首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaf senescence is an important physiological process during the plant life cycle. However, systemic studies on the impact of microRNAs (miRNAs) on the expression of senescence‐associated genes (SAGs) are lacking. Besides, whether other Argonaute 1 (AGO1)‐enriched small RNAs (sRNAs) play regulatory roles in leaf senescence remains unclear. In this study, a total of 5,123 and 1,399 AGO1‐enriched sRNAs, excluding miRNAs, were identified in Arabidopsis thaliana and rice (Oryza sativa), respectively. After retrieving SAGs from the Leaf Senescence Database, all of the AGO1‐enriched sRNAs and the miRBase‐registered miRNAs of these two plants were included for target identification. Supported by degradome signatures, 200 regulatory pairs involving 120 AGO1‐enriched sRNAs and 40 SAGs, and 266 regulatory pairs involving 64 miRNAs and 42 SAGs were discovered in Arabidopsis. Moreover, 13 genes predicted to interact with some of the above‐identified target genes at protein level were validated as regulated by 17 AGO1‐enriched sRNAs and ten miRNAs in Arabidopsis. In rice, only one SAG was targeted by three AGO1‐enriched sRNAs, and one SAG was targeted by miR395. However, five AGO1‐enriched sRNAs were conserved between Arabidopsis and rice. Target genes conserved between the two plants were identified for three of the above five sRNAs, pointing to the conserved roles of these regulatory pairs in leaf senescence or other developmental procedures. Novel targets were discovered for three of the five AGO1‐enriched sRNAs in rice, indicating species‐specific functions of these sRNA–target pairs. These results could advance our understanding of the sRNA‐involved molecular processes modulating leaf senescence.  相似文献   

2.
The broad host range necrotrophic fungus Sclerotinia sclerotiorum is a devastating pathogen of many oil and vegetable crops. Plant genes conferring complete resistance against S. sclerotiorum have not been reported. Instead, plant populations challenged by S. sclerotiorum exhibit a continuum of partial resistance designated as quantitative disease resistance (QDR). Because of their complex interplay and their small phenotypic effect, the functional characterization of QDR genes remains limited. How broad host range necrotrophic fungi manipulate plant programmed cell death is for instance largely unknown. Here, we designed a time‐resolved automated disease phenotyping pipeline enabling high‐throughput disease lesion measurement with high resolution, low footprint at low cost. We could accurately recover contrasted disease responses in several pathosystems using this system. We used our phenotyping pipeline to assess the kinetics of disease symptoms caused by seven S. sclerotiorum isolates on six A. thaliana natural accessions with unprecedented resolution. Large effect polymorphisms common to the most resistant A. thaliana accessions identified highly divergent alleles of the nucleotide‐binding site leucine‐rich repeat gene LAZ5 in the resistant accessions Rubezhnoe and Lip‐0. We show that impaired LAZ5 expression in laz5.1 mutant lines and in A. thaliana Rub natural accession correlate with enhanced QDR to S. sclerotiorum. These findings illustrate the value of time‐resolved image‐based phenotyping for unravelling the genetic bases of complex traits such as QDR. Our results suggest that S. sclerotiorum manipulates plant sphingolipid pathways guarded by LAZ5 to trigger programmed cell death and cause disease.  相似文献   

3.
4.
5.
SsITL, a secretory protein of the necrotrophic phytopathogen Sclerotinia sclerotiorum, was previously reported to suppress host immunity at the early stages of infection. However, the molecular mechanism that SsITL uses to inhibit plant defence against S. sclerotiorum has not yet been elucidated. Here, we report that SsITL interacted with a chloroplast-localized calcium-sensing receptor, CAS, in chloroplasts. We found that CAS is a positive regulator of the salicylic acid signalling pathway in plant immunity to S. sclerotiorum and CAS-mediated resistance against S. sclerotiorum depends on Ca2+ signalling. Furthermore, we showed that SsITL could interfere with the plant salicylic acid (SA) signalling pathway and SsITL-expressing transgenic plants were more susceptible to S. sclerotiorum. However, truncated SsITLs (SsITL-NT1 or SsITL-CT1) that lost the ability to interact with CAS do not affect plant resistance to S. sclerotiorum. Taken together, our findings reveal that SsITL inhibits SA accumulation during the early stage of infection by interacting with CAS and then facilitating the infection by S. sclerotiorum.  相似文献   

