共查询到20条相似文献,搜索用时 15 毫秒
1.
Census (N(C)) and effective population size (N(e)) were estimated for a lake-resident population of brown trout Salmo trutta as 576 and 63, respectively. The point estimate of the ratio of effective to census population size (N(e):N(C)) for this population is 0.11 with a range of 0.06-0.26, suggesting that N(e):N(C) ratio for lake-resident populations agree more with estimates for fishes with anadromous life histories than the small ratios observed in many marine fishes. 相似文献
2.
Marlene Haider Ramona Steixner Teresa Zeni Stephanie Vallant Reinhard Lentner Birgit C. Schlick-Steiner Florian M. Steiner 《Ibis》2024,166(1):55-68
Population size is an important parameter to monitor for species conservation and management. This is especially important for rare and endangered species, as declines can give information about anthropogenic impacts and the need for new conservation measures. To estimate population size, various methods of analysis can be used, for which sample size is an important factor. Sample size is particularly important to consider when applying non-invasive sampling strategies such as sampling faeces or feathers/hairs as a source of DNA, as a means to limit disturbance and stress for the species of concern. We investigated a Black Grouse Lyrurus tetrix population in the eastern part of the Alps, in East Tyrol (Austria), and estimated population size using two approaches: capture–recapture and rarefaction. With a set of 12 polymorphic microsatellite markers, we identified genotypes from faeces and feathers (backed up with 23 tissue samples) and checked for population substructure and gene flow among sampling sites. We estimated population size using four different models from the two approaches (molecular capture–recapture: TIRM, TIRMpart; rarefaction: hyperbolic function – Kohn, exponential function – Eggert). To evaluate the impact of sample size on the estimations, we used the full dataset of 500 samples (‘complete’ dataset) and half the dataset of 250 samples (‘half’ dataset). We also estimated the population size for each sex separately using complete and half datasets to check for sex-specific differences in population size. We found similar results in three of four models (capture–recapture: capwire TIRM, capwire TIRMpart; rarefaction: rarefaction Kohn). Using just half of the data increased the uncertainties in the estimation of population size in all models used and deviations were particularly large in females, which indicated a sex bias. Only the complete dataset of males had an observation rate of more than two observations/individual, and this observation rate meets the recommendation for using the capwire models. This indicates that, for species with different sex-specific detectability, larger sample sizes do not generally imply higher observation rates. We conclude that calculating the observation rates and population-size estimations for each sex separately can improve overall population-size estimation, especially in species with biased sex ratios and those that exhibit sex-specific behaviour. 相似文献
3.
Kim Urian Antoinette Gorgone Andrew Read Brian Balmer Randall S. Wells Per Berggren John Durban Tomoharu Eguchi William Rayment Philip S. Hammond 《Marine Mammal Science》2015,31(1):298-321
Capture‐recapture methods are frequently employed to estimate abundance of cetaceans using photographic techniques and a variety of statistical models. However, there are many unresolved issues regarding the selection and manipulation of images that can potentially impose bias on resulting estimates. To examine the potential impact of these issues we circulated a test data set of dorsal fin images from bottlenose dolphins to several independent research groups. Photo‐identification methods were generally similar, but the selection, scoring, and matching of images varied greatly amongst groups. Based on these results we make the following recommendations. Researchers should: (1) determine the degree of marking, or level of distinctiveness, and use images of sufficient quality to recognize animals of that level of distinctiveness; (2) ensure that markings are sufficiently distinct to eliminate the potential for “twins” to occur; (3) stratify data sets by distinctiveness and generate a series of abundance estimates to investigate the influence of including animals of varying degrees of markings; and (4) strive to examine and incorporate variability among analysts into capture‐recapture estimation. In this paper we summarize these potential sources of bias and provide recommendations for best practices for using natural markings in a capture‐recapture framework. 相似文献
4.
