首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The feeding mechanism and kinematics of prey capture have been studied in many fishes. However, the effects of satiation on the strike mode and prey capture kinematics have never been directly measured. We analyze 12 kinematic variables to determine the effects of satiation on prey capture in five largemouth bass, Micropterus salmoides, by using high speed videography. We also present the first experimental test for modulatory capabilities in response to satiation, by using the ram-suction index. Significant changes in the kinematic variables of maximum lower jaw depression, maximum gape distance, maximum hyoid depression, time to maximum hyoid depression, and time from maximum hyoid depression to recovery were seen with the effects of satiation. Change in the kinematic variables imply a decrease in jaw opening velocity and the magnitude of suction velocity created during repetitive strikes by M. salmoides with increasing satiation. The bass primarily uses a ram strike mode, with some suction bites occasionally. Ram-suction index analyses suggests that M. salmoides does not modulate strike mode in response to satiation. However, the bass modulate prey capture kinematics without altering strike mode with the effects of satiation. Prey capture success decreases in each bass, as the probability of a successful prey capture event becomes lower, with increasing satiation. These findings demonstrate that satiation can have major effects on prey capture kinematics and future studies of feeding kinematics should account for satiation in their analyses.  相似文献   

2.
The eleotrid fish Eleotris sandwicensis inhabits lower reaches of streams in the Hawaiian Archipelago, where it feeds on juveniles of native amphidromous gobiid fishes migrating upstream from the ocean. Using high‐speed video and geometric modelling, we evaluated the feeding kinematics and performance of E. sandwicensis on free swimming prey, including two species with juveniles of different characteristic sizes, and compared successful and unsuccessful strikes. With fast jaw movements and a highly expansive buccal cavity, E. sandwicensis achieves high suction performance that enables the capture of elusive prey. Our analyses indicated that the species with larger juveniles (Sicyopterus stimpsoni) could be captured from a distance of up to 18.6% of the predator's body length (BL), but capture of the smaller species (Awaous guamensis) required a closer distance (12.2% BL). Predator–prey distance appears to be the predominant factor determining strike outcome during feeding on juvenile A. guamensis. However, during feeding on juvenile S. stimpsoni, E. sandwicensis shows modulations of strike behaviour that correlate with capture success. Moreover, the ability of E. sandwicensis to capture larger prey fish from longer distances suggests a potential biomechanical basis underlying observations that predation by eleotrids imposes significant selection against large body size in juvenile gobies. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 359–374.  相似文献   

3.
Cleaner fishes are well known for removing and consuming ectoparasites off other taxa. Observers have noted that cleaners continuously “pick” ectoparasites from the bodies of their respective client organisms, but little is known about the kinematics of cleaning. While a recent study described the jaw morphology of cleaners as having small jaw‐closing muscles and weak bite forces, it is unknown how these traits translate into jaw movements during feeding to capture and remove ectoparasites embedded in their clients. Here, we describe cranial morphology and kinematic patterns of feeding for three species of cleaner wrasses. Through high‐speed videography of cleaner fishes feeding in two experimental treatments, we document prey capture kinematic profiles for Labroides dimidiatus, Larabicus quadrilineatus, and Thalassoma lutescens. Our results indicate that cleaning in labrids may be associated with the ability to perform low‐displacement, fast jaw movements that allow for rapid and multiple gape cycles on individually targeted items. Finally, while the feeding kinematics of cleaners show notable similarities to those of “picker” cyprinodontiforms, we find key differences in the timing of events. In fact, cleaners generally seem to be able to capture prey twice as fast as cyprinodontiforms. We thus suggest that the kinematic patterns exhibited by cleaners are indicative of picking behavior, but that “pickers” may be more kinematically diverse than previously thought. J. Morphol. 276:1377–1391, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
The teeth of captured specimens, of prepared museum specimens, and of high-speed videotape images of the white shark, Carcharodon carcharias, were compared with respect to (1) deviation of each tooth from the animal's midline and (2) the crown angle of the functional teeth along the jaw margin. Tooth position was measured either directly using a meter stick apparatus or derived from tracings of the video footage. Tooth positions were not statistically unique in any region of the upper or lower jaw but demonstrated less variability in crown angle within 30° of the midline (71.48° ± 10°). Videotape analysis of feeding sharks indicated an 8.7° increase in crown angle of the centermost teeth during bites where the jaws were closed through an angle of 20–35° and a 15.7° reduction in this same parameter during jaw adduction through 35° or more. Such changes in tooth orientation (relative to the rear of the buccal cavity) are ascribed to flexure of the cartilaginous jaws and cranium by the cranial musculature and possibly also to sliding of the tooth bed over the jaw. Outward rotation of the teeth and jaw rami describes a plucking action during feeding or prey sampling, while larger bites rotate the frontmost teeth inward towards the gullet. Functionally, this may make the teeth more effective at grasping small prey items or gouging chunks from larger prey. However, testing of the load required to remove teeth showed no significant increase in tensile resistance with reduced crown angle. © 1995 Wiley-Liss, Inc.  相似文献   