6.
Small RNAs (sRNAs) play a key role in eukaryotic gene regulation, for example by gene silencing via RNA interference (RNAi). The biogenesis of sRNAs depends on proteins that are generally conserved in all eukaryotic lineages, yet some species that lack part or all the components of the mechanism exist. Here we explored the presence of the RNAi machinery and its expression as well as the occurrence of sRNA candidates and their putative endogenous as well as host targets in phytopathogenic powdery mildew fungi. We focused on the species Blumeria graminis, which occurs in various specialized forms (formae speciales) that each have a strictly limited host range. B. graminis f. sp. hordei and B. graminis f. sp. tritici, colonizing barley and wheat, respectively, have genomes that are characterized by extensive gene loss. Nonetheless, we find that the RNAi machinery appears to be largely complete and expressed during infection. sRNA sequencing data enabled the identification of putative sRNAs in both pathogens. While a considerable part of the sRNA candidates have predicted target sites in endogenous genes and transposable elements, a small proportion appears to have targets in planta, suggesting potential cross-kingdom RNA transfer between powdery mildew fungi and their respective plant hosts.  相似文献   

7.
Non-coding, small RNAs (sRNAs) have been identified in a wide spectrum of organisms ranging from bacteria to humans; however, the role and mechanisms of these sRNA in plant immunity is largely unknown. To determine possible roles of sRNA in plant–pathogen interaction, we carried out a high-throughput sRNA sequencing of Brassica campestris using non-infected plants and plants infected with Erwinia carotovora. Consistent with our hypothesis that distinct classes of host sRNAs alerts their expression levels in response to infection, we found that: (1) host 28-nt sRNAs were strongly increased under pathogen infection; and (2) a group of host sRNAs homologous to the pathogen genome also accumulated at significantly higher level. Our data thus suggest several distinct classes of the host sRNAs may enhance their function by up-regulation of their expression/stability in response to bacterial pathogen challenges.  相似文献   

8.
Sclerotinia sclerotiorum is a devastating pathogen that infects a broad range of host plants. The mechanism underlying plant defence against fungal invasion is still not well characterized. Here, we report that ANGUSTIFOLIA (AN), a CtBP family member, plays a role in the defence against S. sclerotiorum attack. Arabidopsis an mutants exhibited stronger resistance to S. sclerotiorum at the early stage of infection than wild-type plants. Accordingly, an mutants exhibited stronger activation of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) responses, including mitogen-activated protein kinase activation, reactive oxygen species accumulation, callose deposition, and the expression of PTI-responsive genes, upon treatment with PAMPs/microbe-associated molecular patterns. Moreover, Arabidopsis lines overexpressing AN were more susceptible to S. sclerotiorum and showed defective PTI responses. Our luminometry, bimolecular fluorescence complementation, coimmunoprecipitation, and in vitro pull-down assays indicate that AN interacts with allene oxide cyclases (AOC), essential enzymes involved in jasmonic acid (JA) biosynthesis, negatively regulating JA biosynthesis in response to S. sclerotiorum infection. This work reveals AN is a negative regulator of the AOC-mediated JA signalling pathway and PTI activation.  相似文献   

