首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prolonged endoplasmic reticulum (ER) stress reduces protein synthesis and induces apoptosis in mammalian cells. When dimethyl sulfoxide (DMSO), a specific monoclonal antibody productivity (qmAb)‐enhancing reagent, is added to recombinant Chinese hamster ovary (rCHO) cell cultures (GSR cell line), it induces ER stress and apoptosis in a dose‐dependent manner. To determine an effective ER stress inhibitor, three ER stress inhibitors (BiP inducer X [BIX], tauroursodeoxycholic acid, and carbazole) are examined and BIX shows the best production performance. Coaddition of BIX (50 μm ) with DMSO extends the culture longevity and enhances qmAb. As a result, the maximum mAb concentration is significantly increased with improved galactosylation. Coaddition of BIX significantly increases the expression level of binding immunoglobulin protein (BiP) followed by increased expression of chaperones (calnexin and GRP94) and galactosyltransferase. Furthermore, the expression levels of CHOP, a well‐known ER stress marker, and cleaved caspase‐3 are significantly reduced, suggesting that BIX addition reduces ER stress‐induced cell death by relieving ER stress. The beneficial effect of BIX on mAb production is also demonstrated with another qmAb‐enhancing reagent (sodium butyrate) and a different rCHO cell line (CS13‐1.00). Taken together, BIX is an effective ER stress inhibitor that can be used to increase mAb production in rCHO cells.  相似文献   

2.
Overexpression of bcl‐xL in recombinant Chinese hamster ovary (rCHO) cells has been known to suppress apoptotic cell death and thereby extend culture longevity during batch culture. However, its effect on specific productivity (q) of rCHO cells is controversial. This study attempts to investigate the effect of bcl‐xL overexpression on q of rCHO cells producing erythropoietin (EPO). To regulate the bcl‐xL expression level, the Tet‐off system was introduced in rCHO cells producing EPO (EPO‐off‐bcl‐xL). The bcl‐xL expression level was tightly controlled by doxycycline concentration. To evaluate the effect of bcl‐xL overexpression on specific EPO productivity (qEPO) at different levels, EPO‐off‐bcl‐xL cells were cultivated at the two different culture temperatures, 33°C and 37°C. The qEPO at 33°C and 37°C in the presence of 100 ng/mL doxycycline (without bcl‐xL overexpression) were 4.89 ± 0.21 and 3.18 ± 0.06 μg/106cells/day, respectively. In the absence of doxycycline, bcl‐xL overexpression did not affect qEPO significantly, regardless of the culture temperature, though it extended the culture longevity. Taken together, bcl‐xL overexpression showed no significant effect on the qEPO of rCHO cells grown at 33°C and 37°C. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

3.
α‐Synuclein (aSyn) toxicity is associated with cell cycle alterations, activation of DNA damage responses (DDR), and deregulation of autophagy. However, the relationships between these phenomena remain largely unknown. Here, we demonstrate that in a yeast model of aSyn toxicity and aging, aSyn expression induces Ras2‐dependent growth signaling, cell cycle re‐entry, DDR activation, autophagy, and autophagic degradation of ribonucleotide reductase 1 (Rnr1), a protein required for the activity of ribonucleotide reductase and dNTP synthesis. These events lead to cell death and aging, which are abrogated by deleting RAS2, inhibiting DDR or autophagy, or overexpressing RNR1. aSyn expression in human H4 neuroglioma cells also induces cell cycle re‐entry and S‐phase arrest, autophagy, and degradation of RRM1, the human homologue of RNR1, and inhibiting autophagic degradation of RRM1 rescues cells from cell death. Our findings represent a model for aSyn toxicity that has important implications for understanding synucleinopathies and other age‐related neurodegenerative diseases.  相似文献   

