共查询到20条相似文献,搜索用时 15 毫秒
1.
Upon herbivore attack, maize (Zea mays L.) emits a mixture of volatile compounds that attracts herbivore enemies to the plant. One of the major components of this
mixture is an unusual acyclic C11 homoterpene, (3E )-4,8-dimethyl-1,3,7-nonatriene (DMNT), which is also emitted by many other species following herbivore damage. Biosynthesis
of DMNT has been previously shown to proceed via the sesquiterpene alcohol, (E )-nerolidol. Here we demonstrate an enzyme activity that converts farnesyl diphosphate, the universal precursor of sesquiterpenes,
to (3S)-(E )-nerolidol in cell-free extracts of maize leaves that had been fed upon by Spodoptera littoralis. The properties of this (E )-nerolidol synthase resemble those of other terpene synthases. Evidence for its participation in DMNT biosynthesis includes
the direct incorporation of deuterium-labeled (E )-nerolidol into DMNT and the close correlation between increases in (E )-nerolidol synthase activity and DMNT emission after herbivore damage. Since farnesyl diphosphate has many other metabolic
fates, (E )-nerolidol synthase may represent the first committed step of DMNT biosynthesis in maize. However, the formation of this
unusual acyclic terpenoid appears to be regulated at both the level of (E )-nerolidol synthase and at later steps in the pathway.
Received: 20 August 1999 / Accepted: 27 October 1999 相似文献
2.
3.
Li Li Sarah Hill‐Skinner Sanzhen Liu Danielle Beuchle Ho Man Tang Cheng‐Ting Yeh Dan Nettleton Patrick S. Schnable 《The Plant journal : for cell and molecular biology》2015,81(3):493-504
Mutations in the brown midrib4 (bm4) gene affect the accumulation and composition of lignin in maize. Fine‐mapping analysis of bm4 narrowed the candidate region to an approximately 105 kb interval on chromosome 9 containing six genes. Only one of these six genes, GRMZM2G393334, showed decreased expression in mutants. At least four of 10 Mu‐induced bm4 mutant alleles contain a Mu insertion in the GRMZM2G393334 gene. Based on these results, we concluded that GRMZM2G393334 is the bm4 gene. GRMZM2G393334 encodes a putative folylpolyglutamate synthase (FPGS), which functions in one‐carbon (C1) metabolism to polyglutamylate substrates of folate‐dependent enzymes. Yeast complementation experiments demonstrated that expression of the maize bm4 gene in FPGS‐deficient met7 yeast is able to rescue the yeast mutant phenotype, thus demonstrating that bm4 encodes a functional FPGS. Consistent with earlier studies, bm4 mutants exhibit a modest decrease in lignin concentration and an overall increase in the S:G lignin ratio relative to wild‐type. Orthologs of bm4 include at least one paralogous gene in maize and various homologs in other grasses and dicots. Discovery of the gene underlying the bm4 maize phenotype illustrates a role for FPGS in lignin biosynthesis. 相似文献
4.
A cDNA clone (GenBank Accession No. AY835398) encoding a sesquiterpene synthase, (E)-β-farnesene synthase, has been isolated from Artemisia annua L. It contains a 1746-bp open reading frame coding for 574 amino acids (66.9 kDa) with a calculated pI = 5.03. The deduced amino acid sequence is 30-50% identical with sequences of other sesquiterpene synthases from angiosperms. The recombinant enzyme, produced in Escherichia coli, catalyzed the formation of a single product, β-farnesene, from farnesyl diphosphate. The pH optimum for the recombinant enzyme is around 6.5 and the Km- and kcat-values for farnesyl diphosphate, is 2.1 μM and 9.5 × 10−3 s−1, respectively resulting in the efficiency 4.5 × 10−3 M−1 s−1. The enzyme exhibits substantial activity in the presence of Mg2+, Mn2+ or Co2+ but essentially no activity when Zn2+, Ni2+ or Cu2+ is used as cofactor. The concentration required for maximum activity are estimated to 5 mM, 0.5 mM and <10 μM for Mg2+, Co2+ or Mn2+, respectively. Geranyl diphosphate is not a substrate for the recombinant enzyme. 相似文献
5.
A maize landrace that emits defense volatiles in response to herbivore eggs possesses a strongly inducible terpene synthase gene 总被引:1,自引:0,他引:1 下载免费PDF全文
Amanuel Tamiru Toby J. A. Bruce Annett Richter Christine M. Woodcock Charles A. O. Midega Jörg Degenhardt Segenet Kelemu John A. Pickett Zeyaur R. Khan 《Ecology and evolution》2017,7(8):2835-2845
6.
7.