5.
The nurse shark, Ginglymostoma cirratum, is an obligate suction feeder that preys on benthic invertebrates and fish. Its cranial morphology exhibits a suite of structural and functional modifications that facilitate this mode of prey capture. During suction‐feeding, subambient pressure is generated by the ventral expansion of the hyoid apparatus and the floor of its buccopharyngeal cavity. As in suction‐feeding bony fishes, the nurse shark exhibits expansive, compressive, and recovery kinematic phases that produce posterior‐directed water flow through the buccopharyngeal cavity. However, there is generally neither a preparatory phase nor cranial elevation. Suction is generated by the rapid depression of the buccopharyngeal floor by the coracoarcualis, coracohyoideus, and coracobranchiales muscles. Because the hyoid arch of G. cirratum is loosely connected to the mandible, contraction of the rectus cervicis muscle group can greatly depress the floor of the buccopharyngeal cavity below the depressed mandible, resulting in large volumetric expansion. Suction pressures in the nurse shark vary greatly, but include the greatest subambient pressures reported for an aquatic‐feeding vertebrate. Maximum suction pressure does not appear to be related to shark size, but is correlated with the rate of buccopharyngeal expansion. As in suction‐feeding bony fishes, suction in the nurse shark is only effective within approximately 3 cm in front of the mouth. The foraging behavior of this shark is most likely constrained to ambushing or stalking due to the exponential decay of effective suction in front of the mouth. Prey capture may be facilitated by foraging within reef confines and close to the substrate, which can enhance the effective suction distance, or by foraging at night when it can more closely approach prey. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
Synopsis Studies of feeding in bony fishes have almost universally demonstrated the ability of individuals to modulate their method of capture in response to differing stimuli. Preliminary evidence indicates that morphologically specialized inertial suction feeding sharks are the most likely fishes to lack inherent modulatory ability. We examined the ability of the nurse shark, Ginglymostoma cirratum, to modulate its feeding behavior based on different food types and sizes. G. cirratum is an inertial suction feeding fish that is apparently stereotyped in its food capture behavior. Electromyography showed no statistical difference between feeding motor patterns based on food type (squid or fish) or size (gape width or twice gape width), although there were slight inter-individual differences in the onset of muscle firing for some muscles. Kinematic analysis showed a statistical difference in variables associated with durations for different food types, with the durations for all variables being faster for squid bites than fish bites, but no difference based on the size of the food item. This apparent lack of modulation may be associated with specialization of the morphology and behavior of G. cirratum for obligate suction prey capture. This functional specialization constrains the method in which G. cirratum captures prey but does not appear to result in dietary specialization. An unusual post capture spit-suck manipulation allows this shark to handle and ingest large prey.  相似文献   

7.
The Carnivora occupy a wide range of feeding niches in concordance with the enormous diversity in their skull and dental form. It is well established that differences in crown morphology are linked to variations in the material properties of the foods ingested and masticated. However, how tooth root form is related to dietary specialization is less well known. In the present study, we investigate the relationship between tooth root morphology and dietary specialization in terrestrial carnivores (canids, felids, hyaenids, and ursids). We specifically address the question of how variation in tooth root surface area is related to bite force potentials as one of the crucial masticatory performance parameters in feeding ecology. We applied computed tomography imaging to reconstruct and quantify dental root surface area in 17 extant carnivore species. Moreover, we computed maximal bite force at several tooth positions based on a dry skull model and assessed the relationship of root surface area to skull size, maximal bite force, food properties, and prey size. We found that postcanine tooth root surface areas corrected for skull size serve as a proxy for bite force potentials and, by extension, dietary specialization in carnivores. Irrespective of taxonomic affinity, species that feed on hard food objects have larger tooth roots than those that eat soft or tough foods. Moreover, carnivores that prey on large animals have larger tooth root surface areas. Our results show that tooth root morphology is a useful indicator of bite force production and allows inferences to be made about dietary ecology in both extant and extinct mammals. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 456–471.  相似文献   