9.
10.
Small RNA (sRNA)‐guided processes, referred to as RNA silencing, regulate endogenous and exogenous gene expression. In plants and some animals, these processes are noncell autonomous and can operate beyond the site of initiation. Viroids, the smallest self‐replicating plant pathogens known, are inducers, targets and evaders of this regulatory mechanism and, consequently, the presence of viroid‐derived sRNAs (vd‐sRNAs) is usually associated with viroid infection. However, the pathways involved in the biogenesis of vd‐sRNAs are largely unknown. Here, we analyse, by high‐throughput pyrosequencing, the profiling of the Hop stunt viroid (HSVd) vd‐sRNAs recovered from the leaves and phloem of infected cucumber (Cucumis sativus) plants. HSVd vd‐sRNAs are mostly 21 and 22 nucleotides in length and derived equally from plus and minus HSVd RNA strands. The widespread distribution of vd‐sRNAs across the genome reveals that the totality of the HSVd RNA genome contributes to the formation of vd‐sRNAs. Our sequence data suggest that viroid‐derived double‐stranded RNA functions as one of the main precursors of vd‐sRNAs. Remarkably, phloem vd‐sRNAs accumulated preferentially as 22‐nucleotide species with a consensus sequence over‐represented. This bias in size and sequence in the HSVd vd‐sRNA population recovered from phloem exudate suggests the existence of a selective trafficking of vd‐sRNAs to the phloem tissue of infected cucumber plants.  相似文献   

11.
Gene silencing exists in eukaryotic organisms as a conserved regulation of the gene expression mechanism. In general, small RNAs (sRNAs) are produced within the eukaryotic cells and incorporated into an RNA-induced silencing complex (RISC) within cells. However, exogenous sRNAs, once delivered into cells, can also silence target genes via the same RISC. Here, we explored this concept by targeting the Cellulose synthase A3 (CesA3) gene of Hyaloperonospora arabidopsidis (Hpa), the downy mildew pathogen of Arabidopsis thaliana. Hpa spore suspensions were mixed with sense or antisense sRNAs and inoculated onto susceptible Arabidopsis seedlings. While sense sRNAs had no obvious effect on Hpa pathogenicity, antisense sRNAs inhibited spore germination and hence infection. Such inhibition of infection was not race-specific, but dependent on the length and capping of sRNAs. Inhibition of infection by double stranded sRNA was more efficient than that observed with antisense sRNA. Thus, exogenous sRNA targeting conserved CesA3 could suppress Hpa infection in Arabidopsis, indicating the potential of this simple and efficient sRNA-based approach for deciphering gene functions in obligate biotrophic pathogens as well as for R-gene independent control of diseases in plants.  相似文献   

12.
13.
14.
Plant secondary metabolites are known to facilitate interactions with a variety of beneficial and detrimental organisms, yet the contribution of specific metabolites to interactions with fungal pathogens is poorly understood. Here we show that, with respect to aliphatic glucosinolate‐derived isothiocyanates, toxicity against the pathogenic ascomycete Sclerotinia sclerotiorum depends on side chain structure. Genes associated with the formation of the secondary metabolites camalexin and glucosinolate were induced in Arabidopsis thaliana leaves challenged with the necrotrophic pathogen S. sclerotiorum. Unlike S. sclerotiorum, the closely related ascomycete Botrytis cinerea was not identified to induce genes associated with aliphatic glucosinolate biosynthesis in pathogen‐challenged leaves. Mutant plant lines deficient in camalexin, indole, or aliphatic glucosinolate biosynthesis were hypersusceptible to S. sclerotiorum, among them the myb28 mutant, which has a regulatory defect resulting in decreased production of long‐chained aliphatic glucosinolates. The antimicrobial activity of aliphatic glucosinolate‐derived isothiocyanates was dependent on side chain elongation and modification, with 8‐methylsulfinyloctyl isothiocyanate being most toxic to S. sclerotiorum. This information is important for microbial associations with cruciferous host plants and for metabolic engineering of pathogen defenses in cruciferous plants that produce short‐chained aliphatic glucosinolates.  相似文献   