Ray T. Alisauskas Todd W. Arnold James O. Leafloor David L. Otis James S. Sedinger 《Ecology and evolution》2014,4(2):132-143
Estimates of range‐wide abundance, harvest, and harvest rate are fundamental for sound inferences about the role of exploitation in the dynamics of free‐ranging wildlife populations, but reliability of existing survey methods for abundance estimation is rarely assessed using alternative approaches. North American mallard populations have been surveyed each spring since 1955 using internationally coordinated aerial surveys, but population size can also be estimated with Lincoln's method using banding and harvest data. We estimated late summer population size of adult and juvenile male and female mallards in western, midcontinent, and eastern North America using Lincoln's method of dividing (i) total estimated harvest, , by estimated harvest rate, , calculated as (ii) direct band recovery rate, , divided by the (iii) band reporting rate, . Our goal was to compare estimates based on Lincoln's method with traditional estimates based on aerial surveys. Lincoln estimates of adult males and females alive in the period June–September were 4.0 (range: 2.5–5.9), 1.8 (range: 0.6–3.0), and 1.8 (range: 1.3–2.7) times larger than respective aerial survey estimates for the western, midcontinent, and eastern mallard populations, and the two population estimates were only modestly correlated with each other (western: r = 0.70, 1993–2011; midcontinent: r = 0.54, 1961–2011; eastern: r = 0.50, 1993–2011). Higher Lincoln estimates are predictable given that the geographic scope of inference from Lincoln estimates is the entire population range, whereas sampling frames for aerial surveys are incomplete. Although each estimation method has a number of important potential biases, our review suggests that underestimation of total population size by aerial surveys is the most likely explanation. In addition to providing measures of total abundance, Lincoln's method provides estimates of fecundity and population sex ratio and could be used in integrated population models to provide greater insights about population dynamics and management of North American mallards and most other harvested species. 相似文献
5.
ABSTRACT The validity of treating counts as indices to abundance is based on the assumption that the expected detection probability, E(p), is constant over time or comparison groups or, more realistically, that variation in p is small relative to variation in population size that investigators seek to detect. Unfortunately, reliable estimates of E(p) and var(p) are lacking for most index methods. As a case study, we applied the time‐of‐detection method to temporally replicated (within season) aural counts of crowing male Ring‐necked Pheasants (Phasianus colchicus) at 18 sites in southern Minnesota in 2007 to evaluate the detectability assumptions. More specifically, we used the time‐of‐detection method to estimate E(p) and var(p), and then used these estimates in a Monte Carlo simulation to evaluate bias‐variance tradeoffs associated with adjusting count indices for imperfect detection. The estimated mean detection probability in our case study was 0.533 (SE = 0.030) and estimated spatial variation in E(p) was 0.081 (95% CI: 0.057–0.126). On average, both adjusted (for) and unadjusted counts of crowing males qualitatively described the simulated relationship between pheasant abundance and grassland abundance, but the bias‐variance tradeoff was smaller for adjusted counts (MSE = 0.003 vs. 0.045, respectively). Our case study supports the general recommendation to use, whenever feasible, formal population‐estimation procedures (e.g., mark‐recapture, distance sampling, double sampling) to account for imperfect detection. However, we caution that interpreting estimates of absolute abundance can be complicated, even if formal estimation methods are used. For example, the time‐of‐detection method was useful for evaluating detectability assumptions in our case study and the method could be used to adjust aural count indices for imperfect detection. Conversely, using the time‐of‐detection method to estimate absolute abundances in our case study was problematic because the biological populations and sampling coverage could not be clearly delineated. These estimation and inference challenges may also be important in other avian surveys that involve mobile species (whose home ranges may overlap several sampling sites), temporally replicated counts, and inexact sampling coverage. 相似文献
6.
Population‐level data are urgently needed for amphibians in light of the ongoing amphibian extinction crisis. Studies focused on population dynamics are not only important for rare species but also for common species which shape ecosystems to a greater degree than those that are rare. Some of the greatest global amphibian species diversity is found in Madagascar, yet there are few studies on the ecology of frog species on the island. We carried out a mark‐recapture study on the widespread frog Mantidactylus betsileanus (Mantellidae: Mantellinae: Mantidactylus) at two adjacent rainforest sites in east‐central Madagascar to assess its population size and structure. To do so, we validated and implemented an individual identification protocol using photographs of the ventral patterns of frogs and identified individuals with photographic‐matching software. Using this rapid, non‐invasive survey method, we were able to estimate a density of 26 and 28 frogs per 100 m2 at each of the two sites sampled. Our results show the rainforests near the village of Andasibe, Madagascar support remarkably high amphibian abundance, helping illustrate the significant ecological role of frogs in this ecosystem. Further, individual frog markings allowed us to develop more precise estimates than traditional survey methods. This study provides a blueprint to augment existing population studies or develop new monitoring programs in Madagascar and beyond. 相似文献
7.
