首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Renal cell carcinomas (RCCs) occur in both sporadic and familial forms. In a subset of families the occurrence of RCCs co-segregates with the presence of constitutional chromosome 3 translocations. Previously, such co-segregation phenomena have been widely employed to identify candidate genes in various hereditary (cancer) syndromes. Here we survey the translocation 3-positive RCC families that have been reported to date and the subsequent identification of its respective candidate genes using positional cloning strategies. Based on allele segregation, loss of heterozygosity and mutation analyses of the tumors, a multi-step model for familial RCC development has been generated. This model is relevant for (i) understanding familial tumorigenesis and (ii) rational patient management. In addition, a high throughput microarray-based strategy is presented that will enable the rapid identification of novel positional candidate genes via a single step procedure. The functional consequences of the (fusion) genes that have been identified so far, the multi-step model and its consequences for clinical diagnosis, the identification of persons at risk and genetic counseling in RCC families are discussed.  相似文献   

2.
Chromosome translocations in Glossina austeni   总被引:1,自引:0,他引:1  
  相似文献   

3.
Chromosome translocations in breast cancer with breakpoints at 8p12   总被引:1,自引:0,他引:1  
Unbalanced chromosome translocations with breakpoints around 8p12, resulting in loss of distal 8p, are common in carcinomas. We have mapped the 8p12 breakpoints in three breast cancer cell lines, T-47D, MDA-MB-361, and ZR-75-1, using YACs and PACs between D8S540 and D8S255 by fluorescence in situ hybridization. All three lines had a breakpoint close to D8S505, proximal to HGL. Each breakpoint was distinct, but all were within 0.5 to 1.5 Mb of each other. The T-47D cell line had a straightforward translocation, but in MDA-MB-361 and ZR-75-1 the translocations were accompanied by local rearrangements of surprising complexity. Small regions of 8p from close to the breakpoint were duplicated or amplified as inserts in the attached chromosome fragment. ZR-75-1 also had retained a separate fragment of about 1 Mb, from the region 1 to 3 Mb telomeric to the common breakpoint, that included HGL. This line also had an interstitial deletion several megabases more centromeric. The data suggest that breakpoints on 8p12 are clustered in a small region and show that translocations breaking there may be accompanied by additional rearrangements.  相似文献   

4.
In this article, we show that introns harboring translocation breakpoints in tumors are significantly longer than non-translocated introns of the same genes but are not enriched significantly in sequence elements potentially involved in chromosomal rearrangements. Our findings provide evidence that double-strand breaks, the type of DNA damage that leads to translocations in tumors, are created at random points in the genome, and that sequence elements do not have a widespread role in the localization of these breaks.  相似文献   

5.
BURNHAM CR 《Genetics》1950,35(4):446-481
  相似文献   

6.
Chromosome abnormalities in human cancer and leukemia   总被引:3,自引:0,他引:3  
The meaning and application of chromosomal (cytogenetic, karyotypic) changes in human leukemia and cancer have been succinctly reviewed in this article. Thus, the usefulness of these changes in the diagnosis, classification and prognosis of various leukemic conditions and, more recently, of solid tumors is stressed and their application to molecular studies indicated. The meaning of primary (specific) and additional (secondary) karyotypic changes in malignant and benign tumors is discussed. Tables containing the common cytogenetic changes in leukemias and tumors, including benign ones, are included.  相似文献   

7.
8.
9.
Chromosomal translocations in cancer   总被引:1,自引:0,他引:1  
Genetic alterations in DNA can lead to cancer when it is present in proto-oncogenes, tumor suppressor genes, DNA repair genes etc. Examples of such alterations include deletions, inversions and chromosomal translocations. Among these rearrangements chromosomal translocations are considered as the primary cause for many cancers including lymphoma, leukemia and some solid tumors. Chromosomal translocations in certain cases can result either in the fusion of genes or in bringing genes close to enhancer or promoter elements, hence leading to their altered expression. Moreover, chromosomal translocations are used as diagnostic markers for cancer and its therapeutics. In the first part of this review, we summarize the well-studied chromosomal translocations in cancer. Although the mechanism of formation of most of these translocations is still unclear, in the second part we discuss the recent advances in this area of research.  相似文献   

