首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many invertebrates, body size shows genetically based clines, with size increasing in colder climates. Large body size is typically associated with prolonged development times. We consider variation in the CNS‐specific gene neurofibromin 1 (Nf1) and its association with body size and development time. We identified two major Nf1 haplotypes in natural populations, Nf1‐insertion‐A and Nf1‐deletion‐G. These haplotypes are characterized by a 45‐base insertion/deletion (INDEL) in Nf1 intron 2 and an A/G synonymous substitution (locus L17277). Linkage disequilibrium (LD) between the INDEL and adjacent sites is high but appears to be restricted within the Nf1 gene interval. In Australia, the frequency of the Nf1‐insertion‐A haplotype increases with latitude where wing size is larger, independent of the chromosomal inversion In(3R)Payne. Unexpectedly, the Nf1‐insertion‐A haplotype is negatively associated with wing size. We found that the Nf1‐insertion‐A haplotype is enriched in females with shorter development time. This suggests that the Nf1 haplotype cline may be driven by selection for development time rather than size; females from southern (higher latitude) D. melanogaster populations maintain a rapid development time despite being relatively larger, and the higher incidence of Nf1‐insertion‐A in Southern Australia may contribute to this pattern, whereas the effects of the Nf1 haplotypes on size may be countered by other loci with antagonistic effects on size and development time. Our results point to the potential complexity involved in identifying selection on genetic variants exhibiting pleiotropic effects when studies are based on spatial patterns or association studies.  相似文献   

2.
Flowering time is an important factor affecting grain yield in wheat. In this study, we divided reproductive spike development into eight sub‐phases. These sub‐phases have the potential to be delicately manipulated to increase grain yield. We measured 36 traits with regard to sub‐phase durations, determined three grain yield‐related traits in eight field environments and mapped 15 696 single nucleotide polymorphism (SNP, based on 90k Infinium chip and 35k Affymetrix chip) markers in 210 wheat genotypes. Phenotypic and genetic associations between grain yield traits and sub‐phase durations showed significant consistency (Mantel test; = 0.5377, < 0.001). The shared quantitative trait loci (QTLs) revealed by the genome‐wide association study suggested a close association between grain yield and sub‐phase duration, which may be attributed to effects on spikelet initiation/spikelet number (double ridge to terminal spikelet stage, DR‐TS) and assimilate accumulation (green anther to anthesis stage, GA‐AN). Moreover, we observed that the photoperiod‐sensitivity allele at the Ppd‐D1 locus on chromosome 2D markedly extended all sub‐phase durations, which may contribute to its positive effects on grain yield traits. The dwarfing allele at the Rht‐D1 (chromosome 4D) locus altered the sub‐phase duration and displayed positive effects on grain yield traits. Data for 30 selected genotypes (from among the original 210 genotypes) in the field displayed a close association with that from the greenhouse. Most importantly, this study demonstrated specific connections to grain yield in narrower time windows (i.e. the eight sub‐phases), rather than the entire stem elongation phase as a whole.  相似文献   

3.
Winter hardiness is important for the adaptation of wheat to the harsh winter conditions in temperate regions and is thus also an important breeding goal. Here, we employed a panel of 407 European winter wheat cultivars to dissect the genetic architecture of winter hardiness. We show that copy number variation (CNV) of CBF (C‐repeat Binding Factor) genes at the Fr‐A2 locus is the essential component for winter survival, with CBF‐A14 CNV being the most likely causal polymorphism, accounting for 24.3% of the genotypic variance. Genome‐wide association mapping identified several markers in the Fr‐A2 chromosomal region, which even after accounting for the effects of CBF‐A14 copy number explained approximately 15% of the genotypic variance. This suggests that additional, as yet undiscovered, polymorphisms are present at the Fr‐A2 locus. Furthermore, CNV of Vrn‐A1 explained an additional 3.0% of the genotypic variance. The allele frequencies of all loci associated with winter hardiness were found to show geographic patterns consistent with their role in adaptation. Collectively, our results from the candidate gene analysis, association mapping and genome‐wide prediction show that winter hardiness in wheat is a quantitative trait, but with a major contribution of the Fr‐A2 locus.  相似文献   