Ana D. Davidson Elizabeth A. Hunter Jon Erz David C. Lightfoot Aliya M. McCarthy Jennifer K. Mueller Kevin T. Shoemaker 《Restoration Ecology》2018,26(5):909-920
Prairie dogs (Cynomys spp.) are important ecosystem engineers in North America's central grasslands, and are a key prey base for numerous predators. Prairie dogs have declined dramatically across their former range, prompting reintroduction efforts to restore their populations and ecosystem functions, but the success of these reintroductions is rarely monitored rigorously. Here, we reintroduced 2,400 Gunnison's prairie dogs (C. gunnisoni) over a period of 6 years to the Sevilleta National Wildlife Refuge, in central New Mexico, U.S.A., a semi‐arid grassland ecosystem at the southern edge of their range. We evaluated the population dynamics of prairie dogs following their reintroduction, and their consequent effects on grassland vertebrates. We found postrelease survival of prairie dogs stabilized at levels typical for the species (ca. 50%) after approximately 1 month, while average annual recruitment was ca. 0.35 juveniles per female, well below what was required for a self‐sustaining, stable population. Extreme drought conditions during much of the study period may have contributed to low recruitment. However, recruitment increased steadily over time, indicating that the reintroduced colony may simply need more time to establish in this arid system. We also found well‐known associates of prairie dog colonies, such as American badgers (Taxidea taxus) and burrowing owls (Athene cunicularia), were significantly more common on the colonies than off. After 7 years, we have yet to meet our goal of establishing a self‐sustaining population of Gunnison's prairie dogs in this semi‐arid grassland. But despite the uncertainty and challenges, our work shows that reestablishing keystone species can promote ecosystem restoration. 相似文献
8.
Aaron J. Wirsing Thomas P. Quinn Curry J. Cunningham Jennifer R. Adams Apryle D. Craig Lisette P. Waits 《Ecology and evolution》2018,8(17):9048-9061
The interaction between brown bears (Ursus arctos) and Pacific salmon (Oncorhynchus spp.) is important to the population dynamics of both species and a celebrated example of consumer‐mediated nutrient transport. Yet, much of the site‐specific information we have about the bears in this relationship comes from observations at a few highly visible but unrepresentative locations and a small number of radio‐telemetry studies. Consequently, our understanding of brown bear abundance and behavior at more cryptic locations where they commonly feed on salmon, including small spawning streams, remains limited. We employed a noninvasive genetic approach (barbed wire hair snares) over four summers (2012–2015) to document patterns of brown bear abundance and movement among six spawning streams for sockeye salmon, O. nerka, in southwestern Alaska. The streams were grouped into two trios on opposite sides of Lake Aleknagik. Thus, we predicted that most bears would forage within only one trio during the spawning season because of the energetic costs associated with swimming between them or traveling around the lake and show fidelity to particular trios across years because of the benefits of familiarity with local salmon dynamics and stream characteristics. Huggins closed‐capture models based on encounter histories from genotyped hair samples revealed that as many as 41 individuals visited single streams during the annual 6‐week sampling season. Bears also moved freely among trios of streams but rarely moved between these putative foraging neighborhoods, either during or between years. By implication, even small salmon spawning streams can serve as important resources for brown bears, and consistent use of stream neighborhoods by certain bears may play an important role in spatially structuring coastal bear populations. Our findings also underscore the efficacy of noninvasive hair snagging and genetic analysis for examining bear abundance and movements at relatively fine spatial and temporal scales. 相似文献
9.
Min Wang Xin‐ping Ye Yan‐fang Li Zhi‐ping Huo Xia Li Xiao‐ping Yu 《Restoration Ecology》2017,25(2):261-268
Reintroduction projects aim to reestablish a self‐sustaining population of an endangered species within its historical range. Adequate post‐release monitoring by gathering demographic data is important to evaluate the success of a reintroduction. Survival and reproduction rates of a reintroduced population can be compared with a self‐sustaining wild population to evaluate the success of a reintroduction. In early 2007, Nipponia nippon (Crested Ibis) was reintroduced into the Qinling Mountains (Shaanxi, Central China). In this study, we attempt to evaluate the demographic status of the reintroduced population. Age‐specific survival rates of 56 released adults and 77 wild‐born fledglings were estimated using mark‐recapture data obtained from 2007 to 2014. Survival rates for the yearlings (0.599, with 95% confidence interval [CI]: 0.467–0.719) were lower than the estimates from a wild population in Yangxian County, but the survival rates of the adults (0.678, with 95% CI: 0.603–0.745) were similar. The number of breeding pairs gradually increased since 2008, although breeding success (52.5%) was somewhat less than that of the wild population (67.6%). The stochastic estimation of population growth rate (1.084 with 95% CI: 1.069–1.098) and population size (5‐fold increase) estimated from an age‐classified Leslie matrix indicate that the reintroduced population of the Crested Ibis is more likely in regulation phase over the next 25 years. We conclude that the reintroduction of the Crested Ibis in Qinling Mountains has great promise, and progress toward a self‐sustaining population has been made under some interventions. Governments, local communities, and scientists need to facilitate habitat restoration for the long‐term survival of this endangered species. 相似文献
10.
