首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct visualization of filamentous phage infection in Escherichia coli (E. coli) was attempted using biotinylated phages (BIO-phages). The biotinylation of the phages did not influence their infectivity into E. coli. E. coli infected with BIO-phages could be detected by using fluorescein-conjugated avidin with confocal laser scanning microscopy, and BIO-phages and BIO-phage-derived proteins in E. coli could be directly observed by using the avidin-biotin-peroxidase complex method with electron microscopy. This is the first report of direct visualization of phage infection and phage-derived proteins in the host cell using a biotin-avidin interaction. This simple and powerful method is applicable to the study of infection by various viruses.  相似文献   

2.
Binding of purified monoclonal antibody (moAB) IgM NMS-1 to suspended initially spherical living human PMNLs is not associated with the generation of chemiluminescence but was found to enhance the chemiluminescence response to the N-formyl chemotactic peptide FNLPNTL.

We investigated quantitatively the kinetics of oxygen metabolite generation by PMNLs stimulated with FNLPNTL ± moAB NMS-1 using luminol-dependent chemiluminescence as a very sensitive detection system. Chemiluminescence detection allowed the analysis of the time sequence of onset and development of reactive oxygen metabolites following stimulation of PMNLs by FNLPNTL in the presence of moAB NMS-1. The increase of response of PMNLs stimulated with FNLPNTL in the presence of moAB NMS-1 depended on the concentration of the antibody and the sequence of stimulus addition.

Stimulation of human PMNLs by 10nM FNLPNTL induced a rapid burst of chemiluminescence which peaked ∼5min after stimulus addition. The subsequent addition of moAB NMS-1 (≥2μg/ml DPBS(+)—0.1% HSA, 37°C) to FNLPNTL-stimulated PMNLs—after the FNLPNTL-mediated response had already decayed (16-18 min) - without delay induced a second burst of oxygen metabolite generation. The magnitude of this second peak of activation was dose-dependent.

Treatment of PMNLs with moAB NMS-1 (≥ 1μg/ml DPBS(+)—0.1% HSA, 3 min, 37°C)—prior to FNLPNTL (10nM) stimulation - increased rate and magnitude of the FNLPNTL-mediated response. This response is biphasic with the first peak at the FNLPNTL position and a second, higher peak ∼16 min after FNLPNTL addition. The magnitude of response was dose-dependent. The latency (lag time) of the respone was not changed compared to controls which received no moAB NMS-1 treatment.

The observed moAB NMS-1 dependent increase in FNLPNTL-mediated chemiluminescence is transient (5-60 min), persistent activation was not detected.  相似文献   

3.
Genotoxic properties of 4-hydroxyalkenals and analogous aldehydes   总被引:5,自引:0,他引:5  
4-Hydroxynonenal (HNE), one of the major products of lipid peroxidation, has been demonstrated to induce genotoxic effects in the micromolar range. HNE has too structural domains, a lipophilic tail and a polar head with three functional groups: the aldehyde and hydroxy groups and the trans CC double bond. To evaluate their relative importance, the genotoxic effects of HNE were compared with those of the homologous aldehydes 4-hydroxyhexenal and 4-hydroxyundecenal (different lengths of the lipophilic tail), and the analogous aldehydes 2-trans-nonenal (lacking the OH group) and nonanal (lacking the OH group and the trans CC double bond). This investigation was carried out on primary cultures of adult rat hepatocytes in order to further determine the influence of biotransformation- and/or detoxification reactions.

A 3-h treatment with HNE induces statistically significant levels of SCE at concentrations ≥0.1 μM, micronuclei at concentrations ≥ 1 μM and chromosomal aberrations at a concentration of 10 μM. Compared to HNE the homologous aldehydes induced a significant genotoxic effect at higher concentrations. Statistically significant increases in SCE frequency were obtained at concentrations ≥ 1 μM for 4-hydroxyundecenal and at a concentration of 10 μM for 4-hydroxyhexenal. The induction of chromosomal aberrations was significantly elevated at concentrations of ≥ 10 μM and 10 μM for 4-hydroxyhexenal and 4-hydroxyundecenal, respectively. Except for a 4-hydroxyhexenal concentration of 1 μM, both aldehydes did not induce statistically significant levels of micronucleis.