The maize floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation 总被引:3,自引:1,他引:3
Holding DR Otegui MS Li B Meeley RB Dam T Hunter BG Jung R Larkins BA 《The Plant cell》2007,19(8):2569-2582
The maize (Zea mays) floury1 (fl1) mutant was first reported almost 100 years ago, but its molecular identity has remained unknown. We report the cloning of Fl1, which encodes a novel zein protein body membrane protein with three predicted transmembrane domains and a C-terminal plant-specific domain of unknown function (DUF593). In wild-type endosperm, the FL1 protein accumulates at a high level during the period of zein synthesis and protein body development and declines to a low level at kernel maturity. Immunogold labeling showed that FL1 resides in the endoplasmic reticulum surrounding the protein body. Zein protein bodies in fl1 mutants are of normal size, shape, and abundance. However, mutant protein bodies ectopically accumulate 22-kD alpha-zeins in the gamma-zein-rich periphery and center of the core, rather than their normal discrete location in a ring at outer edge of the core. The 19-kD alpha-zein is uniformly distributed throughout the core in wild-type protein bodies, and this distribution is unaffected in fl1 mutants. Pairwise yeast two-hybrid experiments showed that FL1 DUF593 interacts with the 22-kD alpha-zein. Results of these studies suggest that FL1 participates in protein body formation by facilitating the localization of 22-kD alpha-zein and that this is essential for the formation of vitreous endosperm. 相似文献
8.
(E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily 总被引:4,自引:0,他引:4 下载免费PDF全文
Dudareva N Martin D Kish CM Kolosova N Gorenstein N Fäldt J Miller B Bohlmann J 《The Plant cell》2003,15(5):1227-1241
Snapdragon flowers emit two monoterpene olefins, myrcene and (E)-beta-ocimene, derived from geranyl diphosphate, in addition to a major phenylpropanoid floral scent component, methylbenzoate. Emission of these monoterpenes is regulated developmentally and follows diurnal rhythms controlled by a circadian clock. Using a functional genomics approach, we have isolated and characterized three closely related cDNAs from a snapdragon petal-specific library that encode two myrcene synthases (ama1e20 and ama0c15) and an (E)-beta-ocimene synthase (ama0a23). Although the two myrcene synthases are almost identical (98%), except for the N-terminal 13 amino acids, and are catalytically active, yielding a single monoterpene product, myrcene, only ama0c15 is expressed at a high level in flowers and contributes to floral myrcene emission. (E)-beta-Ocimene synthase is highly similar to snapdragon myrcene synthases (92% amino acid identity) and produces predominantly (E)-beta-ocimene (97% of total monoterpene olefin product) with small amounts of (Z)-beta-ocimene and myrcene. These newly isolated snapdragon monoterpene synthases, together with Arabidopsis AtTPS14 (At1g61680), define a new subfamily of the terpene synthase (TPS) family designated the Tps-g group. Members of this new Tps-g group lack the RRx(8)W motif, which is a characteristic feature of the Tps-d and Tps-b monoterpene synthases, suggesting that the reaction mechanism of Tps-g monoterpene synthase product formation does not proceed via an RR-dependent isomerization of geranyl diphosphate to 3S-linalyl diphosphate, as shown previously for limonene cyclase. Analyses of tissue-specific, developmental, and rhythmic expression of these monoterpene synthase genes in snapdragon flowers revealed coordinated regulation of phenylpropanoid and isoprenoid scent production. 相似文献
9.
10.
Jones CG Moniodis J Zulak KG Scaffidi A Plummer JA Ghisalberti EL Barbour EL Bohlmann J 《The Journal of biological chemistry》2011,286(20):17445-17454
Sandalwood oil is one of the worlds most highly prized fragrances. To identify the genes and encoded enzymes responsible for santalene biosynthesis, we cloned and characterized three orthologous terpene synthase (TPS) genes SaSSy, SauSSy, and SspiSSy from three divergent sandalwood species; Santalum album, S. austrocaledonicum, and S. spicatum, respectively. The encoded enzymes catalyze the formation of α-, β-, epi-β-santalene, and α-exo-bergamotene from (E,E)-farnesyl diphosphate (E,E-FPP). Recombinant SaSSy was additionally tested with (Z,Z)-farnesyl diphosphate (Z,Z-FPP) and remarkably, found to produce a mixture of α-endo-bergamotene, α-santalene, (Z)-β-farnesene, epi-β-santalene, and β-santalene. Additional cDNAs that encode bisabolene/bisabolol synthases were also cloned and functionally characterized from these three species. Both the santalene synthases and the bisabolene/bisabolol synthases reside in the TPS-b phylogenetic clade, which is more commonly associated with angiosperm monoterpene synthases. An orthologous set of TPS-a synthases responsible for formation of macrocyclic and bicyclic sesquiterpenes were characterized. Strict functionality and limited sequence divergence in the santalene and bisabolene synthases are in contrast to the TPS-a synthases, suggesting these compounds have played a significant role in the evolution of the Santalum genus. 相似文献
11.
12.