8.
The recent reexamination of a tooth‐whorl fossil of Helicoprion containing intact jaws shows that the symphyseal tooth‐whorl occupies the entire length of Meckel's cartilage. Here, we use the morphology of the jaws and tooth‐whorl to reconstruct the jaw musculature and develop a biomechanical model of the feeding mechanism in these early Permian predators. The jaw muscles may have generated large bite‐forces; however, the mechanics of the jaws and whorl suggest that Helicoprion was better equipped for feeding on soft‐bodied prey. Hard shelled prey would tend to slip anteriorly from the closing jaws due to the curvature of the tooth‐whorl, lack of cuspate teeth on the palatoquadrate (PQ), and resistance of the prey. When feeding on soft‐bodied prey, deformation of the prey traps prey tissue between the two halves of the PQ and the whorl. The curvature of the tooth‐whorl and position of the exposed teeth relative to the jaw joint results in multiple tooth functions from anterior to posterior tooth that aid in feeding on soft‐bodied prey. Posterior teeth cut and push prey deeper into the oral cavity, while middle teeth pierce and cut, and anterior teeth hook and drag more of the prey into the mouth. Furthermore, the anterior‐posterior edges of the teeth facilitate prey cutting with jaw closure and jaw depression. The paths traveled by each tooth during jaw depression are reminiscent of curved pathways used with slashing weaponry such as swords and knifes. Thus, the jaws and tooth‐whorl may have formed a multifunctional tool for capturing, processing, and transporting prey by cyclic opening and closing of the lower jaw in a sawing fashion. J. Morphol. 276:47–64, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
The reaction field of juvenile false percula clownfish (Amphiprion ocellaris) were studied when fed two different developmental stages (nauplii and adults) of the calanoid copepod Pseudodiaptomus annandalei. As the copepods undergo ontogenetic development, their morphologic and kinematic traits changes and may therefore influence the ability of the clownfish to identify and capture prey. The fish reacted to nauplii at shorter distances (15.2 ± 7.1 mm) compared to adult copepods (28.0 ± 9.8 mm). However, the fish reaction angle was significantly wider when offered nauplii (?25.3° to 64.4°) compared to adult copepods (?14.2° to 36.7°). This resulted in an equivalent attack rate on both prey items. Hence, even though nauplii are less apparent at greater distances, the fish counteract this partly by reacting to smaller prey items at a wider range. However, the carbon-specific ingestion rate was higher when offered adult copepods, which suggests adult copepods are a more rewarding prey.  相似文献   

10.
Feeding behaviour and bite force of sabretoothed predators   总被引:2,自引:0,他引:2  
The feeding behaviour of extinct sabretoothed predators (machaeroidines, nimravids, barbourofelids, machairodonts and thylacosmilines) is investigated using beam theory. Because bite force applied along the mandible should be proportional to the external dimension of the mandibular corpus, patterns of variation in these dimensions at interdental gaps will reflect the adaptation of the jaw to specific loads, related to killing methods. Comparison of the mandibular force profiles of sabretooths to those of extant conical‐toothed carnivorans of known feeding behaviour reveals that sabretooths had a powerful bite, as strong or stronger than extant felids of similar mandibular length. Loads exerted at the lower canine were better constrained in the sagittal plane than in extant conical‐toothed carnivorans, indicating that prey was efficiently restrained when the sabre bite was delivered. The mandibular symphysis is generally better buttressed dorsoventrally in dirk‐toothed sabretooths than in scimitar‐toothed sabretooths, implying different killing strategies for the two ecomorphs: dirktooths delivered powerful sabre bites on prey they restrained with their forelimbs, while scimitartooths delivered slashing sabre bites and may have used their incisor battery to subdue their prey. The mandibular symphysis of Smilodon fatalis is less buttressed dorsoventrally than that of other dirk‐toothed sabretooths, possibly as a consequence of the greater torsional stresses induced while feeding rapidly on carcasses in response to intense competition. The mandibular symphysis of Thylacosmilus atrox is better buttressed dorsoventrally in juveniles than in adults, suggesting that young marsupial sabretooths underwent an extended period of parental care as typically observed in modern felids and inferred for eutherian sabretooths. Finally, machaeroidines and the nimravid Nimravus brachyops are exceptional in exhibiting a degree of dorsoventral buttressing of the mandibular symphysis that is intermediate between advanced sabretooths and conical‐toothed felids but similar to the extant Neofelis nebulosa, suggesting that the latter taxon may be close to the ancestral condition of a new sabretooth radiation. © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society, 2005, 145 , 393–426.  相似文献   

