首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CGRP Y0-28-37 is known as a selective CGRP1 receptor antagonist. We succeeded in optimising the CGRP1 receptor affinity of this fragment by multiple amino acid replacement. The analogues [p34, F35]CGRP 27-37 and [D31, p34, F35]CGRP 27-37 exhibit a 100-fold increased affinity compared to the unmodified segment. Receptor binding studies were performed with human neuroblastoma cells SK-N-MC, which selectively express the hCGRP1 receptor. Blood flow, which is increased by exogenous CGRP, was measured in the right femoral artery. Preincubation of the rats with [p34, F35]CGRP 27-37 and [D31, p34, F35]CGRP 27-37 led to a significant decrease in CGRP induced increase in vascular conductance indicating the antagonistic properties of these compounds. Interestingly, an exchange of the amino acid Asn31 to Asp31 in [p34, F35]CGRP 27-37 shortened the period of the antagonistic effect significantly, suggestive of a different rate of metabolism for the two ligands. Secondary structure investigations obtained by circular dichroism measurements revealed that an increase in ordered structure correlates with high binding affinity.  相似文献   

2.
Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide and potent vasodilatator agent located in sensory C fibres. Several functional studies suggest that CGRP could be involved in the vasodilatation of different vascular beds during neurogenic inflammation. We have studied, in pentobarbital anaesthetised pigs, the antagonistic effect of local intra-arterial (i.a.) pretreatment with the analogues CGRP 8-37, [D31, P34, F35]CGRP 27-37 and [N31, P34, F35]CGRP 27-37 on the vasodilatation of the nasal vascular bed induced by exogenous CGRP, capsaicin, bradykinin (BK) and histamine. The attenuating effect of CGRP 8-37 analogue on exogenous CGRP-induced vasodilatation, previously described in other in vivo animal models, was confirmed in the pig nasal mucosa. It also interfered with BK-and, to a lesser extent, with capsaicin-and histamine-induced decrease in vascular resistance. CGRP 27-37 analogues reduced the duration of CGRP-, capsaicin- and BK-induced vasodilatation by more than 50%. Peak values of vasodilatation were attenuated by more than 25% overall. Attenuation of histamine-induced decrease in vascular resistance was less pronounced. It is concluded that CGRP 27-37 analogues antagonise the action of exogenous CGRP, capsaicin, BK and histamine by attenuating their vasodilatation effect, both in intensity and duration. These results strongly suggest that BK- and histamine-induced vasodilatation is partly mediated by CGRP. CGRP 8-37 and 27-37 appear to be potential contributors to the study of CGRP and its physiological role in neurogenic inflammation. In addition, they may have putative therapeutic applications in the treatment of rhinitic patients suffering from chronic nasal obstruction.  相似文献   

3.
The calcitonin gene-related peptide from the skin of the frog Phyllomedusa bicolor (pbCGRP) is a 37-residue neuropeptide that differs from human alpha CGRP (halphaCGRP) at 16 positions. The affinities of the C-terminal fragments of pbCGRP and halphaCGRP were evaluated in SK-N-MC cells: pbCGRP(8-37) (K(i)=0.2nM) and pbCGRP(27-37) (K(i)=95nM) were, respectively, 3 times and 20 times more potent than the human fragments halphaCGRP(8-37) and halphaCGRP(27-37). Their antagonistic potencies were measured in SK-N-MC and Col 29 cells, and the rat vas deferens. pbCGRP(8-37) inhibited the halphaCGRP-stimulated production of cAMP by SK-N-MC and Col 29 cells 3 to 4 times more strongly than halphaCGRP(8-37). Thus pbCGRP(8-37) is the most potent CGRP-1 competitive antagonist of all the natural sequences reported to date. pbCGRP(27-37) was also as potent as [D(31), A(34), F(35)] halphaCGRP(27-37), a prototypic antagonist analog derived from structure-activity relationship studies of halphaCGRP(8-37).  相似文献   