Sarah Schmid Samuel Neuenschwander Camille Pitteloud Gerald Heckel Mila Pajkovic Raphaël Arlettaz Nadir Alvarez 《Ecology and evolution》2018,8(3):1480-1495
Analyzing genetic variation through time and space is important to identify key evolutionary and ecological processes in populations. However, using contemporary genetic data to infer the dynamics of genetic diversity may be at risk of a bias, as inferences are performed from a set of extant populations, setting aside unavailable, rare, or now extinct lineages. Here, we took advantage of new developments in next‐generation sequencing to analyze the spatial and temporal genetic dynamics of the grasshopper Oedaleus decorus, a steppic Southwestern‐Palearctic species. We applied a recently developed hybridization capture (hyRAD) protocol that allows retrieving orthologous sequences even from degraded DNA characteristic of museum specimens. We identified single nucleotide polymorphisms in 68 historical and 51 modern samples in order to (i) unravel the spatial genetic structure across part of the species distribution and (ii) assess the loss of genetic diversity over the past century in Swiss populations. Our results revealed (i) the presence of three potential glacial refugia spread across the European continent and converging spatially in the Alpine area. In addition, and despite a limited population sample size, our results indicate (ii) a loss of allelic richness in contemporary Swiss populations compared to historical populations, whereas levels of expected heterozygosities were not significantly different. This observation is compatible with an increase in the bottleneck magnitude experienced by central European populations of O. decorus following human‐mediated land‐use change impacting steppic habitats. Our results confirm that application of hyRAD to museum samples produces valuable information to study genetic processes across time and space. 相似文献
11.
Andrew P. Rothstein Roland A. Knapp Gideon S. Bradburd Daniel M. Boiano Cheryl J. Briggs Erica Bree Rosenblum 《Molecular ecology》2020,29(14):2598-2611
Moving animals on a landscape through translocations and reintroductions is an important management tool used in the recovery of endangered species, particularly for the maintenance of population genetic diversity and structure. Management of imperiled amphibian species rely heavily on translocations and reintroductions, especially for species that have been brought to the brink of extinction by habitat loss, introduced species, and disease. One striking example of amphibian declines and associated management efforts is in California's Sequoia and Kings Canyon National Parks with the mountain yellow‐legged frog species complex (Rana sierrae/muscosa). Mountain yellow‐legged frogs have been extirpated from more than 93% of their historic range, and limited knowledge of their population genetics has made long‐term conservation planning difficult. To address this, we used 598 archived skin swabs from both extant and extirpated populations across 48 lake basins to generate a robust Illumina‐based nuclear amplicon data set. We found that samples grouped into three main genetic clusters, concordant with watershed boundaries. We also found evidence for historical gene flow across watershed boundaries with a north‐to‐south axis of migration. Finally, our results indicate that genetic diversity is not significantly different between populations with different disease histories. Our study offers specific management recommendations for imperiled mountain yellow‐legged frogs and, more broadly, provides a population genetic framework for leveraging minimally invasive samples for the conservation of threatened species. 相似文献
12.