4.
Upon nutrient deprivation during culture, recombinant Chinese hamster ovary (rCHO) cells are subjected to two types of programmed cell death (PCD), apoptosis and autophagy. To investigate the effect of Bcl‐xL overexpression on apoptosis and autophagy in rCHO cells, an erythropoietin (EPO)‐producing rCHO cell line with regulated Bcl‐xL overexpression (EPO‐off‐Bcl‐xL) was established using the Tet‐off system. The expression level of Bcl‐xL in EPO‐off‐Bcl‐xL cells was tightly regulated by doxycycline in a dose‐dependent manner. Bcl‐xL overexpression enhanced cell viability and extended culture longevity in batch culture. Upon nutrient depletion in the later stage of batch culture, Bcl‐xL overexpression suppressed apoptosis by inhibiting the activation of caspase‐3 and ‐7. Simultaneously, Bcl‐xL overexpression also delayed autophagy, characterized by LC3‐II accumulation. Immunoprecipitation analysis with a Flag‐tagged Bcl‐xL revealed that Bcl‐xL interacts with Bax and Bak, essential mediators of caspase‐dependent apoptosis, as well as with Beclin‐1, an essential mediator of autophagy, and may inhibit their pro‐cell death function. Taken together, it was found that Bcl‐xL overexpression inhibits both apoptosis and autophagy in rCHO cell culture. Biotechnol. Bioeng. 2009;103: 757–766. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
6.
7.
Increasing evidence supports that activation of store‐operated Ca2+ entry (SOCE) is implicated in the chemoresistance of cancer cells subjected to chemotherapy. However, the molecular mechanisms underlying chemoresistance are not well understood. In this study, we aim to investigate whether 5‐FU induces hepatocarcinoma cell death through regulating Ca2+‐dependent autophagy. [Ca2+]i was measured using fura2/AM dye. Protein expression was determined by Western blotting and immunohistochemistry. We found that 5‐fluorouracil (5‐FU) induced autophagic cell death in HepG2 hepatocarcinoma cells by inhibiting PI3K/AKT/mTOR pathway. Orai1 expression was obviously elevated in hepatocarcinoma tissues. 5‐FU treatment decreased SOCE and Orai1 expressions, but had no effects on Stim1 and TRPC1 expressions. Knockdown of Orai1 or pharmacological inhibition of SOCE enhanced 5‐FU‐induced inhibition of PI3K/AKT/mTOR pathway and potentiated 5‐FU‐activated autophagic cell death. On the contrary, ectopic overexpression of Orai1 antagonizes 5‐FU‐induced autophagy and cell death. Our findings provide convincing evidence to show that Orai1 expression is increased in hepatocarcinoma tissues. 5‐FU can induce autophagic cell death in HepG2 hepatocarcinoma cells through inhibition of SOCE via decreasing Orai1 expression. These findings suggest that Orai1 expression is a predictor of 5‐FU sensitivity for hepatocarcinoma treatment and blockade of Orai1‐mediated Ca2+ entry may be a promising strategy to sensitize hepatocarcinoma cells to 5‐FU treatment.  相似文献   

8.
Previously, overexpression of anti‐apoptotic proteins, such as E1B‐19K and Aven, was reported to alter lactate metabolism of CHO cells in culture. To investigate the effect of Bcl‐xL, a well‐known anti‐apoptotic protein, on lactate metabolism of recombinant CHO (rCHO) cells, two antibody‐producing rCHO cell lines with regulated Bcl‐xL overexpression (CS13*‐0.02‐off‐Bcl‐xL and CS13*‐1.00‐off‐Bcl‐xL) were established using the Tet‐off system. When cells were cultivated without Bcl‐xL overexpression, the specific lactate production rate (qLac) of CS13*‐0.02‐off‐Bcl‐xL and CS13*‐1.00‐off‐Bcl‐xL were 7.32 ± 0.37 and 6.78 ± 0.56 pmol/cell/day, respectively. Bcl‐xL overexpression, in the absence of doxycycline, did not affect the qLac of either cell line, though it enhanced the viability during cultures. Furthermore, activities of the enzymes related to glucose and lactate metabolism, such as hexokinase, glucose‐6‐phosphate dehydrogenase, lactate dehydrogenases, and alanine aminotransferase, were not affected by Bcl‐xL overexpression either. Taken together, Bcl‐xL overexpression showed no significant effect on the lactate metabolism of rCHO cells. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1594–1598, 2013  相似文献   