4.
In order to examine whether the truncated fragments of hCGRP, hCGRP(8-37) or hCGRP(12-37), behave as competitive CGRP receptor antagonists in the vascular system of the rat, systemic blood pressure was continually monitored in pentobarbital-anesthetized Sprague-Dawley rats. The IV administration of 7.9-527 pmol hCGRP/rat caused dose-related reductions in mean arterial blood pressure that lasted, depending on the dose, about 3-10 min. In contrast, hCGRP fragments 8-37 or 12-37 proved inactive up to 60,000 pmol/rat. Pretreatment with either 10 or 30 nmol hCGRP(8-37) or 20 or 90 nmol hCGRP(12-37)/rat reduced the magnitude of the CGRP-induced hypotensive responses caused by 79 pmol hCGRP/rat; pretreatment with 10 nmol of the hCGRP fragments displaced about 3-fold the hCGRP as well as the [Cys(ACM)2.7]hCGRP dose-response curve to the right in a parallel fashion. The specificity of hCGRP(8-37) as a CGRP receptor antagonist was documented by the finding that it did not antagonize the hypotensive responses induced with bradykinin, histamine or substance P.  相似文献   

5.
The N-terminal 1-34 fragments of the parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) elicit the full spectrum of bone-related biological activities of the intact native sequences. It has been suggested that the structural elements essential for bioactivity are two helical segments located at the N-terminal and C-terminal sequences, connected by hinges or flexible points around positions 12 and 19. In order to assess the relevance of the local conformation around Gly(12) upon biological function, we synthesized and characterized the following PTH(1-34) analogues containing Aib residues: (I) A-V-S-E-I-Q-F-nL-H-N-Aib-G-K-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-Y-NH(2) ([Nle(8,18), Aib(11), Nal(23),Tyr(34)]bPTH(1-34)-NH(2)); (II) A-V-S-E-I-Q-F-nL-H-N-L-Aib-K-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-Y-NH(2) ([Nle(8,18), Aib(12),Nal(23),Tyr(34)]bPTH(1-34)-NH(2)); (III) A-V-S-E-I-Q-F-nL-H-N-L-G-Aib-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-Y-NH(2) ([Nle(8,18), Aib(13), Nal(23),Tyr(34)]bPTH(1-34)-NH(2)); (IV) A-V-S-E-I-Q-F-nL-H-N-Aib-Aib-K-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-YNH(2) ([Nle(8,18), Aib(11,12), Nal(23),Tyr(34)]bPTH(1-34)-NH(2)); (V) A-V-S-E-I-Q-F-nL-H-N-L-Aib-Aib-H-L-S-S-nL-E-R-V-E-Nal-L-R-K-K-L-Q-D-V-H-N-Y-NH(2) ([Nle(8,18), Aib(12,13),Nal(23),Tyr(34)]bPTH(1-34)-NH(2)). (nL= Nle; Nal= L-(2-naphthyl)-alanine; Aib= alpha-amino-isobutyric acid.) The introduction of Aib residues at position 11 in analogue I or at positions 11 and 12 in analogue IV resulted in a 5-20-fold lower efficacy and a substantial loss of binding affinity compared to the parent compound [Nle(8,18), Nal(23),Tyr(34)]bPTH(1-34)-NH(2). Both binding affinity and adenylyl cyclase stimulation activity are largely restored when the Aib residues are introduced at position 12 in analogue II, 13 in analogue III, and 12-13 in analogue V. The conformational properties of the analogues in aqueous solution containing dodecylphosphocholine micelles were studied by CD, two-dimensional (2D) NMR and computer simulations. The results indicated the presence of two helical segments in all analogues, located at the N-terminal and C-terminal sequences. Insertion of Aib residues at positions 12 and 13, or of Aib dyads at positions 11-12 and 12-13, enhances the stability of the N-terminal helix of all analogues. In all analogues the Aib residues are included in the helical segments. These results confirmed the importance of the helical structure in the N-terminal activation domain, as well as of the presence of the Leu(11) hydrophobic side chain in the native sequence, for PTH-like bioactivity.  相似文献   