10.
Renal cell carcinomas (RCC) occur in both sporadic and familial forms. The best known example of a familial RCC syndrome is the Von Hippel Lindau cancer syndrome. In addition, RCC families segregating constitutional chromosome 3 translocations have been reported. The list of these latter families is rapidly expanding. We have initiated a survey of all Dutch families known to segregate chromosome 3 translocations for (i) the ocurrence of RCCs and (ii) the establishment of refined risk estimates. This information will be critical for genetic counseling and clinical patient management. Within the families 'at risk' that we have identified so far, this approach has already led to early RCC detection and surgical intervention.  相似文献   

11.
Cytogenetic analysis of two human ovarian adenocarcinomas show identical specific anomalies. These two tumors exhibit, in all the analysed mitosis, a paracentric inversion of chromosome 3 and a translocation between chromosomes 2 and 5. A relationship between these markers and the location of human oncogenes on chromosomes 2, 3 and 5 should be considered.  相似文献   

12.
Sheridan WF  Auger DL 《Genetics》2008,180(2):755-769
The B–A–A translocations have enabled us to simultaneously assess the possible dosage-sensitive interactions of two nonhomologous chromosome segments in affecting maize plant development. Maize B–A–A translocations contain segments of two nonhomologous essential A chromosomes in tandem arrangement attached to a segment of the long arm of a supernumerary B chromosome. By utilizing the frequent nondisjunction of the B centromere at the second pollen mitosis we produced plants containing an extra copy of the two A chromosome segments. We compared these hyperploid plants with nonhyperploid plants by measuring leaf width, plant height, ear height, internode length, stalk circumference, leaf length, and tassel-branch number in 20 paired families that involved one of the chromosome arms 1S, 1L, 4L, 5S, and 10L. One or more of the seven measured traits displayed dosage sensitivity among 17 of the 20 B–A–A translocations, which included the involvement of chromosome arms 2L, 3L, 5L, 6L, and 7L. The most obvious effect of an increased dosage of the B–A–A translocation was a significant decrease in the traits in the hyperploid plants. These effects may be either the additive effects of hyperploidy for the two chromosome segments or a result of gene interaction between them.  相似文献   

13.
14.
Translocation frequencies (as compared to the standard chromosome arrangement typified by that in Chinese Spring) in 9 or more genotypes from each of 15 populations of Triticum dicoccoides in Israel were determined. Data also were obtained from 2 genotypes of the southernmost population (Jaba). A single population from Turkey was also investigated. There were 119 genotypes with translocations in the sample of 171 genotypes investigated (70%). The frequency of translocations in different populations varied from 0.27 to 1.00, and all populations had 1 or more genotypes with one or more translocations. Some populations such as Qazrin appeared to be homogeneous for translocations, but most populations were heterogeneous. A sample of 17 genotypes from 12 of the populations were crossed with the Langdon D-genome disomic substitutions to determine the identity of the chromosomes involved in the translocations. There were nine genotypes with translocations and with the exception of a 2A/2B translocation, none of them involved the same chromosomes. The B-genome chromosomes were involved in translocations more frequently than the A-genome chromosomes. Translocation frequencies (TF) of the various populations were correlated with environmental variables, primarily with water availability and humidity, and possibly also with soil type. In general, TF was higher in peripheral populations in the ecologically heterogeneous frontiers of species distribution than in the central populations located in the catchment area of the upper Jordan valley.  相似文献   

