首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical coherence tomography (OCT) was successfully applied to visualize the mesoscale structure of three different heterotrophic biofilms. For this purpose, biofilm volumes of 4 × 4 × 1.6 mm3 were scanned with spatial resolutions lower than 20 µm within an acquisition time of 2 min. A heterogeneous structure was detected for biofilms cultivated in laminar as well as transient flow conditions. The structure was found to be more homogeneous for the biofilm grown in turbulent flow. This biofilm structure was characterized by a volumetric porosity of 0.36, whereas the porosity calculated for biofilms grown in laminar and transient conditions was 0.65. These results were directly generated from the distribution of porosity calculated from the OCT images acquired and can be linked to structural properties. Up to now, the mesoscale biofilm structure was only observable with time‐consuming and expensive studies, for example, magnetic resonance microscopy. OCT will most certainly be helpful for improved understanding and prediction of biofilm physics with respect to macroscale processes, for example, mass transfer and detachment as the information about mesoscale is easily accessible using this method. In the context of this study, we show that CLSM images do not necessarily provide an accurate representation of the biofilm structure at the mesoscale. Additionally, the typical characteristic parameters obtained from CLSM image stacks differ largely from those calculated from OCT images. Nevertheless, to determine the local distribution of biofilm constituents, microscopic methods such as confocal laser scanning microscopy are required. Biotechnol. Bioeng. 2010;107: 844–853. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
The link between nitritation success in a membrane‐aerated biofilm reactor (MABR) and the composition of the initial ammonia‐ and nitrite‐oxidizing bacterial (AOB and NOB) population was investigated. Four identically operated flat‐sheet type MABRs were initiated with two different inocula: from an autotrophic nitrifying bioreactor (Inoculum A) or from a municipal wastewater treatment plant (Inoculum B). Higher nitritation efficiencies (NO2‐N/NH4+‐N) were obtained in the Inoculum B‐ (55.2–56.4%) versus the Inoculum A‐ (20.2–22.1%) initiated reactors. The biofilms had similar oxygen penetration depths (100–150 µm), but the AOB profiles [based on 16S rRNA gene targeted real‐time quantitative PCR (qPCR)] revealed different peak densities at or distant from the membrane surface in the Inoculum B‐ versus A‐initiated reactors, respectively. Quantitative fluorescence in situ hybridization (FISH) revealed that the predominant AOB in the Inoculum A‐ and B‐initiated reactors were Nitrosospira spp. (48.9–61.2%) versus halophilic and halotolerant Nitrosomonas spp. (54.8–63.7%), respectively. The latter biofilm displayed a higher specific AOB activity than the former biofilm (1.65 fmol cell?1 h?1 versus 0.79 fmol cell?1 h?1). These observations suggest that the AOB and NOB population compositions of the inoculum may determine dominant AOB in the MABR biofilm, which in turn affects the degree of attainable nitritation in an MABR.  相似文献   

3.
The formation of biofilms in the endotracheal tubes (ETTs) of intubated patients on mechanical ventilation is associated with a greater risk of ventilator‐associated pneumonia and death. New technologies are needed to detect and monitor ETTs in vivo for the presence of these biofilms. Longitudinal OCT imaging was performed in mechanically ventilated subjects at 24‐hour intervals until extubation to detect the formation and temporal changes of in vivo ETT biofilms. OCT‐derived attenuation coefficient images were used to differentiate between mucus and biofilm. Extubated ETTs were examined with optical and electron microscopy, and all imaging results were correlated with standard‐of‐care clinical test reports. OCT and attenuation coefficient images from four subjects were positive for ETT biofilms and were negative for two subjects. The processed and stained extubated ETTs and clinical reports confirmed the presence/absence of biofilms in all subjects. Our findings confirm that OCT can detect and differentiate between biofilm‐positive and biofilm‐negative groups (P < 10?5). OCT image‐based features may serve as biomarkers for direct in vivo detection of ETT biofilms and help drive investigation of new management strategies to reduce the incidence of VAP.   相似文献   