6.
Calcitonin-gene-related peptide (CGRP) is a 37-amino-acid vasodilatory peptide, of which two isoforms, alpha CGRP and beta CGRP, have been described. The use of C-terminal fragments of CGRP peptide, such as human alpha CGRP-(8-37), has led to the pharmacological subdivision of CGRP receptors into CGRP-1 [high potency for binding of human alpha CGRP-(8-37)] and CGRP-2 (lower potency) receptors. We have recently developed BIBN4096BS, the first non-peptide CGRP antagonist, which has sub-nanomolar affinity for primate CGRP receptors. The use of BIBN4096BS has led to the discovery of further functional CGRP receptor heterogeneity in rat tissues. To further exploit BIBN4096BS as a pharmacological tool, we used BIBN4096BS in pig left anterior descending coronary vessels and cerebral basilar arteries, and compared functional with molecular data, characterizing CGRP receptor components. Our data show that, apart from a subdivision into CGRP-1 and -2 receptors, BIBN4096BS reveals additional functional differences between the actions of alpha CGRP and beta CGRP. However, evidence for CGRP receptor heterogeneity on a molecular level is scarce.  相似文献   

7.
P.N. Maton  T. Pradhan  S. Moore   《Peptides》1990,11(6):1163-1167
We have previously described that [Tyr0]CGRP(28–37) acts as a receptor antagonist of rat CGRP in guinea pig pancreatic acini. We therefore examined other C-terminal peptides of CGRP for such activity. CGRP-acetyl(28–37) acetate did act as a rat CGRP antagonist. However, C-terminal CGRP peptides of 4 to 8 amino acid residues did not antagonize the actions of rat CGRP but stimulated amylase secretion. In pancreatic acini, a maximally effective concentration of rat CGRP (100 nM) caused a 2.1-fold increase in amylase secretion. When the C-terminal peptides of CGRP were tested in at 100 μM, CGRP(34–37) caused a 1.8-fold increase in amylase secretion, CGRP(33–37) a 2.8-fold increase, CGRP(32–37) a 9.2-fold increase, CGRP(31–37) a 4.1-fold increase, and CGRP(30–37) a 5.1-fold increase. Further studies with the most effective peptide, CGRP(32–37), demonstrated that it did not cause release of lactate dehydrogenase, and thus did not cause amylase release by cell damage. Unlike rat CGRP, CGRP(32–37) did not increase cellular cyclic AMP, but did stimulate outflux of 45Ca. CGRP(32–37)-stimulated amylase release was not inhibited by the substance P receptor antagonist, spantide, by the bombesin receptor antagonist, [D-Phe6]bombesin(6–13) propylamide, or by the muscarinic receptor antagonist, atropine, but was inhibited by the CCK receptor antagonist L364,718. C-terminal peptides of CGRP inhibited binding of 125I-BH-CCK-8, with the relative potencies of the peptides being the same as their relative potencies for stimulating amylase secretion. The present data demonstrate that C-terminal peptides of CGRP, although they have only 2 amino acid residues in common with CCK(26–33), act exclusively at CCK receptors on pancreatic acini to stimulate amylase secretion.  相似文献   

8.
Several chimeric peptides consisting of the N-terminal fragment of galanin (GAL) and C-terminal fragments of other bioactive peptides (e.g. substance P, bradykinin, neuropeptide Y, mastoparan) have been synthesized and reported as high-affinity galanin receptor antagonists. Recently we have synthesized a new chimeric peptide, GAL(1-13)-[Ala(10,11)]ET-1(6-21)-NH(2), consisting of the N-terminal fragment of GAL and the C-terminal fragment of endothelin-1 (ET-1) analogue. This chimera was previously shown to be a moderate-affinity ligand to hypothalamic galanin receptors with a K(D) value of 205 nM. However, its biological action has been unknown so far. In our studies we characterized the biological properties of this new chimeric analogue, investigating its action on rat isolated gastric smooth muscles and influence on insulin secretion from rat isolated islets of Langerhans. Data acquired in the course of our studies suggest that analogue GAL(1-13)-[Ala(10,11)]ET-1(6-21)-NH(2) does not seem to be a potent galanin receptor antagonist in the gastrointestinal tract.  相似文献   