11.
Sharks as a group have a long history as highly successful predatory fishes. Although, the number of recent studies on their diet, feeding behavior, feeding mechanism, and mechanics have increased, many areas still require additional investigation. Dietary studies of sharks are generally more abundant than those on feeding activity patterns, and most of the studies are confined to relatively few species, many being carcharhiniform sharks. These studies reveal that sharks are generally asynchronous opportunistic feeders on the most abundant prey item, which are primarily other fishes. Studies of natural feeding behavior are few and many observations of feeding behavior are based on anecdotal reports. To capture their prey sharks either ram, suction, bite, filter, or use a combination of these behaviors. Foraging may be solitary or aggregate, and while cooperative foraging has been hypothesized it has not been conclusively demonstrated. Studies on the anatomy of the feeding mechanism are abundant and thorough, and far exceed the number of functional studies. Many of these studies have investigated the functional role of morphological features such as the protrusible upper jaw, but only recently have we begun to interpret the mechanics of the feeding apparatus and how it affects feeding behavior. Teeth are represented in the fossil record and are readily available in extant sharks. Therefore much is known about their morphology but again functional studies are primarily theoretical and await experimental analysis. Recent mechanistic approaches to the study of prey capture have revealed that kinematic and motor patterns are conserved in many species and that the ability to modulate feeding behavior varies greatly among taxa. In addition, the relationship of jaw suspension to feeding behavior is not as clear as was once believed, and contrary to previous interpretations upper jaw protrusibility appears to be related to the morphology of the upper jaw-chondrocranial articulation rather than the type of jaw suspension. Finally, we propose a set of specific hypotheses including: (1) The functional specialization for suction feeding hypothesis that morphological and functional specialization for suction feeding has repeatedly arisen in numerous elasmobranch lineages, (2) The aquatic suction feeding functional convergence hypothesis that similar hydrodynamic constraints in bony fishes and sharks result in convergent morphological and functional specializations for suction feeding in both groups, (3) The feeding modulation hypothesis that suction capture events in sharks are more stereotyped and therefore less modulated compared to ram and bite capture events, and (4) The independence of jaw suspension and feeding behavior hypothesis whereby the traditional categorization of jaw suspension types in sharks is not a good predictor of jaw mobility and prey capture behavior. Together with a set of questions these hypotheses help to guide future research on the feeding biology of sharks.  相似文献   

12.
We investigated the functional morphology of lingual prey capture in the blue‐tongued skink, Tiliqua scincoides, a lingual‐feeding lizard nested deep within the family Scincidae, which is presumed to be dominated by jaw‐feeding. We used kinematic analysis of high‐speed video to characterize jaw and tongue movements during prey capture. Phylogenetically informed principal components analysis of tongue morphology showed that, compared to jaw‐feeding scincids and lacertids, T. scincoides and another tongue‐feeding scincid, Corucia zebrata, are distinct in ways suggesting an enhanced ability for hydrostatic shape change. Lingual feeding kinematics show substantial quantitative and qualitative variation among T. scincoides individuals. High‐speed video analysis showed that T. scincoides uses significant hydrostatic elongation and deformation during protrusion, tongue‐prey contact, and retraction. A key feature of lingual prey capture in T. scincoides is extensive hydrostatic deformation to increase the area of tongue‐prey contact, presumably to maximize wet adhesion of the prey item. Adhesion is mechanically reinforced during tongue retraction through formation of a distinctive “saddle” in the foretongue that supports the prey item, reducing the risk of prey loss during retraction.  相似文献   