The HNE analogous aldehydes 2-trans-nonenal and nonanal induced statistically significant frequencies of SCE at concentrations of ≥ 1 μM (nonanal) and ≥ 10 μM (2-trans-nonenal). No significant induction of chromosomal aberrations or micronuclei could be demonstrated.

The structure of the aldehydes investigated appears to influence the cyto- and genotoxic potential in the following ways. (1) The lenght of the lipophilic tail has no influence on chromosomal aberration induction, but appears to determine the yield of SCE and micronuclei, and the cytotoxic potential. (2) The lack of the OH group (2-trans-nonenal) reduces the SCE-inducing potential of the aldehyde shifting the dose-effect curve to higher concentrations. The similar shape compared to SCE induction by HNE indicates that possibly the same active metabolite is formed. (3) The lack of both the OH group and the CC double bond (nonanal) does not result in a complete loss of the SCE-inducing activity. The different shape of the dose-response curve suggests a different metabolism and/or a different mode of interaction with DNA.  相似文献   


4.
Freshly trypsinized 3T3 cells send out microspikes of 0.2 μm diameter and up to 10 μm length within 20 min after attachment to a glass substratum. The microspikes move actively and eventually attach to the substratum. Subsequently, lamellae flow out between lines of attached microspikes. If, however, colloidal gold particles of 0.2–0.4 μm diameter and clusters of gold particles up to 4 μm in diameter are placed on the substratum and a microspike attaches to them, we observed two reactions of the microspikes to this contact. They either retract upon contact, transporting the attached particles to the cell surface at a speed of 0.2 μm/sec, or the particles flow toward the cell body while the microspike stays in place. This action results in the clearing of a circular area around each spreading cell before lamellae flow out. “Clearing” proceeds at serum concentrations between 1 and 20% and in concentrations of colchicine up to 20 μm/ml. In concentrations of cytochalasin B higher than 5 μg/ml, however, particle removal is completely inhibited, although the microspikes are still produced by the cell. Transmission electron microscopy shows that the microspikes contain mostly longitudinally oriented microfilaments and only a few microtubules, if any.  相似文献   

5.
The stability of SP82G bacteriophage deoxyribonucleic acid (DNA) after its uptake by competent Bacillus subtilis was examined by determining the ability of superinfecting phage particles to rescue genetic markers carried by the infective DNA. These experiments show that a DNA inactivation process within the cell is inhibited after infection of the cell by intact phage particles. The inhibition is maximally expressed 6 min after phage infection and is completely prevented by the addition of chloramphenicol at the time of infection. The protective effect of this function extends even to infective DNA which was present in the cell before the addition of intact phage. Continued protein synthesis does not appear to be a requirement for the maintenance of the inhibition. In an analogous situation, if infectious centers resulting from singly infecting phage particles are exposed to chloramphenicol shortly after the time of infection, an exponential decrease in the survival of infectious centers with time held in chloramphenicol is observed. If the addition of chloramphenicol is delayed until 6 min after infection, the infectious centers are resistant to chloramphenicol. The sensitivity of infectious centers treated with chloramphenicol at early times after infection is strongly dependent upon the multiplicity of infection and is consistent with a model of multiplicity reactivation. These results indicate that injected DNA is also susceptible to the intracellular inactivation process and suggest that the inhibition of this system is necessary for the successful establishment of an infectious center.  相似文献   