9.
The human parathyroid hormone (PTH) receptor (hPTH1R), containing a 9-amino acid sequence of rhodopsin at its C terminus, was transiently expressed in COS-7 cells and solubilized with 0.25% n-dodecyl maltoside. Approximately 18 microg of hPTH1R were purified to homogeneity per mg of crude membranes by single-step affinity chromatography using 1D4, a monoclonal antibody to a rhodopsin epitope. The N terminus of the hPTH1R is Tyr(23), consistent with removal of the 22-amino acid signal peptide. Comparisons of hPTH1R by quantitative immunoblotting and Scatchard analysis revealed that 75% of the receptors in membrane preparations were functional; there was little, if any, loss of functional receptors during purification. The binding affinity of the purified hPTH1R was slightly lower than membrane-embedded hPTH1R (K(d) = 16.5 +/- 1.3 versus 11.9 +/- 1.9 nm), and the purified receptors bound rat [Nle(8,21),Tyr(34)]PTH-(1-34)-NH(2) (PTH-(1-34)), and rat [Ile(5),Trp(23),Tyr(36)]PTHrP-(5-36)-NH(2) with indistinguishable affinity. Maximal displacement of (125)I-PTH-(1-34) binding by rat [alpha-aminoisobutyric acid (Aib)(1,3),Nle(8),Gln(10),Har(11),Ala(12),Trp(14),Arg(19),Tyr(21)]PTH-(1-21)-NH(2) and rat [Aib(1,3),Gln(10),Har(11),Ala(12),Trp(14)]PTH-(1-14)-NH(2) of 80 and 10%, respectively, indicates that both N-terminal and juxtamembrane ligand binding determinants are functional in the purified hPTH1R. Finally, PTH stimulated [(35)S]GTP gamma S incorporation into G alpha(s) in a time- and dose-dependent manner, when recombinant hPTH1R, G alpha(s)-, and beta gamma-subunits were reconstituted in phospholipid vesicles. The methods described will enable structural studies of the hPTH1R, and they provide an efficient and general technique to purify proteins, particularly those of the class II G protein-coupled receptor family.  相似文献   

10.
The neuropeptide galanin is a 29- or 30-residue peptide whose physiological functions are mediated by G-protein-coupled receptors. Galanin's agonist activity has been shown to be associated with the N-terminal sequence, galanin(1-16). Conformational investigations previously carried out on full-length galanin have, furthermore, indicated the presence of a helical conformation in the neuropeptide's N-terminal domain. Several cyclic lactam analogues of galanin(1-16)-NH2 were prepared in an attempt to stabilize an N-terminal helix in the peptide. Here we describe and compare the solution conformational properties of these analogues in the presence of SDS micelles as determined by NMR, CD, and fluorescence spectroscopy. Differences in CD spectral profiles were observed among the compounds that were studied. Both c[D4, K8]Gal(1-16)-NH2 and c[D4,K8]Gal(1-12)-NH2 adopted stable helical conformations in the micelle solution. On the basis of the analyses of their respective alpha H chemical shifts and NOE patterns, this helix was localized to the first 10 residues. The distance between the aromatic rings of Trp2 and Tyr9 in c[D4, K8]Gal(1-16)-NH2 was determined to be 10.8 +/- 3 A from fluorescence resonance energy transfer measurements. This interchromophore spacing was found to be more consistent with a helical structure than an extended one. Removal of the Gly1 residue in compounds c[D4,K8]Gal(1-16)-NH2 and c[D4, K8]Gal(1-12)-NH2 resulted in a loss of helical conformation and a concomitant reduction in binding potency at the GalR1 receptor but not at the GalR2 receptor. The nuclear Overhauser enhancements obtained for the Gly1 deficient analogues did, however, reveal the presence of nascent helical structures within the N-terminal sequence. Decreasing the ring structure size in c[D4, K8]Gal(1-16)-NH2 by replacing Lys8 with an ornithine residue or by changing the position of the single lysine residue from eight to seven was accompanied by a complete loss of helical structure and dramatically reduced receptor affinity. It is concluded from the data obtained for the series of cyclic galanin(1-16)-NH2 analogues that both the ring structure size and the presence of an N-terminal glycine residue are important for stabilizing an N-terminal helix in these compounds. However, although an N-terminal helix constitutes a predominant portion of the conformational ensemble for compounds c[D4,K8]Gal(1-16)-NH2 and c[D4, K8]Gal(1-12)-NH2, these peptides nevertheless are able to adopt other conformations in solution. Consequently, the correlation between the ability of the cyclic galanin analogues to adopt an N-terminal helix and bind to the GalR1 receptor may be considered as a working hypothesis.  相似文献   