13.
Biomechanical models of feeding mechanisms elucidate how animals capture food in the wild, which, in turn, expands our understanding of their fundamental trophic niche. However, little attention has been given to modeling the protrusible upper jaw apparatus that characterizes many teleost species. We expanded existing biomechanical models to include upper jaw forces using a generalist butterflyfish, Chaetodon trichrous (Chaetodontidae) that produces substantial upper jaw protrusion when feeding on midwater and benthic prey. Laboratory feeding trials for C. trichrous were recorded using high-speed digital imaging; from these sequences we quantified feeding performance parameters to use as inputs for the biomechanical model. According to the model outputs, the upper jaw makes a substantial contribution to the overall forces produced during mouth closing in C. trichrous. Thus, biomechanical models that only consider lower jaw closing forces will underestimate total bite force for this and likely other teleost species. We also quantified and subsequently modeled feeding events for C. trichrous consuming prey from the water column versus picking attached prey from the substrate to investigate whether there is a functional trade-off between prey capture modes. We found that individuals of C. trichrous alter their feeding behavior when consuming different prey types by changing the timing and magnitude of upper and lower jaw movements and that this behavioral modification will affect the forces produced by the jaws during prey capture by dynamically altering the lever mechanics of the jaws. In fact, the slower, lower magnitude movements produced during picking-based prey capture should produce a more forceful bite, which will facilitate feeding on benthic attached prey items, such as corals. Similarities between butterflyfishes and other teleost lineages that also employ picking-based prey capture suggest that a suite of key behavioral and morphological innovations enhances feeding success for benthic attached prey items.  相似文献   

14.
Synopsis Pogonias cromis, black drum, is the largest durophagous sciaenid and feeds almost exclusively on hard-shelled bivalves and gastropods using powerful pharyngeal jaws. I estimated pharyngeal jaw bite forces used to crush live molluscs during feeding trials from juvenile and young adult Pogonias cromis, and they are the highest yet documented for bony fishes. Crushing ability in P. cromis scaled with strong positive allometry suggesting large adult fish may have one of the strongest bites among vertebrates. Physiological estimates of pharyngeal muscle strength derived from muscle cross sectional area accounted for only half of the force generated during actual feeding performance trials. The significant disparity between feeding performance and pharyngeal muscle strength in P. cromis indicates the presence of novel biomechanical linkages that enhance crushing ability for feeding on hard-shelled molluscs. I present a biomechanical model in which the lower pharyngeal jaw architecture of P. cromis emulates a second class lever mechanism that can amplify muscle forces transmitted to the shell of the prey.  相似文献   

15.
This study investigated how visual information about prey location and biomechanical constraints of the feeding apparatus influence the feeding behavior of the tomato frog, Dyscophus guineti. When feeding on prey at small azimuths (less than ± 40°), frogs aimed their heads toward the prey but did not aim their tongues relative to their heads. Frogs projected their tongues rapidly by transferring momentum from the lower jaw to the tongue. Storage and recovery of elastic energy by the mouth opening muscles amplified the velocities of mouth opening and tongue projection. This behavior can only occur when the lower jaw and tongue are aligned (i.e., within the range of motion of the neck). When feeding on prey at large azimuths (greater than ± 40°), frogs aimed both the head and tongue toward the prey and used a muscular hydrostatic mechanism to project the tongue. Hydrostatic elongation allows for frogs to capture prey at greater azimuthal locations. Because the tongue moves independently of the lower jaw, frogs can no longer take advantage of momentum transfer to amplify the speed of tongue projection. To feed on prey at different azimuthal locations, tomato frogs switch between alternative strategies to circumvent these biomechanical constraints.  相似文献   

16.
Six aphid species, viz. Aphis craccivora, Aphis gossypii, Aphis nerii, Myzus persicae, Lipaphis erysimi and Uroleucon compositae were provided as prey to the feeding stages of Coccinella transversalis (Fabricius). All of them were found to be essential prey, however the relative prey suitability varied. All the predatory stages of C. transversalis consumed and preferred A. gossypii, the most and A. nerii, the least. Significant effect of prey quality was observed on pre‐imaginal developmental periods, wet weights and adult longevity. The complete development was shortest on A. gossypii (13.01 ± 0.18 days) and longest on A. nerii (20.51 ± 0.25 days). The total prey consumption by larva, adult male and female in their lifetime was maximum (665.30 ± 5.75, 4831.10 ± 123.54 and 5412.30 ± 94.51, respectively) on A. gossypii and minimum (434.80 ± 4.03, 802.80 ± 34.37 and 905.20 ± 52.48, respectively) on A. nerii. Immature survival, growth index and adult emergence of C. transversalis was maximum (68.33, 7.82 and 88.21%, respectively) when larval instars consumed A. gossypii and minimum (37.75, 2.18 and 60.69%, respectively) after feeding on A. nerii. Female reproduction was also prey quality dependent showing maximum reproductive performance in terms of fecundity and percentage viability, with a highest reproductive period and lowest non‐reproductive period on A. gossypii, followed by A. craccivora, L. erysimi, M. persicae, U. compositae and A. nerii. Regression analysis revealed a positive correlation between: (1) daily prey consumption and relative growth rate, (2) adult weight and developmental rate, (3) weights of adult male and female, and (4) female longevity and fecundity.  相似文献   