6.
I. Orhan  M. Aslan  B. Sener  M. Kaiser  D. Tasdemir   《Phytomedicine》2006,13(9-10):735-739
Thirteen lipophilic extracts prepared with n-hexane from various parts of Pistacia vera L. tree (Anacardiaceae) growing in Turkey were screened for their in vitro activity against four parasitic protozoa, Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum. Melarsoprol, benznidazole, miltefosine, artemisinin and chloroquine were used as reference drugs. The cytotoxic potentials of the extracts on rat skeletal myoblast (L6) cells were also assessed and compared to that of podophyllotoxin. The screening method employed was medium-throughput, where the extracts were tested at two concentrations, at 0.8 and 4.8 μg/ml (T. brucei rhodesiense, L. donovani and Plasmodium falciparum), or at 1.6 and 9.7 μg/ml (T. cruzi and L6 cells). At 4.8 μg/ml concentration, the branch extract of Pistacia vera (PV-BR) significantly inhibited (77.3%) the growth of L. donovani, whereas the dry leaf extract (PV-DL) was active against Plasmodium falciparum (60.6% inhibition). The IC50 values of these extracts were determined as 2.3 μg/ml (PV-BR, L. donovani) and 3.65 μg/ml (PV-DL, Plasmodium falciparum). None of the extracts possessed cytotoxicity on mammalian cells.  相似文献   

7.
Neuropeptide Y: Direct and indirect action on insulin secretion in the rat   总被引:3,自引:0,他引:3  
Neuropeptide Y (NPY) was tested for an ability to directly influence the release of insulin using an in vitro isolated rat pancreatic islet system. NPY, at doses ranging from 100 pg/ml to 1 μg/ml, had no significant effect on the basal release (5.5 mM glucose) of insulin. However, NPY treatment resulted in a significant, dose-dependent (1 ng/ml to 1 μg/ml) inhibition of glucose-stimulated (11 mM) insulin release. When tested in a perfused rat pancreas preparation in situ, NPY administration led to a marked inhibition of both basal and stimulated insulin release followed by a postinhibitory rebound which exceeded the control insulin levels by 3-fold. In contrast, the intracerebroventricular (ICV) microinjection of NPY (5 μg) produced a significant but delayed (30 min) elevation of circulating insulin. It is therefore suggested that the direct action of NPY on insulin release is inhibitory while the central action of NPY indirectly results in an increase in plasma insulin. Thus, NPY may be added to the growing list of peptidergic agents which may affect the endocrine pancreas by acting as neurotransmitters and/or neuromodulators.  相似文献   

8.
Polyphosphates of different chain lengths (P3, P4, P15, P35), (1 μM) inhibited 10, 60, 90 and 100%, respectively, the primer (tRNA) dependent synthesis of poly(A) catalyzed poly(A) polymerase from Saccharomyces cerevisiae. The relative inhibition evoked by p4A and P4 (1 μM) was 40 and 60%, respectively, whereas 1 μM Ap4A was not inhibitory. P4 and P15 were assayed as inhibitors of the enzyme in the presence of (a) saturating tRNA and variable concentrations of ATP and (b) saturating ATP and variable concentrations of tRNA. In (a), P4 and P15 behaved as competitive inhibitors, with Ki values of 0.5 μM and 0.2 μM, respectively. In addition, P4 (at 1 μM) and P15 (at 0.3 μM) changed the Hill coefficient (nH) from 1 (control) to about 1.3 and 1.6, respectively. In (b), the inhibition by P4 and P15 decreased V and modified only slightly the Km values of the enzyme towards tRNA.  相似文献   

9.
Sulfinpyrazone, a potent uricosuric drug, was tested in vitro for its scavenging action against oxygen free radicals. In this study, sulfinpyrazone was able to scavenge 1,1-diphenyl-2-picrylhydrazyl radical with IC 50 value of 29.82 μg/ml compared to butylated hydroxytoluene (BHT, IC 50 value=20.15 μg/ml) and Trolox (IC 50 value=16.01 μg/ml). It was able to scavenge superoxide anion with IC 50 value of 27.72 μg/ml compared to Trolox (IC 50 value=22.08 μg/ml) and ascorbic acid (IC 50 value=14.65 μg/ml). The hydroxyl radical scavenging activity of sulfinpyrazone is in a concentration-dependent fashion. In the range of concentrations used, sulfinpyrazone was not a scavenger toward H 2 O 2 . However, the intracellular H 2 O 2 -induced 2',7'-dichlorofluorescin diacetate (DCF-DA) fluorescence in HL-60 cells was significantly reduced by sulfinpyrazone during 30-60 min of incubation. Finally, phorbol-12-myristate-13-acetate induced-lucigenin chemiluminescence in whole blood was markedly inhibited by sulfinpyrazone. Our results suggest a new direction for the pharmacological actions of sulfinpyrazone in free radical scavenging properties.  相似文献   