11.
The cellular function of amylin is investigated in L6 myocytes, a rat skeletal muscle cell line. Both rat amylin and human amylin-amide acutely cause a dose-dependent increase in cyclic AMP formation in L6 myocytes. 100 nM amylin stimulates intracellular cyclic AMP concentrations 12-fold, whereas human amylin-amide at this concentration causes only a 2-fold increase. Up to 10 mM human amylin has no effect on cyclic AMP levels. Rat calcitonin gene-related peptide (CGRP) is more potent than amylin, causing a 60-fold increase over basal at 1 nM, with an EC50 value of 0.2 nM. The CGRP receptor antagonist, human CGRP8-37 (hCGRP8-37), completely blocks the stimulatory effect of both rat amylin and human amylin-amide on cyclic AMP production. [125I]CGRP binds specifically to a membrane fraction prepared from L6 [125I]CGRP with a Ki of 0.9 nM, while rat amylin also displaces [125I]CGRP with a Ki of 91 nM. Specific binding of [125I]CGRP to plasma membranes of rat liver and brain is also displaced by rat amylin with Ki values of 35 nM and 37 nM, respectively. In contrast, specific binding of [125I]amylin to numerous cells and tissues, under similar conditions, can not be demonstrated. These results suggest that the cellular effects and physiological actions of amylin may be mediated through receptors for CGRP.  相似文献   

12.
Responses to human calcitonin gene-related peptide (hCGRP) and human adrenomedullin (hADM) hAmylin were investigated in isolated mesenteric resistance arteries from the rat. The results of the present investigation show that hCGRP, hAmylin, and hADM induce dose-related vasodilator responses in isolated resistance arteries from the rat mesenteric vascular bed. Vasodilator responses to hCGRP and hAmylin were not altered after denuding the vascular endothelium, after administration of the nitric oxide synthase inhibitor L-NA, or after administration of the soluble guanylate cyclase inhibitor ODQ, suggesting that vasodilator responses to hCGRP and hAmylin are not mediated by the release of nitric oxide from the vascular endothelium and the subsequent increase in cGMP. Vasodilator responses to hCGRP, hAmylin, and hADM were not altered by the vascular selective K+(ATP) channel antagonist U-37883A. The role of the CGRP1 receptor was investigated and responses to hCGRP and hAmylin, but not hADM, were significantly reduced following administration of hCGRP-(8-37). Moreover, vasodilator responses to hCGRP and hAmylin, but not hADM, were significantly reduced by hAmylin-(8-37), suggesting that an hAmylin-(8-37)-sensitive receptor mediates responses to hCGRP and hAmylin in the rat mesenteric artery. These data suggest that hCGRP and hAmylin have direct vasodilator effects in the isolated mesenteric resistance artery that are mediated by hAmylin-(8-37)- and hCGRP-(8-37)-sensitive receptors.  相似文献   

13.
The 1-34 N-terminal fragments of human parathyroid hormone (PTH) and PTH-related protein (PTHrP) elicit the full spectrum of bone-relevant activities characteristic of the intact hormones. The structural elements believed to be required for receptor binding and biological activity are two helical segments, one N-terminal and one C-terminal, connected by hinges or flexible points located around positions 12 and 19. To test this hypothesis, we synthesized and characterized the following analogues of PTH-(1-34), each containing single or double substitutions with beta-amino acid residues around the putative hinge located at position 12: I. [Nle(8,18),beta-Ala(11,12),Nal(23),Tyr(34)]bPTH-(1-34)NH(2); II. [Nle(8,18),beta-Ala(12,13),Nal(23),Tyr(34)]bPTH-(1-34)NH(2); III. [Nle(8,18),beta-Ala(11),Nal(23),Tyr(34)]bPTH-(1-34)NH(2); IV. [Nle(8,18),beta-hLeu(11),Nal(23),Tyr(34)]bPTH-(1-34)NH(2); V. [Nle(8,18),beta-Ala(12), Nal(23),Tyr(34)]bPTH-(1-34)NH(2); VI. [Nle(8,18),beta-Ala(13), Nal(23),Tyr(34)]bPTH-(1-34)NH(2) (beta-hLeu = beta-homo-leucine; beta-Ala = beta-alanine; Nal = L-2-naphthyl-alanine; Nle = norleucine). Analogues I and III exhibit very low binding affinity and are devoid of adenylyl cyclase activity. Analogue II, despite its very low binding capacity is an agonist. Biological activity and binding capacity are partially restored in analogue IV, and completely restored in analogues V and VI. The conformational properties of the analogues were investigated in aqueous solution containing dodecylphosphocholine (DPC) micelles as a membrane-mimetic environment using CD, 2D-NMR, and molecular dynamics calculations. All peptides fold partially into the alpha-helical conformation in the presence of DPC micelles, with a maximum helix content in the range of 30-35%. NMR analysis reveals the presence of two helical segments, one N-terminal and one C-terminal, as a common structural motif in all analogues. Incorporation of beta-Ala dyads at positions 11,12 and 12,13 in analogues I and II, respectively, enhances the conformational disorder in this portion of the sequence but also destabilizes the N-terminal helix. This could be one of the possible reasons for the lack of biological activity in these analogues. The partial recovery of binding affinity and biological activity in analogue IV, compared to the structurally similar analogue III, is clearly the consequence of the reintroduction of Leu side-chain of the native sequence. In the fully active analogues V and VI, the helix stability at the N-terminus is further increased. Taken together, these results stress the functional importance of the conformational stability of the helical activation domain in PTH-(1-34). Contrary to expectation, insertion of a single beta-amino acid residue in positions 11, 12, or 13 in analogues III-VI does not favor a disordered structure in this portion of the sequence.  相似文献   