4.
Aims: Quantifying the ex vivo growth of complex multispecies dental biofilms using cross‐polarization 1310‐nm optical coherence tomography (CP‐OCT) system was investigated. Methods and Results: Bacterial microcosms, which were derived from plaque samples of paediatric subjects, were incubated in a biofilm reactor system containing discs of different dental materials for 72 h with daily sucrose pulsing (5×). CP‐OCT analysis of biofilm mass was validated with crystal violet (CV) assays at various growth stages of these complex biofilms. CP‐OCT was able to filter out the back‐reflected signals of water layers in the hydrated biofilm and allowed for direct biofilm quantification. The overall depth‐resolved scattering intensity of the biofilm showed very strong positive correlation with CV assay quantification (Spearman’s ρ = 0·92) during the growth phase of the biofilm. Conclusion: CP‐OCT was able to quantify the mass of the biofilm by measuring the overall depth‐resolved scattering of the biofilm. Significance and Impact of the Study: CP‐OCT has the ability to nondestructively monitor biofilm growth and elucidate the growth characteristics of these microcosms on different dental material compositions.  相似文献   

5.
Dental caries affects people of all ages and is a worldwide health concern. Streptococcus mutans is a major cariogenic bacterium because of its ability to form biofilm and induce an acidic environment. In this study, the antibacterial activities of magnolol and honokiol, the main constituents of the bark of magnolia plants, toward planktonic cell and biofilm of S. mutans were examined and compared with those of chlorhexidine. The minimal inhibitory concentrations of magnolol, honokiol and chlorhexidine for S. mutans were 10, 10 and 0.25 µg/mL, respectively. In addition, each agent showed bactericidal activity against S. mutans planktonic cells and inhibited biofilm formation in a dose‐ and time‐dependent manner. Magnolol (50 µg/mL) had greater bactericidal activity against S. mutans biofilm than honokiol (50 µg/mL) and chlorhexidine (500 µg/mL) at 5 min after exposure, while all showed scant activity against biofilm at 30 s. Furthermore; chlorhexidine (0.5–500 µg/mL) exhibited high cellular toxicity for the gingival epithelial cell line Ca9‐22 at 1 hr, whereas magnolol (50 µg/mL) and honokiol (50 µg/mL) did not. Thus; it was found that magnolol has antimicrobial activities against planktonic and biofilm cells of S. mutans. Magnolol may be a candidate for prevention and management of dental caries.  相似文献   

6.
Recent advances in synchrotron imaging allow us to study the three‐dimensional (3D) histology of vertebrate fossils, including microfossils (e.g. teeth and scales) of early jawed vertebrates. These microfossils can often be scanned at submicron resolution (<1 µm) because of their small size. The resulting voxel (3D pixel) stacks can be processed into virtual thin sections revealing almost every internal detail of the samples, comparable to traditional thin sections. In addition, 3D models of the internal microanatomical structures, such as embedded odontodes and vasculature, can be assembled and examined in situ. Scales of two early osteichthyans, Psarolepis romeri from the Early Devonian of China and Andreolepis hedei from the Late Silurian of Sweden, were scanned using propagation phase‐contrast synchrotron X‐ray microtomography (PPC‐SRµCT), and 3D models of internal canal systems and buried odontodes were created from the scans. Based on these new data, we review the evolutionary origin of cosmine and its associated pore‐canal system, which has been long recognized as a synapomorphy of sarcopterygians. The first odontode that appeared during growth shows almost identical morphology in the two scales, but the second odontode of the Psarolepis scale shows a distinctive morphology with several pores on the surface. It is suggested that a shift from ridge‐like odontode to pore‐bearing odontode was the key step in the origin of cosmine, which was then elaborated further in more‐derived sarcopterygians. We perform a detailed comparison between the two scales and propose a primary homology framework to generate microanatomical characters, which can be used in the phylogenetic analysis of early osteichthyans when more 3D data become available. Our results highlight the importance of 3D data for the study of histology and ontogeny of the dermal skeleton of early jawed vertebrates, especially scales of the polyodontode type. The traditional microvertebrate collection is not only useful for biostratigraphic studies, but also preserves invaluable biological information about the growth of vertebrate hard tissues. Today, we are only beginning to understand the biological meaning of the new 3D data. The increasing availability of such data will enable, and indeed require, a complete revision of traditional palaeohistological studies on early vertebrates.  相似文献   