9.
10.
11.
Data from The Cancer Genome Atlas (TCGA) indicate that the expression levels of 14‐3‐3ζ and beclin 1 (a key molecule involved in cellular autophagy) are up‐regulated and positively correlated with each other (R = .5, P < .05) in HCC tissues. Chemoresistance developed in hepatoma cancer cells is associated with autophagy initiation. This study aimed to explore 14‐3‐3ζ’s role in regulating autophagy in HCC cells, with a focus on beclin 1. The co‐localization of 14‐3‐3ζ and beclin 1 was detectable in primary HCC tissues. To simulate in vivo tumour microenvironment (hypoxia), CSQT‐2 and HCC‐LM3 cells were exposed to 2% oxygen for 24 hours. The protein levels of 14‐3‐3ζ and phospho‐beclin 1S295 peaked at 12 hours following hypoxia. Meanwhile, the strongest autophagy flux occurred: LC3II was increased, and p62 was decreased significantly. By sequencing the coding area of BECN 1 gene of CSQT‐2 and HCC‐LM3 cells, we found that the predicted translational products of BECN 1 gene contained RLPS295VP (R, arginine; L, leucine; P, proline; S, serine; V, valine), a classic 14‐3‐3ζ binding motif. CO‐IP results confirmed that 14‐3‐3ζ bound to beclin 1, and this connection was markedly weakened when S295 was mutated into A295 (alanine). Further, 14‐3‐3ζ overexpression prevented phospho‐beclin 1S295 from degradation and enhanced its binding to VPS34, whilst its knockdown accelerated the degradation. Additionally, 14‐3‐3ζ enhanced the chemoresistance of HCC cells to cis‐diammined dichloridoplatium by activating autophagy. Our work reveals that 14‐3‐3ζ binds to and stabilizes phospho‐beclin 1S295 and induces autophagy in HCC cells to resist chemotherapy.  相似文献   

12.
13.
The Potato virus X (PVX) triple gene block protein 3 (TGBp3), an 8‐kDa membrane binding protein, aids virus movement and induces the unfolded protein response (UPR) during PVX infection. TGBp3 was expressed from the Tobacco mosaic virus (TMV) genome (TMV‐p3), and we noted the up‐regulation of SKP1 and several endoplasmic reticulum (ER)‐resident chaperones, including the ER luminal binding protein (BiP), protein disulphide isomerase (PDI), calreticulin (CRT) and calmodulin (CAM). Local lesions were seen on leaves inoculated with TMV‐p3, but not TMV or PVX. Such lesions were the result of TGBp3‐elicited programmed cell death (PCD), as shown by an increase in reactive oxygen species, DNA fragmentation and induction of SKP1 expression. UPR‐related gene expression occurred within 8 h of TMV‐p3 inoculation and declined before the onset of PCD. TGBp3‐mediated cell death was suppressed in plants that overexpressed BiP, indicating that UPR induction by TGBp3 is a pro‐survival mechanism. Anti‐apoptotic genes Bcl‐xl, CED‐9 and Op‐IAP were expressed in transgenic plants and suppressed N gene‐mediated resistance to TMV, but failed to alleviate TGBp3‐induced PCD. However, TGBp3‐mediated cell death was reduced in SKP1‐silenced Nicotiana benthamiana plants. The combined data suggest that TGBp3 triggers the UPR and elicits PCD in plants.  相似文献   