17.
Synopsis High-speed cinematography and video using modified Schlieren optics and laser illumination helped elicit details of prey capture mechanisms used by Chromis viridis while feeding on calanoid copepods and Artemia. Chromis viridis is capable of a ram-jaw, low-suction feeding, as well as a typical suction feeding behavior described for other species of planktivores. By adjusting the degree of jaw protrusion and amount of suction used during a feeding strike, this fish can modulate its feeding strikes according to the prey type being encountered. The ram-jaw feeding mode enables C. viridis to capture highly evasive calanoid copepods within 6 to 10 msec. The use of specialized feeding behavior for evasive prey and the ability to vary feeding behavior are adaptations for feeding on evasive prey.  相似文献   

18.
Predation rate and numerical response are basic to any investigation of predator–prey relationships and key components in the selection of predators for biological control. The density-dependent predation rate and numerical response of Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae) to varying densities (5, 10, 20, 40, 60 and 80) of third-instar Aphis craccivora (Koch) (Hemiptera: Aphididae), were studied in laboratory conditions [23±1°C, 70 ± 5% relative humidity (RH), and a photoperiod of 16:8 h L:D. Predation rate data were analysed using the age-stage, two-sex consumption rate software. Net consumption rate (C0) increased by increasing prey density. The lowest and highest net consumption rates were 20.75 and 190.8 prey nymphs at densities of 5 and 80 A. craccivora. The transformation rate from prey population to predator offspring (Qp) increased by increasing prey density. The reproductive numerical response, in terms of eggs laid, increased curvilinearly with increasing prey density. Females laid 121.375 ± 4.301 eggs when exposed to the highest prey density (80) and 52.5 ± 1.544 eggs at lowest prey density (5). It can be concluded that different densities of A. craccivora influenced the reproductive performance of A. aphidimyza in terms of predation rate and numerical response.  相似文献   

19.
Studies of the scaling of feeding movements in vertebrates have included three species that display both near-geometric growth and isometry of kinematic variables. These scaling characteristics allow one to examine the “pure” relationship of growth and movement. Despite similar growth patterns, the feeding movements of toads (Bufo) slow down more with increasing body size than those of bass (Micropterus), and sharks (Ginglymostoma). This variation might be due to major differences in the mechanism of prey capture; the bass and sharks use suction to capture prey in water, while the toad uses tongue prehension to capture prey on land. To investigate whether or not these different scaling patterns are correlated with differences in feeding mechanics, we examined the ontogenetic scaling of prey capture movements in the hellbender salamander (Cryptobranchus alleganiensis), which also has near-geometric growth. The hellbender suction feeds in the same general manner as the teleosts and shark, but is much more closely related to the toad. The feeding movements of the hellbender scale more similarly to the feeding movements of toads than to those of fishes or sharks, indicating that phylogenetic relatedness rather than biomechanical similarity predicts ontogenetic scaling patterns of movement.  相似文献   

20.
In an experiment on the effect of zooplankton density on feeding behaviour and prey size selection in Atlantic salmon (Salmo salar) alevins, total behavioural activity (feeding, social, ambiguous) was positively related to prey abundance up to a density of 350 items 1?1, after which activity peaked. Feeding error (missed attacks and/or rejected ingestions) increased with prey density. The likelihood that an alevin would attack an item upon which it had binocularly fixed (no. bites/no. visual fixes) peaked at densities of 270 items 1?1 and then declined. Feeding success (no. ingestions per bite or per fixation) also peaked and then declined. Changes in success were reflected in total number of items found in the gut. At high prey abundance (608 items 1?1) only 0.5 – 0.9 mm copepods were preferred components of alevin diets. Over all prey densities, preferred sizes of cladocerans and copepods did not overlap. These results may reflect a perceptual constraint (at high zooplankton densities) on alevin feeding behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号