7.
8.
Population dynamics of ammonia-oxidizing bacteria (AOB) in a full-scale aerated submerged biofilm reactor for micropolluted raw water pretreatment was investigated using molecular techniques for a period of 1 year. The ammonia monooxygenase (amoA) gene fragments were amplified from DNA and RNA extracts of biofilm samples. Denaturing gradient gel electrophoresis (DGGE) profile based on the amoA messenger RNA approach exhibited a more variable pattern of temporal dynamics of AOB communities than the DNA-derived approach during the study. Phylogenetic analysis of excised DGGE bands revealed three AOB groups affiliated with the Nitrosomonas oligotropha lineage, Nitrosomonas communis lineage, and an unknown Nitrosomonas group. The population size of betaproteobacterial AOB, quantified with 16S ribosomal RNA gene real-time polymerase chain reaction assay, ranged from 6.63 × 105 to 2.67 × 109 cells per gram of dry biofilm and corresponded to 0.23–1.8% of the total bacterial fraction. Quantitative results of amoA gene of the three specific AOB groups revealed changes in competitive dominance between AOB of the N. oligotropha lineage and N. communis lineage. Water temperature is shown to have major influence on AOB population size in the reactor by the statistic analysis, and a positive correlation between AOB cell numbers and ammonia removal efficiency is suggested (r = 0.628, P < 0.05).  相似文献   

9.
Membrane‐aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long‐term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real‐time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10‐fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r‐strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal.  相似文献   

10.
Cryosectioned biofilm from three depths (0.5, 3.0 and 6.0 m) in a full-scale nitrifying trickling filter (NTF) were studied using fluorescence in situ hybridization (FISH). A large number of sections were used to determine how the biofilm thickness, structure and community composition varied with depth along the ammonium concentration gradient in the NTF, and how the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were distributed vertically within the biofilm. Both the biofilm thickness and relative biomass content of the biofilm decreased with depth, along with structural differences such as void size and surface roughness. Four AOB populations were found, with two Nitrosomonas oligotropha populations dominating at all depths. A smaller population of Nitrosomonas europaea was present only at 0.5 m, while a population of Nitrosomonas communis increased with depth. The two N. oligotropha populations showed different vertical distribution patterns within the biofilm, indicating different ecophysiologies even though they belong to the same AOB lineage. All NOB were identified as Nitrospira sp., and were generally more associated with the biofilm base than the surface-associated dominating AOB population. Additionally, a small population of anaerobic ammonia-oxidizers was found at 6.0 m, even though the biofilm was well aerated.  相似文献   

11.
The architecture of endosperm cell walls in Hordeum vulgare (barley) differs remarkably from that of other grass species and is affected by germination or malting. Here, the cell wall microstructure is investigated using (bio)chemical analyses, cryogenic scanning electron microscopy (cryo‐SEM) and confocal laser scanning microscopy (CLSM) as the main techniques. The relative proportions of β‐glucan, arabinoxylan and pectin in cell walls were 61, 34 and 5%, respectively. The average thickness of a single endosperm cell wall was 0.30 µm, as estimated by the cryo‐SEM analysis of barley seeds, which was reduced to 0.16 µm after malting. After fluorescent staining, 3D confocal multiphoton microscopy (multiphoton CLSM) imaging revealed the complex cell wall architecture. The endosperm cell wall is composed of a structure in which arabinoxylan and pectin are colocalized on the outside, with β‐glucan depositions on the inside. During germination, arabinoxylan and β‐glucan are hydrolysed, but unlike β‐glucan, arabinoxylan remains present in defined cell walls in malt. Integrating the results, an enhanced model for the endosperm cell walls in barley is proposed.  相似文献   