14.
Previous studies have demonstrated that AMP‐activated protein kinase (AMPK) controls autophagy through the mammalian target of rapamycin (mTOR) and Unc‐51 like kinase 1 (ULK1/Atg1) signaling, which augments the quality of cellular housekeeping, and that β‐guanidinopropionic acid (β‐GPA), a creatine analog, leads to a chronic activation of AMPK. However, the relationship between β‐GPA and aging remains elusive. In this study, we hypothesized that feeding β‐GPA to adult Drosophila produces the lifespan extension via activation of AMPK‐dependent autophagy. It was found that dietary administration of β‐GPA at a concentration higher than 900 mm induced a significant extension of the lifespan of Drosophila melanogaster in repeated experiments. Furthermore, we found that Atg8 protein, the homolog of microtubule‐associated protein 1A/1B‐light chain 3 (LC3) and a biomarker of autophagy in Drosophila, was significantly upregulated by β‐GPA treatment, indicating that autophagic activity plays a role in the effect of β‐GPA. On the other hand, when the expression of Atg5 protein, an essential protein for autophagy, was reduced by RNA interference (RNAi), the effect of β‐GPA on lifespan extension was abolished. Moreover, we found that AMPK was also involved in this process. β‐GPA treatment significantly elevated the expression of phospho‐T172‐AMPK levels, while inhibition of AMPK by either AMPK‐RNAi or compound C significantly attenuated the expression of autophagy‐related proteins and lifespan extension in Drosophila. Taken together, our results suggest that β‐GPA can induce an extension of the lifespan of Drosophila via AMPK‐Atg1‐autophagy signaling pathway.  相似文献   

15.
The pathology of spinocerebellar ataxia type 3, also known as Machado‐Joseph disease, is triggered by aggregation of toxic ataxin‐3 (ATXN3) variants containing expanded polyglutamine repeats. The physiological role of this deubiquitylase, however, remains largely unclear. Our recent work showed that ATX‐3, the nematode orthologue of ATXN3, together with the ubiquitin‐directed segregase CDC‐48, regulates longevity in Caenorhabditis elegans. Here, we demonstrate that the long‐lived cdc‐48.1; atx‐3 double mutant displays reduced viability under prolonged starvation conditions that can be attributed to the loss of catalytically active ATX‐3. Reducing the levels of the autophagy protein BEC‐1 sensitized worms to the effect of ATX‐3 deficiency, suggesting a role of ATX‐3 in autophagy. In support of this conclusion, the depletion of ATXN3 in human cells caused a reduction in autophagosomal degradation of proteins. Surprisingly, reduced degradation in ATXN3‐depleted cells coincided with an increase in the number of autophagosomes while levels of lipidated LC3 remained unaffected. We identified two conserved LIR domains in the catalytic Josephin domain of ATXN3 that directly interacted with the autophagy adaptors LC3C and GABARAP in vitro. While ATXN3 localized to early autophagosomes, it was not subject to lysosomal degradation, suggesting a transient regulatory interaction early in the autophagic pathway. We propose that the deubiquitylase ATX‐3/ATXN3 stimulates autophagic degradation by preventing superfluous initiation of autophagosomes, thereby promoting an efficient autophagic flux important to survive starvation.  相似文献   

16.
N‐linked glycosylation is an essential protein modification that helps protein folding, trafficking and translocation in eukaryotic systems. The initial process for N‐linked glycosylation shares a common pathway with assembly of a dolichol‐linked core oligosaccharide. Here we characterize a new Arabidopsis thaliana mutant lew3 (leaf wilting 3), which has a defect in an α‐1,2‐mannosyltransferase, a homolog of ALG11 in yeast, that transfers mannose to the dolichol‐linked core oligosaccharide in the last two steps on the cytosolic face of the ER in N‐glycan precursor synthesis. LEW3 is localized to the ER membrane and expressed throughout the plant. Mutation of LEW3 caused low‐level accumulation of Man3GlcNAc2 and Man4GlcNAc2 glycans, structures that are seldom detected in wild‐type plants. In addition, the lew3 mutant has low levels of normal high‐mannose‐type glycans, but increased levels of complex‐type glycans. The lew3 mutant showed abnormal developmental phenotypes, reduced fertility, impaired cellulose synthesis, abnormal primary cell walls, and xylem collapse due to disturbance of the secondary cell walls. lew3 mutants were more sensitive to osmotic stress and abscisic acid (ABA) treatment. Protein N‐glycosylation was reduced and the unfolded protein response was more activated by osmotic stress and ABA treatment in the lew3 mutant than in the wild‐type. These results demonstrate that protein N‐glycosylation plays crucial roles in plant development and the response to abiotic stresses.  相似文献   