14.
The intracellular mechanisms of ischemic preconditioning (PC) in preventing lung dysfunction following transplantation, shock, and trauma remain poorly understood. Previously, we have shown that alveolar epithelial cells secrete calcitonin gene-related peptide (CGRP) under inflammatory stress. Using a hypoxia/reoxygenation (H/R) and PC model, we found that CGRP was also secreted from human type II alveolar epithelial cells (A549) after PC. The locally released CGRP interacted with its receptor on the membrane of A549 cells and elicited downstream signals mediating the PC effect, because hCGRP(8-37), a specific CGRP receptor antagonist, attenuated the protective effect of PC. Pre-inhibition of CGRP protein synthesis by small interfering RNA exacerbated (but overexpression of the CGRP gene ameliorated) H/R-induced cell death, which supports the autocrine effect of CGRP on A549 cells. Exogenous bioactive CGRP mimicked the beneficial effect of PC and up-regulated the expression of heat shock protein 70 (HSP70), which might act as the end effector to maintain cell viability. These effects were sensitive to hCGRP(8-37), calphostin C (a protein kinase C (PKC) inhibitor), and 5-hydroxydecanoic acid (a mitochondrial K(+)(ATP) channel blocker) but were insensitive to protein kinase A blockers. Moreover, CGRP induced the membrane translocation of PKCepsilon. PKCV1-2 (a cell-permeable inhibitory peptide of PKCepsilon) effectively abolished CGRP-induced HSP70 expression and cell protection. Therefore, PC induces CGRP secretion from human alveolar epithelial cells, and the locally released CGRP acts back on these cells, protecting them from H/R injury. The post-receptor signaling of CGRP is through PKCepsilon-dependent expression of HSP70.  相似文献   

15.
Two distinct binding sites for [125I]human calcitonin gene-related peptide (hCGRP) were found in rat brain, skeletal muscle, and liver. Each tissue had a high affinity site with an average Kd of 46 pM and a low affinity site with an average Kd of 22 nM. Islet amyloid polypeptide (IAPP), which has N- and C-terminal sequence homology to CGRP and is produced by islet beta-cells, bound to both sites but had a potency closer to that of CGRP at the low affinity binding site. A C-terminal fragment of IAPP competed for [125I]hCGRP binding at the low affinity site with potency comparable to that of hIAPP. No specific binding to membrane preparations was found in experiments using [125I]rIAPP, which was iodinated at the C-terminal tyrosyl residue. These results suggest that some of the previously reported biological effects occurring at nM or microM concentrations of IAPP may be mediated by IAPP binding to low affinity CGRP receptors. This study further indicates that the C-terminal region of IAPP is important for binding to low affinity CGRP receptors, and suggests that C-terminal fragments of IAPP may be of biological importance.  相似文献   

