolute requirement for a functioning class II-restricted Ag processing pathway in the CNS for the initiation of experimental autoimmune encephalomyelitis (EAE). C57BL/6 (B6) mice deficient for the class II transactivator, which have defects in MHC class II, invariant chain (Ii), and H-2M (DM) expression, are resistant to initiation of myelin oligodendrocyte protein (MOG) peptide, MOG(35-55)-specific EAE by both priming and adoptive transfer of encephalitogenic T cells. However, class II transactivator-deficient mice can prime a suboptimal myelin-specific CD4(+) Th1 response. Further, B6 mice individually deficient for Ii and DM are also resistant to initiation of both active and adoptive EAE. Although both Ii-deficient and DM-deficient APCs can present MOG peptide to CD4(+) T cells, neither is capable of processing and presenting the encephalitogenic peptide of intact MOG protein. This phenotype is not Ag-specific, as DM- and Ii-deficient mice are also resistant to initiation of EAE by proteolipid protein peptide PLP(178-191). Remarkably, DM-deficient mice can prime a potent peripheral Th1 response to MOG(35-55), comparable to the response seen in wild-type mice, yet maintain resistance to EAE initiation. Most striking is the demonstration that T cells from MOG(35-55)-primed DM knockout mice can adoptively transfer EAE to wild-type, but not DM-deficient, mice. Together, these data demonstrate that the inability to process antigenic peptide from intact myelin protein results in resistance to EAE and that de novo processing and presentation of myelin Ags in the CNS is absolutely required for the initiation of autoimmune demyelinating disease.  相似文献   

19.
Abstract: Although the specificity of multiple sclerosis (MS) brain immunoglobulins (lgs) remains unknown, the incubation of these lgs with human myelin can lead to myelin basic protein (MBP) degradation mediated by neutral proteases. In this study, we demonstrate that monoclonal antibodies (mAbs) specific to myelin components such as the CNS-specific myelin oligodendrocyte glycoprotein (MOG) and galactocerebroside (GalC) are found to induce a significant loss of MBP mediated by neutral proteases in myelin. By contrast, antibodies to periaxonal and structural components of myelin, such as MBP and myelin-associated glycoprotein, are ineffective in inducing such MBP degradation. Among the 11 different anti-MOG mAbs directed to externally located epitopes of MOG, only two were found to induce a significant degradation of MBP, suggesting that antibody-induced MBP degradation is not only antigen specific but also epitope specific. Based on the inhibition of MBP degradation in the presence of EGTA and the analysis of the degradation products obtained following incubation of myelin with mAbs to GalC and MOG (8-18C5), the neutral protease involved in this antibody-induced degradation of MBP could be calcium-activated neutral protease. Taken together, these results suggest that antibodies to GalC and MOG can play a major role in destabilizing myelin through MBP breakdown mediated by neutral proteases and thus have an important role to play in the pathogenesis of MS.  相似文献   

20.
Myelin oligodendrocyte glycoprotein (MOG) is an Ag present in the myelin sheath of the CNS thought to be targeted by the autoimmune T cell response in multiple sclerosis (MS). In this study, we have for the first time characterized the T cell epitopes of human MOG restricted by HLA-DR4 (DRB1*0401), an MHC class II allele associated with MS in a subpopulation of patients. Using MHC binding algorithms, we have predicted MOG peptide binding to HLA-DR4 (DRB1*0401) and subsequently defined the in vivo T cell reactivity to overlapping MOG peptides by testing HLA-DR4 (DRB1*0401) transgenic mice immunized with recombinant human (rh)MOG. The data indicated that MOG peptide 97-108 (core 99-107, FFRDHSYQE) was the immunodominant HLA-DR4-restricted T cell epitope in vivo. This peptide has a high in vitro binding affinity for HLA-DR4 (DRB1*0401) and upon immunization induced severe experimental autoimmune encephalomyelitis in the HLA-DR4 transgenic mice. Interestingly, the same peptide was presented by human B cells expressing HLA-DR4 (DRB1*0401), suggesting a role for the identified MOG epitopes in the pathogenesis of human MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号