Sesquiterpene cyclases, many of which share significant structural similarity, catalyze the cyclization reactions of the universal alicyclic precursor farnesyl pyrophosphate to produce more than 300 different hydrocarbon skeletons with high regio- and stereospecificity. The molecular basis of this exquisite specificity is not well-understood, but the conformation adopted by FPP in the active site of a sesquiterpene cyclase is thought to be an important determinant of the reaction pathway. Aristolochene synthase (AS) from Penicillium roqueforti catalyzes the cyclization of farnesyl pyrophosphate to the bicyclic sesquiterpene aristolochene. The X-ray structure of AS suggested that the steric bulk of residue 92 was central in binding of FPP to the active site of AS in a quasi-cyclic conformation, thereby facilitating attack of C1 by the C10-C11 double bond to produce the cis-fused Decalin S-germacrene A. We demonstrate here that reduction of the size of the side chain of residue 92 leads to the production of the alicyclic sesquiterpenes (E)-beta- and (E,E)-alpha-farnesene. The relative amounts of linear products formed depended linearly on the size of the residues at position 92. ASY92A, in which Tyr92 had been replaced with Ala, produced almost 80% of alicyclic sesquiterpenes, suggesting an energetic separation of less than 0.8 kcal/mol between the cyclic and noncyclic reaction pathways. A mechanism by which FPP binds to the mutant enzymes in an extended conformation is proposed to explain the altered selectivity. The mutants also produced small amounts of additional hydrocarbons with a molecular weight of 204, namely, alpha-selinene, beta-selinene, selina-4,11-diene, (E,Z)-alpha-farnesene, and beta-bisabolene. The production of (E)-beta-farnesene and beta-bisabolene suggested that the initial cyclization of FPP to germacrene A in AS proceeded in a stepwise fashion through farnesyl cation. 相似文献
13.
14.
15.
Using Meta-BASIC, a highly sensitive method for detection of distant similarity between proteins, we have identified another potential PD-(D/E)XK endonuclease in human herpesvirus 1 (HHV-1) encoded by the UL24 gene. The universal presence of UL24 in completed herpesviral genomes of three major subfamilies, Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae, suggests a fundamental role for this predicted PD-(D/E)XK endonuclease activity in the viral life cycle. 相似文献
16.
17.
The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis 总被引:1,自引:0,他引:1 下载免费PDF全文
The roothairless1 (rth1) mutant is impaired in root hair elongation and exhibits other growth abnormalities. Unicellular root hairs elongate via localized tip growth, a process mediated by polar exocytosis of secretory vesicles. We report here the cloning of the rth1 gene that encodes a sec3 homolog. In yeast (Saccharomyces cerevisiae) and mammals, sec3 is a subunit of the exocyst complex, which tethers exocytotic vesicles prior to their fusion. The cloning of the rth1 gene associates the homologs of exocyst subunits to an exocytotic process in plant development and supports the hypothesis that exocyst-like proteins are involved in plant exocytosis. Proteomic analyses identified four proteins that accumulate to different levels in wild-type and rth1 primary roots. The preferential accumulation in the rth1 mutant proteome of a negative regulator of the cell cycle (a prohibitin) may at least partially explain the delayed development and flowering of the rth1 mutant. 相似文献
18.
Seelan RS Parthasarathy LK Parthasarathy RN 《Archives of biochemistry and biophysics》2004,431(1):95-106
Human myo-inositol 1-phosphate synthase (IP synthase; E.C. 5.5.1.4), encoded by ISYNA1, catalyzes the de novo synthesis of inositol 1-phosphate from glucose 6-phosphate. It is a potential target for mood-stabilizing drugs such as lithium and valproate. But, very little is known about the regulation of human IP synthase. Here, we have characterized the minimal promoter of ISYNA1 and show that it is upregulated by E2F1. Upregulation occurs in a dose-dependent fashion and can be suppressed by ectopic expression of Rb. EMSA and antibody supershift analysis identified a functional E2F binding motif at -117. Complex formation at this site was competed by an excess of unlabeled Sp1 oligo consistent with the -117 E2F site overlapping an Sp1 motif. Because the -117 E2F motif is not a high-affinity binding site, we propose that the upregulation of ISYNA1 occurs through the cooperative interaction of several low-affinity E2F binding motifs present in the minimal promoter. 相似文献
19.
Mrinalini Muralidharan Kristina Buss Katherine E. Larrimore Nicholas A. Segerson Latha Kannan Tsafrir S. Mor 《Plant molecular biology》2013,81(6):565-576
Acetylcholinesterase is an enzyme that is intimately associated with regulation of synaptic transmission in the cholinergic nervous system and in neuromuscular junctions of animals. However the presence of cholinesterase activity has been described also in non-metazoan organisms such as slime molds, fungi and plants. More recently, a gene purportedly encoding for acetylcholinesterase was cloned from maize. We have cloned the Arabidopsis thaliana homolog of the Zea mays gene, At3g26430, and studied its biochemical properties. Our results indicate that the protein encoded by the gene exhibited lipase activity with preference to long chain substrates but did not hydrolyze choline esters. The At3g26430 protein belongs to the SGNH clan of serine hydrolases, and more specifically to the GDS(L) lipase family. 相似文献