15.
16.
Localization of mRNA and small RNAs (sRNAs) is important for understanding their function. Fluorescent in situ hybridization (FISH) has been used extensively in animal systems to study the localization and expression of sRNAs. However, current methods for fluorescent in situ detection of sRNA in plant tissues are less developed. Here we report a protocol (sRNA‐FISH) for efficient fluorescent detection of sRNAs in plants. This protocol is suitable for application in diverse plant species and tissue types. The use of locked nucleic acid probes and antibodies conjugated with different fluorophores allows the detection of two sRNAs in the same sample. Using this method, we have successfully detected the co‐localization of miR2275 and a 24‐nucleotide phased small interfering RNA in maize anther tapetal and archesporial cells. We describe how to overcome the common problem of the wide range of autofluorescence in embedded plant tissue using linear spectral unmixing on a laser scanning confocal microscope. For highly autofluorescent samples, we show that multi‐photon fluorescence excitation microscopy can be used to separate the target sRNA‐FISH signal from background autofluorescence. In contrast to colorimetric in situ hybridization, sRNA‐FISH signals can be imaged using super‐resolution microscopy to examine the subcellular localization of sRNAs. We detected maize miR2275 by super‐resolution structured illumination microscopy and direct stochastic optical reconstruction microscopy. In this study, we describe how we overcame the challenges of adapting FISH for imaging in plant tissue and provide a step‐by‐step sRNA‐FISH protocol for studying sRNAs at the cellular and even subcellular level.  相似文献   

17.
Sclerotinia sclerotiorum infects host plant tissues by inducing necrosis to source nutrients needed for its establishment. Tissue necrosis results from an enhanced generation of reactive oxygen species (ROS) at the site of infection and apoptosis. Pathogens have evolved ROS scavenging mechanisms to withstand host‐induced oxidative damage. However, the genes associated with ROS scavenging pathways are yet to be fully investigated in S. sclerotiorum. We selected the S. sclerotiorum Thioredoxin1 gene (SsTrx1) for our investigations as its expression is significantly induced during S. sclerotiorum infection. RNA interference‐induced silencing of SsTrx1 in S. sclerotiorum affected the hyphal growth rate, mycelial morphology, and sclerotial development under in vitro conditions. These outcomes confirmed the involvement of SsTrx1 in promoting pathogenicity and oxidative stress tolerance of S. sclerotiorum. We next constructed an SsTrx1‐based host‐induced gene silencing (HIGS) vector and mobilized it into Arabidopsis thaliana (HIGS‐A) and Nicotiana benthamiana (HIGS‐N). The disease resistance analysis revealed significantly reduced pathogenicity and disease progression in the transformed genotypes as compared to the nontransformed and empty vector controls. The relative gene expression of SsTrx1 increased under oxidative stress. Taken together, our results show that normal expression of SsTrx1 is crucial for pathogenicity and oxidative stress tolerance of S. sclerotiorum.  相似文献   

18.
Accumulating data have suggested that small RNAs (sRNAs) have important functions in plant responses to pathogen invasion. However, it is largely unknown whether and how sRNAs are involved in the regulation of rice responses to the invasion of Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight, the most devastating bacterial disease of rice worldwide. We performed simultaneous genome-wide analyses of the expression of sRNAs and genes during early defense responses of rice to Xoo mediated by a major disease resistance gene, Xa3/Xa26, which confers durable and race-specific qualitative resistance. A large number of sRNAs and genes showed differential expression in Xa3/Xa26-mediated resistance. These differentially expressed sRNAs include known microRNAs (miRNAs), unreported miRNAs, and small interfering RNAs. The candidate genes, with expression that was negatively correlated with the expression of sRNAs, were identified, indicating that these genes may be regulated by sRNAs in disease resistance in rice. These results provide a new perspective regarding the putative roles of sRNA candidates and their putative target genes in durable disease resistance in rice.  相似文献   

19.
Rapid alkalinization factors(RALFs) in plants have been reported to dampen pathogenassociated molecular pattern(PAMP)-triggered immunity via suppressing PAMP-induced complex formation between the pattern recognition receptor(PRR) and its co-receptor BAK1. However, the direct and positive role of RALFs in plant immunity remains largely unknown. Herein, we report the direct and positive roles of a typical RALF, RALF22, in plant immunity. RALF22alone directly elicited a variety of typical immune re...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号