16.
Nonadrenergic noncholinergic (NANC) mediated vasodilation may contribute to the maintenance of low pulmonary vascular tone. The NANC neurotransmitters, nitric oxide (NO) and the sensory neuropeptides, substance P and calcitonin gene related peptide (CGRP), were investigated as possible mediators of NANC vasodilation in guinea pig pulmonary arteries. Fresh guinea pig pulmonary artery rings, with and without an intact endothelium, were mounted in organ baths containing Krebs solution and precontracted with the prostaglandin F2alpha analogue U44069. In both endothelium-intact and denuded vessels, electrical field stimulation (1-12 Hz) in the presence of guanethidine and atropine resulted in a frequency-dependent vasodilation. The peptide fragment hCGRP8-37, a competitive antagonist of the CGRP receptors, the peptide fragment NK1 antagonist SP4-11, and the nonpeptide NK1 antagonist RP67580 had no effect on NANC vasodilation. In both endothelium-intact and denuded vessels, N(G)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthesis, inhibited NANC vasodilation, an effect that was reversible with L-arginine. We conclude that NANC vasodilation in guinea pig pulmonary arteries is mediated predominantly through NO activity.  相似文献   

17.
D Stangl  W Born  J A Fischer 《Biochemistry》1991,30(35):8605-8611
Calcitonin gene-related peptide (CGRP) receptors were solubilized from human (h) cerebellum with use of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). Scatchard analysis of equilibrium binding data indicated that the soluble extract contained a single class of CGRP binding sites with apparent dissociation constants of 50 pM for the intact 125I-hCGRP-I(1-37) and 160 pM for the antagonist 125I-hCGRP-I(8-37). Unlabeled hCGRP-I and -II and hCGRP-I(8-37) displaced 125I-hCGRP-I from solubilized CGRP receptors with similar potencies (ID50 = 70-150 pM). Human CGRP-I(15-37), -(21-37), and -(28-37) were less potent (ID50 greater than or equal to 70 nM), suggesting that amino acid residues 8-14 may be important for maintaining high binding affinity. A novel photoreactive analogue of hCGRP-I, 125I-[C gamma-(4-azidoanilino)Asp3] hCGRP-I, was prepared by carbodiimide coupling of 4-azidoaniline to 125I-hCGRP-I. Photoaffinity labeling of soluble CGRP receptors with the photoreactive analogue and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography revealed three specifically labeled binding proteins with apparent molecular weights (Mr) of 60,000, 54,000, and 17,000. Cross-linking of 125I-hCGRP-I and -II and 125I-hCGRP-I(8-37) to soluble CGRP binding sites using disuccinimidyl suberate revealed three specifically labeled binding proteins with the same Mr. The C-terminal fragment 125I-hCGRP-I(8-37), unlike the intact peptide, was, furthermore, cross-linked specifically to a 95,000 Mr protein. The CGRP receptor is N-glycosylated. Treatment with endoglycosidase F/N-glycosidase F converted the 60,000 and 54,000 to 46,000 and 41,000 Mr components.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Chronic hypoxic pulmonary hypertension (HPH) is characterized by elevated pulmonary arterial pressure (P(PA)), right ventricular hypertrophy (RVH), pulmonary vascular remodeling, pulmonary edema and polycythemia. Currently, there is no safe and effective treatment for HPH. Calcitonin gene-related peptide (CGRP) is the most potent peptide vasodilator discovered thus far. We previously demonstrated that exogenous CGRP reversed HPH in rats. However, the CGRP1 receptor antagonist CGRP(8-37) and smaller inhibitory C-terminal CGRP fragments that can be formed by enzymatic cleavage in vivo may compromise the beneficial effects of endogenous or exogenous CGRP. We here examine the agonistic efficacy of N-terminal rat alpha-CGRP peptides containing the disulfide bridge (Cys(2)-Cys(7)) with amidated C-terminal in prevention of HPH. Chronic infusion of CGRP(1-8), CGRP(1-13), or CGRP(1-14) at 7 nmol/h/rat via the right jugular vein during 14 days of hypobaric hypoxia (10% inspired O(2)) significantly decreased the P(PA), RVH and pulmonary arterial medial thickness in comparison with controls, suggesting that these CGRP sequences can mitigate chronic HPH in rats. Systemic pressure was unchanged by infused peptides indicating no carry-over effect. In conclusion, N-terminal CGRP fragments (CGRP(1-8), CGRP(1-13) and CGRP(1-14)) may have a protective role in hypoxic pulmonary hypertension.  相似文献   