10.
Platelet-activated factor (PAF) ( ), formyl-methionyl-leucyl-phenylalanine (fMPL) ( ), phorbol 12-myristate 13 acetate (PMA) ( ), opsonized zymosan (OPZ) (0.01–1 mg/ml) were potent stimuli to superoxide generated by guinea-pig peritoneal macrophages. Superoxide generation by low (≤ −8M) concentrations but not high (≥−7M) concentrations of PAF or fMLP were attenuated by rolipram (100 μM) in the presence of 1 μM prostaglandin E2 (PGE2). That stimulated by PMA or OPZ, however, was unaffected. At 1μM, staurosporine was a potent inhibitor of superoxide generation stimulated by both fMLP and PAF but was without effect on that stimulated by OPZ. Superoxide generation stimulated by fMLP, PAF and OPZ was inhibited by 100 μM mepacrine. We conclude that superoxide generation stimulated by the chemoattractants fMLP and PAF involves a cyclic AMP regulated and cyclic AMP independent process. The cyclic AMP independent process is mediated by protein kinase C. Although protein kinase C seems a central element in the respiratory burst stimulated by fMLP, PAF and PMA that stimulated by OPZ bypasses this mechanism. Phospholipase A2 however, represents a common stage in the signal transduction pathway.  相似文献   

11.
We measured the production of untargeted mutations in the cI and cII genes of untreated λ phage undergoing a lytic cycle in UV-irradiated bacterial hosts. As previously shown, treatment with 4 μg/ml of rifampicin during post-irradiation incubation inhibited amplification of the RecA protein in these cells. In addition, we observed a decreased mutation rate compared to the untreated, irradiated bacteria. Treatment with 4 μg/ml or 8 μg/ml rifampicin did not prevent the UV induction of the umuDC operon, as judged by assay of β-galactosidase activity in a umuC-lacZ fusion strain. In contrast, the UV-induction of β-galactosidase in the sulA-lacZ fusion strain was decreased by 4 μg/ml rifampicin. The inhibition of untargeted mutagenesis by this drug treatment was also observed in a strain constitutive for SOS functions (lexA (Def)) as well as ina RecA-overproducing plasmid strain, that blocks induction of heat-shock proteins, factor(s) in wild-type recA+ cells. An htpR165-carrying strain, that blocks induction of heat-shock proteins, exhibited normal UV-promoted mutagenesis. A correlation was observed between the cellular concentration of RecA protein, increased spontaneously by a temperature shift in a lexA(Ts) strain, and the extent of UV-promoted untargeted mutagenesis. These results suggest a mechanistic role of RecA protein in this process.  相似文献   

12.
The protective effect of melatonin against lipopolysaccharide (LPS)-induced oxidative damage was examined in vitro. Lung, liver, and brain malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HDA) concentrations were measured as indices of induced membrane peroxidative damage. Homogenates of brain, lung, and liver were incubated with LPS at concentrations of either 1, 10, 50, 200, or 400μg/ml for 1 h and, in another study, LPS at a concentration of 400 μg/ml for either 0, 15, 30, or 60 min. Melatonin at increasing concentrations from 0.01–3 mM either alone or together with LPS (400μg/ml) was used. Liver, brain, and lung MDA + 4-HDA levels increased after LPS at concentrations of 10, 50, 200 or 400 μg/ml; this effect was concentration-dependent. The highest levels of lipid peroxidation products were observed after tissues were incubated with an LPS concentration of 400 μg/ml for 60 min; in liver and lung this effect was totally suppressed by melatonin and partially suppressed in brain in a concentration-dependent manner. In addition, melatonin alone was effective in brain at concentrations of 0.1 to 3 mM, in lung at 2 to 3 mM, and in liver at 0.1 to 3 mM; in all cases, the inhibitory effects of melatonin on lipid peroxidation were always directly correlated with the concentration of melatonin in the medium. The results show that the direct effect of LPS on the lipid peroxidation following endotoxin exposure is markedly reduced by melatonin.  相似文献   