Michael J. Evans Tracy A. G. Rittenhouse Jason E. Hawley Paul W. Rego Lori S. Eggert 《Ecology and evolution》2018,8(10):4815-4829
Patterns of human development are shifting from concentrated housing toward sprawled housing intermixed with natural land cover, and wildlife species increasingly persist in close proximity to housing, roads, and other anthropogenic features. These associations can alter population dynamics and evolutionary trajectories. Large carnivores increasingly occupy urban peripheries, yet the ecological consequences for populations established entirely within urban and exurban landscapes are largely unknown. We applied a spatial and landscape genetics approach, using noninvasively collected genetic data, to identify differences in black bear spatial genetic patterns across a rural‐to‐urban gradient and quantify how development affects spatial genetic processes. We quantified differences in black bear dispersal, spatial genetic structure, and migration between differing levels of development within a population primarily occupying areas with >6 houses/km2 in western Connecticut. Increased development disrupted spatial genetic structure, and we found an association between increased housing densities and longer dispersal. We also found evidence that roads limited gene flow among bears in more rural areas, yet had no effect among bears in more developed ones. These results suggest dispersal behavior is condition‐dependent and indicate the potential for landscapes intermixing development and natural land cover to facilitate shifts toward increased dispersal. These changes can affect patterns of range expansion and the phenotypic and genetic composition of surrounding populations. We found evidence that subpopulations occupying more developed landscapes may be sustained by male‐biased immigration, creating potentially detrimental demographic shifts. 相似文献
13.
《Evolutionary Applications》2017,10(9):935-945
Technological and methodological advances have facilitated the use of genetic data to infer census population size (Nc) in natural populations, particularly where traditional mark‐and‐recapture is challenging. The effective number of breeders (Nb) describes how many adults effectively contribute to a cohort and is often correlated with Nc. Predicting Nc from Nb or vice versa in species with overlapping generations has important implications for conservation by permitting (i) estimation of the more difficult to quantify variable and (ii) inferences of Nb/Nc relationships in related species lacking data. We quantitatively synthesized Nb/Nc relationships in three salmonid fishes where sufficient data have recently accumulated. Mixed‐effects models were analysed in which each variable was included as a dependent variable or predictor term (Nb from Nc and vice versa). Species‐dependent Nb/Nc slope estimates were significantly positive in two of three species. Variation in species slopes was likely due to varying life histories and reinforce caution when inferring Nb/Nc from taxonomically related species. Models provided maximum probable estimates for Nb and Nc for two species. However, study, population and year effects explained substantial amounts of variation (39%–57%). Consequently, prediction intervals were wide and included or were close to zero for all population sizes and species; model predictive utility was limited. Cost‐benefit trade‐offs when estimating Nb and/or Nc were also discussed using a real‐world system example. Our findings based on salmonids suggest that no short cuts currently exist when estimating population size and researchers should focus on quantifying the variable of interest or be aware of caveats when inferring the desired variable because of cost or logistics. We caution that the salmonid species examined share life‐history traits that may obscure relationships between Nb and Nc. Sufficient data on other taxa were unavailable; additional research examining Nb/Nc relationships in species with potentially relevant life‐history trait differences (e.g., differing survival curves) is needed. 相似文献
14.
Chris C. R. Smith;Gilia Patterson;Peter L. Ralph;Andrew D. Kern; 《Molecular ecology resources》2024,24(7):e14005
A fundamental goal in population genetics is to understand how variation is arrayed over natural landscapes. From first principles we know that common features such as heterogeneous population densities and barriers to dispersal should shape genetic variation over space, however there are few tools currently available that can deal with these ubiquitous complexities. Geographically referenced single nucleotide polymorphism (SNP) data are increasingly accessible, presenting an opportunity to study genetic variation across geographic space in myriad species. We present a new inference method that uses geo-referenced SNPs and a deep neural network to estimate spatially heterogeneous maps of population density and dispersal rate. Our neural network trains on simulated input and output pairings, where the input consists of genotypes and sampling locations generated from a continuous space population genetic simulator, and the output is a map of the true demographic parameters. We benchmark our tool against existing methods and discuss qualitative differences between the different approaches; in particular, our program is unique because it infers the magnitude of both dispersal and density as well as their variation over the landscape, and it does so using SNP data. Similar methods are constrained to estimating relative migration rates, or require identity-by-descent blocks as input. We applied our tool to empirical data from North American grey wolves, for which it estimated mostly reasonable demographic parameters, but was affected by incomplete spatial sampling. Genetic based methods like ours complement other, direct methods for estimating past and present demography, and we believe will serve as valuable tools for applications in conservation, ecology and evolutionary biology. An open source software package implementing our method is available from https://github.com/kr-colab/mapNN. 相似文献
15.