15.
Between 1974 and 1987, 232 translocation carriers have been detected in our Center; they belong to 144 different families. Indications for chromosome analysis were the following: familial studies in relation with a patient suggesting a chromosome anomaly (25.4%); mental retardation with or without malformations (24.6%); 2 or more spontaneous abortions (17.2%); infertility problems, mainly male (16.4%); genetic counseling for a non-chromosomal disease (9.5%); prenatal diagnosis in risk pregnancies (6.9%). The chromosome anomalies detected were the following; balanced Robertsonian fusions (114 cases = 49.1%); balanced translocations (74 cases = 31.9%); unbalanced translocations, Robertsonian fusions included (44 cases = 19%). Two groups may be distinguished: the first one confirms data already known, such as high frequency of balanced translocations in couples with multiple abortions, or in infertile males. The second group on the contrary shows more unusual observations: 4 cases of standard trisomy 21 born to young parents carriers of a balanced translocation not involving chromosome 21; 5 cases of trisomy 13 with 46 chromosomes and a Robertsonian fusion, born to parents carriers of a t(13q; Dq) (twice the mother and thrice the father); 14 cases of apparently balanced translocations, however with an abnormal phenotype; and finally 22 cases of balanced translocations incidentally detected during the course of investigations in patients with a genetic problem generally not associated with a chromosome defect.  相似文献   

16.
Translocation induction in mouse spermatogonia by continuous whole-body gamma irradiation (radium 226) was studied. Total doses, delivered at a rate of 13.0 +/- 1.3 X 10(-4) rad/min for various time intervals, were 97, 195, 294 and 442 rad. Cytological examination within 3 to 4 months after irradiation indicated the presence of translocations in 0.16, 0.30, 0.75 and 1.29 percent respectively, of primary spermatocytes at diakinesis metaphase I. Data on translocation induction (Y) as related to total irradiation dose (D) were best fitted to a second power parabola equation (Y=5.1 X 10(-6)D2 + 7.32 X 10(-4) X D). The results obtained confirm that chronic gamma irradiation is of low genetic efficiency, and support the suggestion that there exists a dose-rate threshold under which no more changes in exposure efficiency will occur.  相似文献   

17.
Chromosomal translocations in human cancer may result in products that can be suppressed by targeting drugs. An example is bcr-abl tyrosine kinase in chronic myelogenous leukemia that can be treated with imatinib mesylate. However, the mechanisms of translocations or exchanges of chromosomal segments are virtually unknown. In this summary, chromosomal translocations in human cancer are compared with 'crossing over' of chromosomal segments occurring during the first meiotic division. Several proposed mechanisms of the exchange of DNA between and among chromosomes are discussed. The conditions that appear essential for these events to occur are listed. Among them are proximity of the involved DNA segments, mechanisms of excising the target DNA, its transport to the new location, and integration into the pre-existing chromosome. The conclusion based on extensive review of the literature is that practically nothing is known about the mechanism of 'crossing over' or translocation. Based on prior work on normal human cells, it is suggested that only one of the two autosomes participates in these events that may include loss of heterozygozity, another common abnormality in human cancer.  相似文献   

18.
Role of chromosome translocations in human neoplasia   总被引:26,自引:0,他引:26  
C M Croce 《Cell》1987,49(2):155-156
  相似文献   

19.
20.
G Bosco  J E Haber 《Genetics》1998,150(3):1037-1047
In yeast, broken chromosomes can be repaired by recombination, resulting in nonreciprocal translocations. In haploid cells suffering an HO endonuclease-induced, double-strand break (DSB), nearly 2% of the broken chromosome ends recombined with a sequence near the opposite chromosome end, which shares only 72 bp of homology with the cut sequence. This produced a repaired chromosome with the same 20-kb sequence at each end. Diploid strains were constructed in which the broken chromosome shared homology with the unbroken chromosome only on the centromere-proximal side of the DSB. More than half of these cells repaired the DSB by copying sequences distal to the break from the unbroken template chromosome. All these events were RAD52 dependent. Pedigree analysis established that DSBs occurring in G1 were repaired by a replicative mechanism, producing two identical daughter cells. We discuss the implications of these data in understanding telomerase-independent replication of telomeres, gene amplification, and the evolution of chromosomal ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号