13.
The role of capsaicin-sensitive pathways and CGRP in postoperative gastric ileus was investigated. Abdominal surgery was performed under enflurane anesthesia, and 5 min later, the 20-min rate of gastric emptying was measured by the phenol red method in conscious rats. Surgery inhibited gastric emptying by 76–83% compared with rats receiving anesthesia alone. Capsaicin on the celiac/mesenteric ganglia (10–21 days before) reduced gastric ileus by 33 ± 8%, whereas perivagal capsaicin had no effect. The IV CGRP-induced inhibition of gastric emptying was completely reversed by the CGRP antagonist, CGRP(8–37) (30 μg, IV); CGRP(8–37) (15, 30, or 60 μg) or CGRP monoclonal antibody #4901 (2 mg protein) decreased the inhibition of gastric emptying by 11 ± 7%, 51 ± 13%, 47 ± 3%, and 45 ± 17%, respectively. These results indicate that CGRP and splanchnic capsaicin-sensitive afferents are involved in mediating part of the gastric ileus observed immediately after abdominal surgery.  相似文献   

14.
Using biotinylated phage (BIO-phages), we observed the infection of filamentous phages into Escherichia coli JM109 morphologically. BIO-phages and BIO-phage-derived proteins, mainly pVIII, were detected in E. coli by using the avidin-biotin-peroxidase complex method with electron microscopy. Infected cells revealed positive staining on the outer and inner membranes and in the periplasmic space. Some cells showed specific or predominant staining of the outer membrane, whereas others showed predominant staining of the inner membrane or equivalent staining of the outer and inner membranes. The periplasmic spaces in some infected cells were expanded and filled with reaction products. Some cells showed wavy lines of positive staining in the periplasmic space. BIO-phages were detected as thick filaments or clusters covered with reaction products. The ends of the infecting phages were located on the surface of cells, in the periplasmic space, or on the inner membrane. These findings suggest that phage major coat proteins are integrated into the outer membrane and that phages cause periplasmic expansion during infection.  相似文献   

15.
Oxygen free radicals are produced in the central nervous system (CNS) as a consequence of normal physiological metabolic reactions of neuronal cells, but there is evidence accumulating that they are also implicated in the processes leading to a number of pathological changes in the brain. A general mechanism whereby oxygen free radicals induce tissue damage is lipid peroxidation (LPO), which generates a large variety of water-soluble carbonyl compounds. Due to their high reactivity, we focused our investigations on 4-hydroxyalkenals, in particular on 4-hydroxynonenal (HNE), the major 4-hydroxyalkenal. Two phenotypes of cerebral endothelial cells (cECs) were treated with various concentrations of 4-hydroxynonenal and the cyto- and genotoxic effects studied. The cytogenetic endpoints determined were chromosomal aberrations and the induction of micronuclei. Three hours of incubation with HNE induced significantly elevated levels of chromosomal aberrations at concentrations ≥1 μM and micronuclei at concentrations ≥10 μM in both cEC phenotypes, compared to the controls. Cytotoxicity was observed at a concentration of 50 μM HNE and was significantly higher in the elongated and spindle-shaped cEC phenotype (type II) than in the epithelial cEC phenotype (type I). The results indicate that cECs are affected by HNE even at low concentrations with minor differences between the two cEC phenotypes.  相似文献   