17.
An increasing number of studies have demonstrated that macroautophagy/autophagy plays an important role in the infectious processes of diverse pathogens. However, it remains unknown whether autophagy is induced in avian metapneumovirus (aMPV)-infected host cells, and, if so, how this occurs. Here, we report that aMPV subgroup C (aMPV/C) induces autophagy in cultured cells. We demonstrated this relationship by detecting classical autophagic features, including the formation of autophagsomes, the presence of GFP-LC3 puncta and the conversation of LC3-I into LC3-II. Also, we used pharmacological regulators and siRNAs targeting ATG7 or LC3 to examine the role of autophagy in aMPV/C replication. The results showed that autophagy is required for efficient replication of aMPV/C. Moreover, infection with aMPV/C promotes autophagosome maturation and induces a complete autophagic process. Finally, the ATF6 pathway, of which one component is the unfolded protein response (UPR), becomes activated in aMPV/C-infected cells. Knockdown of ATF6 inhibited aMPV/C-induced autophagy and viral replication. Collectively, these results not only show that autophagy promotes aMPV/C replication in the cultured cells, but also reveal that the molecular mechanisms underlying aMPV/C-induced autophagy depends on regulation of the ER stress-related UPR pathway.  相似文献   

18.
19.
The unfolded protein response (UPR) is a signaling network triggered by overload of protein‐folding demand in the endoplasmic reticulum (ER), a condition termed ER stress. The UPR is critical for growth and development; nonetheless, connections between the UPR and other cellular regulatory processes remain largely unknown. Here, we identify a link between the UPR and the phytohormone auxin, a master regulator of plant physiology. We show that ER stress triggers down‐regulation of auxin receptors and transporters in Arabidopsis thaliana. We also demonstrate that an Arabidopsis mutant of a conserved ER stress sensor IRE1 exhibits defects in the auxin response and levels. These data not only support that the plant IRE1 is required for auxin homeostasis, they also reveal a species‐specific feature of IRE1 in multicellular eukaryotes. Furthermore, by establishing that UPR activation is reduced in mutants of ER‐localized auxin transporters, including PIN5, we define a long‐neglected biological significance of ER‐based auxin regulation. We further examine the functional relationship of IRE1 and PIN5 by showing that an ire1 pin5 triple mutant enhances defects of UPR activation and auxin homeostasis in ire1 or pin5. Our results imply that the plant UPR has evolved a hormone‐dependent strategy for coordinating ER function with physiological processes.  相似文献   

20.
Protein folding stress in the endoplasmic reticulum (ER) may lead to activation of the unfolded protein response (UPR), aimed to restore proteostasis in the ER. Previously, we demonstrated that UPR activation is an early event in Alzheimer disease (AD) brain. In our recent work we investigated whether activation of the UPR is employed to enhance the capacity of the ubiquitin proteasome system or autophagy in neuronal cells. We showed that the levels, composition and activity of the proteasome are not regulated by the UPR. In contrast, UPR activation enhances autophagy and LC3 levels are increased in neurons displaying UPR activation in AD brain. Our data suggest that autophagy is the major degradational pathway following UPR activation in neuronal cells and indicate a connection between UPR activation and autophagic pathology in AD brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号