19.
Calcitonin gene-related peptide (CGRP) shares about 46% and 20% amino acid sequence homology with islet amyloid polypeptide (IAPP) and salmon calcitonin (sCT). We investigated whether these related peptides could cross-react with the specific binding of125I-[His]hCGRP I to the CGRP receptor in hamster insulinoma cell membranes. A rapid dissociation of membrane bound125I-[His]hCGRP I could be induced in the presence of 1 M chicken CGRP (cCGRP). The specific125I-[His]hCGRP I binding was inhibited by the related peptides and their half-maximal inhibitory concentrations (IC50) were: cCGRP (0.1 nM), rat CGRP I and human CGRP I and II (1.0–2.0 nM), fragment of hCGRP I (8-37) (150 nM), human IAPP (440 nM). The non-amidated form of hIAPP; human diabetes-associated peptide (hDAP) did not inhibit the binding of125I-[His]hCGRP I and sCT was only effective at a high concentration (1 M). Binding of125I-[His]hCGRP I was dose dependently inhibited by guanosine-5-O-(3-thiotriphosphate) or (GTPS) and a 70% reduction of binding was obtained with 0.1 mM GTPS. The IC50 value of cCGRP (0.1 nM) was increased 100-fold in the presence of 0.1 mM GTPS. Human CGRP I and cCGRP at 2.5 M did not stimulate the activity of hamster insulinoma cell membranes adenylate cyclase, while glucagon (1 M) induced a 2-fold increase. Thus, specific CGRP receptors present in hamster cells are associated with G protein (s) and IAPP can interact with these receptors. These results and the observation that cCGRP and hCGRP I did not influence adenylate cyclase activity provide further evidence for CGRP receptor subtypes.Abbreviations CGRP calcitonin gene-related peptide - IAPP islet amyloid polypeptide - IC50 half-maximal inhibitory concentration - GTPS guanosine-5-O-(3-thiotriphosphate) - 125I [His]hCGRP I, (2[125I]iodohistidyl10) human CGRP I  相似文献   

20.
The N-terminal 1-34 segments of both parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) bind and activate the same membrane-embedded G protein-coupled receptor (PTH1 Rc) present on the surface of cells in target tissues such as bone and kidney. This binding occurs in spite of major differences between the two hormones in their amino acid sequence. Recently, it was shown that in (1-34) PTH/PTHrP hybrid peptides, the N-terminal 1-14 segment of PTHrP is incompatible with the C-terminal 15-34 region of PTH in terms of bioactivity. The sites of incompatibility were identified at positions 5 in PTHrP and 19 in PTH. In the present paper we describe the synthesis, biological evaluation, and conformational characterization of two segmental hybrids: PTHrP(1-27)-[Tyr(34)]bPTH(28-34)-NH(2) (hybrid I) and PTHrP(1-18)-[Nal(23), Tyr(34)]bPTH(19-34)-NH(2) (hybrid II). Hybrid I is as active as PTH(1-34)NH(2) and more than two orders of magnitude more active than hybrid II. The conformational properties of the hybrids were studied in water/trifluoroethanol (TFE) mixtures and in aqueous solutions containing dodecylphosphocholine (DPC) micelles by CD, two-dimensional nmr and computer simulations. Upon addition of TFE to the aqueous solution, both hybrids undergo a coil-helix transition. The helix content in 1:1 water/TFE obtained by CD data is about 75% for both hybrids. In the presence of DPC, helix formation is observed at detergent concentrations above critical micellar concentration and the maximum helix content is of approximately 35 and approximately 30% for hybrid I and II, respectively. Combined nmr analysis, distance geometry, and molecular dynamics calculations suggest that, in both solvent systems, the biologically active hybrid I exhibits two flexible sites, centered at residues 12 and 19, connecting helical segments. The flexibility point at position 19 is not present in the poorly active hybrid II. Our findings support the hypothesis, proposed in our previous work, that in bioactive PTH analogues the presence and location of flexibility points between helical segments are essential for enabling them to fold into the bioactive conformation upon interaction with the PTH1 receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号