16.
Investigations were conducted to test the effects of cordycepin, a naturally-occurring analog of adenosine, on gene activity in preimplantation mouse embryos. Embryos were explanted into culture at the 2-cell, morula and blastocyst stages, and incubated in the absence or presence of cordycepin (5–100 μg/ml) to determine the effects of the drug on continued development and macromolecular synthesis. Cordycepin at concentrations exceeding 10 μg/ml caused a dose-responsive inhibition of cleavage and blastulation of embryos in culture. Exposure of morulae and blastocysts to cordycepin concentrations of 10–100 μg/ml produced a dose- and time-dependent suppression of RNA synthesis as measured by incorporation of [3H]uridine. Suppression in blastocyst-stage embryos was enhanced by preincubation, and reached 70% after 4 h at 100 μg/ml. Cordycepin (50–100 μg/ml) reduced synthesis of major RNA components detected by electrophoresis, blocked incorporation of radioactivity into fractions bound by olido(dT)-cellulose, and produced a time- and dose-dependent reduction of protein synthesis in blastocysts, causing a maximum inhibition of 25% after 4 h of preincubation at 50 μg/ml.  相似文献   

17.
Since Teucrium chamaedrys and Teucrium montanum are the most popular plants used in the treatment of many diseases, we evaluated genotoxic potential of their methanolic extracts on cultured human peripheral blood lymphocytes (PBLs) using cytokinesis-block micronucleus (MN) assay. Cultures were treated with four concentrations of both plants (125, 250, 500 and 1,000 μg/ml), both separately and in combination with mitomycin C (MMC). The results revealed that extract of T. chamaedrys administered at the tested concentrations did not significantly affect the mean MN frequency in comparison to untreated cells. Methanolic extract of T. montanum increased the mean MN frequency in PBL at the tested concentrations, but significantly only at the concentration of 1,000 μg/ml. In all tested concentrations, the extract of T. chamaedrys significantly reduced the MMC-induced MN frequency, in a dose dependent manner (r = − 0.687, p < 0.01). The extract of T. montanum decreased the MMC-induced MN frequency at the tested concentrations, but statistically only at 125 μg/ml. Both extracts administered alone did not significantly affect the nuclear division index (NDI) at the tested concentrations. In the combined treatments with MMC, the extract obtained from T. chamaedrys in the concentrations of 500 and 1,000 μg/ml significantly decreased NDI values in comparison to MMC-treated cells alone, while the extract of T. montanum significantly decreased NDI at all tested concentrations. Both extracts nonsignificantly decreased NDI at all tested concentrations in comparison to untreated cells. Our results suggest the important function of T. chamaedrys extract in cancer therapy, this methanolic extract may prevent genotoxic effects of chemotherapy in PBLs.  相似文献   

18.
Puromycin aminonucleoside (PAN) has been known to induce proteinuria. The increased generation of reactive oxygen species (ROS) has been implicated in this toxicity of PAN. We have reported that PAN increases the synthesis of methylguanidine (MG) and creatol which are the products of the reaction of creatinine and the hydroxyl radical in isolated rat hepatocytes. However, the mechanism for the increased ROS induced by PAN is still unclear. In this paper, we investigate the role of protein kinase C (PKC) on the PAN induced reactive oxygen generation in isolated rat hepatocytes. Isolated hepatocytes were incubated in Krebs-Henseleit bicarbonate buffer containing 3% BSA, 16.6 mM creatinine and tested reagents. MG and creatol were determined by high-performance liquid chromatography using 9,10-phenanthrenequinone for the post-labeling. PAN increased MG and creatol synthesis in isolated rat hepatocytes by 60%. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), a PKC inhibitor, at 10 and 100 μM significantly inhibited MG and creatol synthesis with or without PAN. The inhibition rate is dose dependent from 10 to 100 μM. H1004, a reagent used as control for H-7, did not affect (at 10 μM) or increased little (at 100 μM) the synthesis of MG and creatol. Ro31-8425, a potent PKC inhibitor, significantly inhibited (at 10 μM) MG synthesis in the presence of PAN. PKC in the membrane fraction, a marker of PKC activation, increased over the initial concentration by a factor of 1.65-fold at 60 min incubation and 2.16-fold at 120 min with PAN, while it changed little without PAN. These results indicate that PAN activates PKC resulting in increased hydroxyl radical generation in isolated rat hepatocytes.  相似文献   