The effective population size (N(e) ) could be the ideal parameter for monitoring populations of conservation concern as it conveniently summarizes both the evolutionary potential of the population and its sensitivity to genetic stochasticity. However, tracing its change through time is difficult in natural populations. We applied four new methods for estimating N(e) from a single sample of genotypes to trace temporal change in N(e) for bears in the Northern Dinaric Mountains. We genotyped 510 bears using 20 microsatellite loci and determined their age. The samples were organized into cohorts with regard to the year when the animals were born and yearly samples with age categories for every year when they were alive. We used the Estimator by Parentage Assignment (EPA) to directly estimate both N(e) and generation interval for each yearly sample. For cohorts, we estimated the effective number of breeders (N(b) ) using linkage disequilibrium, sibship assignment and approximate Bayesian computation methods and extrapolated these estimates to N(e) using the generation interval. The N(e) estimate by EPA is 276 (183-350 95% CI), meeting the inbreeding-avoidance criterion of N(e) > 50 but short of the long-term minimum viable population goal of N(e) > 500. The results obtained by the other methods are highly consistent with this result, and all indicate a rapid increase in N(e) probably in the late 1990s and early 2000s. The new single-sample approaches to the estimation of N(e) provide efficient means for including N(e) in monitoring frameworks and will be of great importance for future management and conservation. 相似文献
16.
Despite widespread global reports of declining amphibian populations, supporting long‐term census data are few, limiting opportunities to study changes in numbers and survival over time. However, in New Zealand, for the past 25 years (1983–2008), we studied Leiopelma pakeka, a threatened, terrestrial frog that inhabits rocky boulder banks under forest on Maud Island. Using night sampling at least annually on two 12 × 12 m plots, we had 5390 captures of 1000+ individuals, 327 on one plot (grid 1), 751 on the other (grid 2). The mean (±SE) number of frogs found per night was 11.3 (±0.6) on grid 1 and 25.6 (±1.4) on grid 2. We used capture‐recapture models to estimate population size, proportion of animals remaining beneath the surface and survival rate. The mean (±SE) population estimate was 131 (±14.7) frogs on grid 1 and 367 (±38.7) on grid 2. Over 25 years the estimated population increased on grid 1 and fluctuated on grid 2. Some frogs were captured on most sampling visits, others less often, evidently failing to emerge from cover each visit. Using a combination of open and closed population models, we estimated the mean (±SE) proportion remaining underground was 0.63 (±0.12) on grid 1 and 0.53 (±0.07) on grid 2. Our research represents one of the longest‐run population studies of any frog, and we recorded significant longevity, two males reaching 35+ and 37+ years, a female 34+ years. No significant differences occurred between mean annual survival rates of apparent females and males, or between the two sites. The number of toes clipped for individual identification had little influence on the return rate, once the effect of time of first capture was removed. 相似文献
17.
Gompert Z 《Molecular ecology》2012,21(7):1542-1544
Admixture and introgression have varied effects on population viability and fitness. Admixture might be an important source of new alleles, particularly for small, geographically isolated populations. However, admixture might also cause outbreeding depression if populations are adapted to different ecological or climatic conditions. Because of the emerging use of translocation and admixture as a conservation and wildlife management strategy to reduce genetic load (termed genetic rescue), the possible effects of admixture have practical consequences ( Bouzat et al. 2009 ; Hedrick & Fredrickson 2010 ). Importantly, genetic load and local adaptation are properties of individual loci and epistatic interactions among loci rather than properties of genomes. Likewise, the outcome and consequences of genetic rescue depend on the fitness effects of individual introduced alleles. In this issue of Molecular Ecology, Miller et al. (2012) use model‐based, population genomic analyses to document locus‐specific effects of a recent genetic rescue in the bighorn sheep population within the National Bison Range wildlife refuge (NBR; Montana, USA). They find a subset of introduced alleles associated with increased fitness in NBR bighorn sheep, some of which experienced accelerated introgression following their introduction. These loci mark regions of the genome that could constitute the genetic basis of the successful NBR bighorn sheep genetic rescue. Although population genomic analyses are frequently used to study local adaptation and selection (e.g. Hohenlohe et al. 2010 ; Lawniczak et al. 2010 ), this study constitutes a novel application of this analytical framework for wildlife management. Moreover, the detailed demographic data available for the NBR bighorn sheep population provide a rare and powerful source of information and allow more robust population genomic inference than is often possible. 相似文献
18.