12.
Morphological assessment and three‐dimensional reconstructions of internal structures of Plodia interpunctella Hübner during metamorphosis stages were experimentally demonstrated using optical coherence tomography (OCT) for the first time. The conventional, complex sectioning methods were significantly simplified owing to the non‐invasive three‐dimensional imaging capability of OCT. Further, this study demonstrates the use of OCT as a non‐invasive detection tool for in vivo morphological observation of metamorphosis stages to gain a better understanding about the growth of internal organs, which can be considered a useful discovery in the field of entomology. Thus, the metamorphosis stages starting from the larva, three pupa stages to the adult stage were periodically visualized to examine the development of internal organs at each specific stage. This study essentially offers real‐time morphological information by non‐destructive observation of the organism and can also be useful for the investigation of other agricultural pests.  相似文献   

13.
Drip irrigation is a water-saving technology. To date, little is known about how biofilm forms in drippers of irrigation systems. In this study, the internal dripper geometry was recreated in 3-D printed microfluidic devices (MFDs). To mimic the temperature conditions in (semi-) arid areas, experiments were conducted in a temperature controlled box between 20 and 50°C. MFDs were either fed with two different treated wastewater (TWW) or synthetic wastewater. Biofilm formation was monitored non-invasively and in situ by optical coherence tomography (OCT). 3-D OCT datasets reveal the major fouling position and illustrate that biofilm development was influenced by fluid dynamics. Biofilm volumetric coverage of the labyrinth up to 60% did not reduce the discharge rate, whereas a further increase to 80% reduced the discharge rate by 50%. Moreover, the biofilm formation rate was significantly inhibited in daily temperature cycle independent of the cultivation medium used.  相似文献   

14.
Currently, optical coherence tomography (OCT), is not capable of obtaining molecular information often crucial for identification of disease. To enable molecular imaging with OCT, we have further developed a technique that harnesses transient changes in light absorption in the sample to garner molecular information. A Fourier‐domain Pump‐Probe OCT (PPOCT) system utilizing a 532 nm pump and 830 nm probe has been developed for imaging hemoglobin. Methylene blue, a biological dye with well‐know photophysics, was used to characterize the system before investigating the origin of the hemoglobin PPOCT signal. The first in vivo PPOCT images were recorded of the vasculature in Xenopus laevis. The technique was shown to work equally well in flowing and nonflowing vessels. Furthermore, PPOCT was compared with other OCT extensions which require flow, such as Doppler OCT and phase‐variance OCT. PPOCT was shown to better delineate tortuous vessels, where nodes often restrict Doppler and phase‐variance reconstruction. (© 2013 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