19.
The aim of our experiments was to study the influence of genistein [tyrosine kinase (TK) inhibitor with estrogenic activity] and lavendustin A (TK inhibitor without estrogenic activity) on female reproductive processes in domestic animals in vitro. It was found that genistein (0.001–1 μg/ml) increased IGF-I release by cultured bovine and porcine granulosa cells, but decreased its secretion by rabbit granulosa cells (0.01–10 μg/ml). Genistein stimulated progesterone secretion by bovine and rabbit granulosa cells (at 0.01–10 μg/ml), estradiol output by rabbit granulosa cells (at 1 μg/ml) and porcine ovarian follicles (at 10 μg/ml), as well as cAMP production by bovine (at 0.001–1 μg/ml) and rabbit (at 1 μg/ml) granulosa cells. No effects of genistein (at 10 μg/ml) on PGF-2 alpha and progesterone release by porcine ovarian follicles were observed. Genistein significantly (P < 0.05) stimulated the reinitiation and completion of nuclear maturation of porcine oocytes (at 5 μg/ml), as well as the preimplantation development of rabbit zygotes (at 1 μg/ml). Lavendustin A (0.001–1 μg/ml) increased IGF-I release by bovine (but not by porcine) granulosa cells, cAMP release by bovine granulosa cells, and PGF-2 alpha output by porcine ovarian follicles (at 10 μg/ml). Lavendustin (at 1 μg/ml) had no significant effect on IGF-I release by porcine granulosa cells, on estradiol and cAMP output by rabbit granulosa cells, or on progesterone secretion by porcine follicles (at 10 μg/ml). Inhibitory actions of lavendustin (at 10 μg/ml) on estradiol secretion by porcine follicles were also found. Furthermore, lavendustin, like genistein, promoted the reinitiation and completion of meiosis in porcine oocytes. The present study demonstrates a predominantly stimulatory effect of TK inhibition on endocrine and generative processes in domestic animals. The majority of these effects are similar for both compounds, indirectly suggesting that their action is due to tyrosine kinase inhibition and protein kinase A-stimulation, rather than estrogenic activity.  相似文献   

20.
Actinomycin D (actD) (0.003–0.10 μg/ml) and cordycepin (3–30 μg/ml) were used to examine the requirement of de novo RNA synthesis in the pH 6.6-induced expression of neurites and acetylcholinesterase activity in C-1300 mouse neuroblastoma cells. ActD at 0.03 and 0.10 μg/ml caused a pronounced stimulation in neurite formation following 20 h of treatment, although by 30 h exposure to actD (0.01–0.10 μg/ml), neurite formation had rapidly declined. Cordycepin (3–30 μg/ml) also inhibited neurite formation in a concentration- and time-dependent manner, although it did not produce an initial stimulation in neurite formation. The pH 6.6-induced increase in acetylcholinesterase activity was inhibited by both actD and cordycepin in a concentration- and time-dependent manner. Cell viabilities in the presence of actD and cordycepin were 90% or greater throughout the course of these studies.The effects of actD on [3H]uridine and [3H]leucine transport into cells and on incorporation into acid-insoluble material showed that actD inhibited RNA synthesis to a greater extent than it inhibited protein synthesis. Cordycepin caused only minor effects on [3H]uridine and [3H]leucine transport into cells and incorporation into acid-insoluble material; these effects were variable and neither concentration- nor time-dependent. The results of this study show that actD can inhibit the pH 6.6-induced expression of neurites and acetylcholinesterase activity in mouse neuroblastoma cells at concentrations which were relatively non-toxic and which caused a greater inhibition of RNA synthesis than of protein synthesis. This suggests that de novo RNA synthesis is required for the expression and maintenance of neurites and acetylcholinesterase activity in mouse neuroblastoma cells. Experiments with cordycepin were consistent with this conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号