Yuhei Tazunoki Kasumi Akashi Sumire Haramoto Akihito Kita Yukari Mochioka Hiroki Matsuda Kazuki Ohta Makoto Tokuda 《Journal of fish biology》2021,99(6):1822-1831
In recent years, the biodiversity of freshwater fishes has been markedly decreasing worldwide because of anthropogenic activities. The Japanese striped loach, Cobitis kaibarai (Cypriniformes: Cobitidae), is a primary freshwater fish endemic to northern Kyushu, Japan. This species is designated as endangered IB class in the Red List by the Japan Ministry of the Environment. Its population is decreasing, possibly because of habitat loss and degradation. To conserve C. kaibarai populations, information on its basic ecology is necessary; nonetheless, its detailed life history and reproductive ecology have yet to be clarified. In this study, the authors conducted monthly capture–mark–recapture surveys and periodical observations to investigate the life history, spawning sites and season of C. kaibarai. They also evaluated the influence of creek reshaping (concrete revetment) on the C. kaibarai population in Saga Plain, northern Kyushu. Between 2015 and 2018, more individuals were captured during winter than summer. The average body width of females peaked in early June and small immatures were confirmed from July. Some individuals were captured across 15 or more months after their initial marking. In the survey of reproductive sites, eggs and larvae of C. kaibarai were found in shallow areas in mid-June; these were temporarily submerged following the increase in water level from early June. Therefore, C. kaibarai spawns in shallow areas during this season. Based on the capture–mark–recapture surveys, the estimated population density of C. kaibarai significantly decreased in a census site that had undergone creek reshaping, which contrasted with the results in a control site, where no significant difference was detected. The standard length of C. kaibarai increased following creek reshaping, suggesting that the proportion of C. kaibarai postponing spawning had increased, possibly because of degradation of spawning environments. The results of this study provide important ecological knowledge for the conservation of C. kaibarai and emphasize the importance of shallow waters for floodplain spawners. 相似文献
19.
Over the past decade, there has been much methodological development for the estimation of abundance and related demographic parameters using mark‐resight data. Often viewed as a less‐invasive and less‐expensive alternative to conventional mark recapture, mark‐resight methods jointly model marked individual encounters and counts of unmarked individuals, and recent extensions accommodate common challenges associated with imperfect detection. When these challenges include both individual detection heterogeneity and an unknown marked sample size, we demonstrate several deficiencies associated with the most widely used mark‐resight models currently implemented in the popular capture‐recapture freeware Program MARK. We propose a composite likelihood solution based on a zero‐inflated Poisson log‐normal model and find the performance of this new estimator to be superior in terms of bias and confidence interval coverage. Under Pollock's robust design, we also extend the models to accommodate individual‐level random effects across sampling occasions as a potentially more realistic alternative to models that assume independence. As a motivating example, we revisit a previous analysis of mark‐resight data for the New Zealand Robin (Petroica australis) and compare inferences from the proposed estimators. For the all‐too‐common situation where encounter rates are low, individual detection heterogeneity is non‐negligible, and the number of marked individuals is unknown, we recommend practitioners use the zero‐inflated Poisson log‐normal mark‐resight estimator as now implemented in Program MARK. 相似文献
20.
Rohan J. C. Currey Stephen M. Dawson Karsten Schneider David Lusseau Oliver J. Boisseau Patti A. Haase Elisabeth Slooten 《Marine Mammal Science》2011,27(3):554-566
We applied temporal symmetry capture–recapture (TSCR) models to assess the strength of evidence for factors potentially responsible for population decline in bottlenose dolphins (Tursiops truncatus) in Doubtful Sound, New Zealand from 1995 to 2008. Model selection was conducted to estimate recruitment and population growth rates. There were similar levels of support for three different models, each reflecting distinct trends in recruitment. Modeling yielded low overall estimates of recruitment (0.0249, 95% CI: 0.0174–0.0324) and population growth rate (0.9642, 95% CI: 0.9546–0.9737). The TSCR rate of population decline was consistent with an estimate derived from trends in abundance (lambda = 0.9632, 95% CI: 0.9599–0.9665). The TSCR model selection confirmed the influence of a decline in the survival of calves (<1 yr old) since 2002 for population trends. However, TSCR population growth rates did not exceed 1 in any year between 1995 and 2008, indicating the population was declining prior to 2002. A separate reduction in juvenile survival (1–3 yr old) prior to 2002 was identified as a likely contributing factor in the population decline. Thus, TSCR modeling indicated the potential cause of the population decline in Doubtful Sound: cumulative impacts on individuals <3 yr old resulting in a reduced recruitment. 相似文献