15.
Bacterial biofilms are a major obstacle challenging the development of more effective therapies to treat implant infections. Oxygen availability to bacterial cells has been implicated in biofilm formation and planktonic cell detachment; however, there are insufficient tools available to measure oxygen concentrations within complex three‐dimensional structures with ~1 µm resolution. Such measurements may complement measures of biofilm structure and cell activity to provide a more comprehensive understanding of biofilm biology. Thus, we developed oxygen‐sensing microparticles specifically designed to characterize oxygen transport through the volume of bacterial biofilms. The Stöber method was used to synthesize monodisperse silica microparticles of approximately the same size as a bacterium (~1 µm). Two fluorophores, oxygen‐sensitive Ru(Ph2phen3)Cl2, and the reference fluorophore Nile blue chloride were immobilized on the surface of the particles. We demonstrate application of the microparticles toward measuring the oxygen concentration profiles within a live Staphylococcus aureus biofilm. Biotechnol. Bioeng. 2012; 109: 2663–2670. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The influence of bacterial biomass on hydraulic properties of porous media (bioclogging) has been explored as a viable means for optimizing subsurface bioremediation and microbial enhanced oil recovery. In this study, we present a pore network simulator for modeling biofilm evolution in porous media including hydrodynamics and nutrient transport based on coupling of advection transport with Fickian diffusion and a reaction term to account for nutrient consumption. Biofilm has non‐zero permeability permitting liquid flow and transport through the biofilm itself. To handle simultaneous mass transfer in both liquid and biofilm in a pore element, a dual‐diffusion mass transfer model is introduced. The influence of nutrient limitation on predicted results is explored. Nutrient concentration in the network is affected by diffusion coefficient for nutrient transfer across biofilm (compared to water/water diffusion coefficient) under advection dominated transport, represented by mass transport Péclet number >1. The model correctly predicts a dependence of rate of biomass accumulation on inlet concentration. Poor network connectivity shows a significantly large reduction of permeability, for a small biomass pore volume. Biotechnol. Bioeng. 2011;108: 2413–2423. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
To quantify differences in nerve fiber layer thickness measurements by various spectral‐domain optical coherence tomography (SD‐OCT) systems, we developed a phantom eye model. We tested twelve SD‐OCT systems of four manufacturers. All systems combined overestimated the 49 µm thick phantom RNFL thickness on average by 18 µm. Within brands, thickness measurements differed statistically significant for one Topcon, one RTVue and one Cirrus. Between brands, thickness determined with RTVue and Topcon differed statistically significant from Cirrus and Spectralis. The maximum difference between mean thicknesses is 3.6 µm within brands and 7.7 µm between brands. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The purpose of this study was to evaluate early vascular and tomographic changes in the retina of diabetic patients using artificial intelligence (AI). The study included 74 age‐matched normal eyes, 171 diabetic eyes without retinopathy (DWR) eyes and 69 mild non‐proliferative diabetic retinopathy (NPDR) eyes. All patients underwent optical coherence tomography angiography (OCTA) imaging. Tomographic features (thickness and volume) were derived from the OCTA B‐scans. These features were used in AI models. Both OCT and OCTA features showed significant differences between the groups (P < .05). However, the OCTA features indicated early retinal changes in DWR eyes better than OCT (P < .05). In the AI model using both OCT and OCTA features simultaneously, the best area under the curve of 0.91 ± 0.02 was obtained (P < .05). Thus, the combined use of AI, OCT and OCTA significantly improved the early diagnosis of diabetic changes in the retina.  相似文献   

19.
Non‐invasive biological imaging is crucial for understanding in vivo structure and function. Optical coherence tomography (OCT) and reflectance confocal microscopy are two of the most widely used optical modalities for exogenous contrast‐free, high‐resolution, three‐dimensional imaging in non‐fluorescent scattering tissues. However, sample motion remains a critical barrier to raster‐scanned acquisition and reconstruction of wide‐field anatomically accurate volumetric datasets. We introduce spectrally encoded coherence tomography and reflectometry (SECTR), a high‐speed, multimodality system for simultaneous OCT and spectrally encoded reflectance (SER) imaging. SECTR utilizes a robust system design consisting of shared optical relays, scanning mirrors, swept laser and digitizer to achieve the fastest reported in vivo multimodal imaging rate of 2 gigapixels per second. Our optical design and acquisition scheme enable spatiotemporally co‐registered acquisition of OCT cross‐sections simultaneously with en face SER images for multivolumetric mosaicking. Complementary axial and lateral translation and rotation are extracted from OCT and SER data, respectively, for full volumetric estimation of sample motion with micron spatial and millisecond temporal resolution.   相似文献   

20.
We report the development of an integrated multifunctional imaging system capable of providing anatomical (optical coherence tomography, OCT), functional (OCT angiography, OCTA) and molecular imaging (light‐induced autofluorescence, LIAF) for in vivo dental applications. Blue excitation light (405 nm) was used for LIAF imaging, while the OCT was powered by a 1310 nm swept laser source. A red‐green‐blue digital camera, with a 450 nm cut‐on broadband optical filter, was used for LIAF detection. The exciting light source and camera were integrated directly with the OCT scanning probe. The integrated system used two noninvasive imaging modalities to improve the speed of in vivo OCT data collection and to better target the regions of interest. The newly designed system maintained the ability to detect differences between healthy and hypomineralized teeth, identify dental biofilm and visualize the microvasculature of gingival tissue. The development of the integrated OCT‐LIAF system provides an opportunity to conduct clinical studies more efficiently, examining changes in oral conditions over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号