4.
5.
Genome‐wide association studies have successfully identified over 70 loci associated with the risk of type 2 diabetes mellitus (T2DM) in multiple populations of European ancestry. However, the risk attributable to an individual variant is modest and does not yet provide convincing evidence for clinical utility. Association between these established genetic variants and T2DM in general populations is hitherto understudied in the isolated populations, such as the Uyghurs, resident in Hetian, far southern Xinjiang Uyghur Autonomous Region, China. In this case–control study, we genotyped 13 single‐nucleotide polymorphisms (SNPs) at 10 genes associated with diabetes in 130 cases with T2DM and 135 healthy controls of Uyghur, a Chinese minority ethnic group. Three of the 13 SNPs demonstrated significant association with T2DM in the Uyghur population. There were significant differences between the T2DM patients and controls in the risk allele distributions of rs3792267 (CAPN10) (P = 0.002), rs1501299 (APM1) (P = 0.017), and rs3760776 (FUT6) (P = 0.031). Allelic carriers of rs3792267‐A, rs1501299‐T, and rs3760776‐T had a 2.24‐fold [OR (95% CI): 1.35–3.71], 0.59‐fold [OR (95% CI): 0.39–0.91], 0.57‐fold [OR (95% CI): 0.34–0.95] increased risk for T2DM respectively. We further confirmed that the cumulative risk allelic scores calculated from the 13 susceptibility loci for T2DM differed significantly between the T2DM patients and controls (P = 0.001), and the effect of obesity/overweight on T2DM was only observed in the subjects with a combined risk allelic score under a value of 17. This study observed that the SNPs rs3792267 in CAPN10, rs1501299 in APM1, and rs3760776 in FUT6 might serve as potential susceptible biomarkers for T2DM in Uyghurs. The cumulative risk allelic scores of multiple loci with modest individual effects are also significant risk factors in Uyghurs for T2DM, particularly among non‐obese individuals. This is the first investigation having observed/found genetic variations on genetic loci functionally linked with glycosylation associated with the risk of T2DM in a Uyghur population.  相似文献   

6.
Kernel size is an important trait determining cereal yields. In this study, we cloned and characterized TaDA1, a conserved negative regulator of kernel size in wheat (Triticum aestivum). The overexpression of TaDA1 decreased the size and weight of wheat kernels, while its down‐regulation using RNA interference (RNAi) had the opposite effect. Three TaDA1‐A haplotypes were identified in Chinese wheat core collections, and a haplotype association analysis showed that TaDA1‐A‐HapI was significantly correlated with the production of larger kernels and higher kernel weights in modern Chinese cultivars. The haplotype effect resulted from a difference in TaDA1‐A expression levels between genotypes, with TaDA1‐A‐HapI resulting in lower TaDA1‐A expression levels. This favourable haplotype was found having been positively selected during wheat breeding over the last century. Furthermore, we demonstrated that TaDA1‐A physically interacts with TaGW2‐B. The additive effects of TaDA1‐A and TaGW2‐B on kernel weight were confirmed not only by the phenotypic enhancement arising from the simultaneous down‐regulation of TaDA1 and TaGW2 expression, but also by the combinational haplotype effects estimated from multi‐environment field data from 348 wheat cultivars. A comparative proteome analysis of developing transgenic and wild‐type grains indicated that TaDA1 and TaGW2 are involved in partially overlapping but relatively independent protein regulatory networks. Thus, we have identified an important gene controlling kernel size in wheat and determined its interaction with other genes regulating kernel weight, which could have beneficial applications in wheat breeding.  相似文献   

7.
8.
The objective of this study was to validate the association of significant SNPs identified from a previous genome‐wide association study with carcass weight (CWT) in a commercial Hanwoo population. We genotyped 13 SNPs located on BTA14 in 867 steers from Korea Hanwoo feedlot bulls. Of these 13 SNPs, five SNPs, namely rs29021868, rs110061498, rs109546980, rs42404006 and rs42303720, were found to be significantly associated (< 0.001) with CWT. These five significant markers spanned the 24.3 to 29.4 Mb region of BTA14. The most significant marker (rs29021868) for CWT in this study had a 13.07 kg allele substitution effect and accounted for 2.4% of the additive genetic variance in the commercial Hanwoo population. The SNP marker rs109546980 was found to be significantly associated with both CWT (< 0.001) and eye muscle area (< 0.001) and could potentially be exploited for marker‐assisted selection in Hanwoo cattle. We also genotyped the ss319607402 variation, which maps to intron2 of PLAG1 gene and which is already reported to be associated with height, to identify any significant association with carcass weight; however, no such association was observed in this Hanwoo commercial population.  相似文献   

9.
The POLL locus has been mapped to the centromeric region of bovine chromosome 1 (BTA1) in both taurine breeds and taurine–indicine crosses in an interval of approximately 1 Mb. It has not yet been mapped in pure‐bred zebu cattle. Despite several efforts, neither causative mutations in candidate genes nor a singular diagnostic DNA marker has been identified. In this study, we genotyped a total of 68 Brahman cattle and 20 Hereford cattle informative for the POLL locus for 33 DNA microsatellites, 16 of which we identified de novo from the bovine genome sequence, mapping the POLL locus to the region of the genes IFNAR2 and SYNJ1. The 303‐bp allele of the new microsatellite, CSAFG29, showed strong association with the POLL allele. We then genotyped 855 Brahman cattle for CSAFG29 and confirmed the association between the 303‐bp allele and POLL. To determine whether the same association was found in taurine breeds, we genotyped 334 animals of the Angus, Hereford and Limousin breeds and 376 animals of the Brangus, Droughtmaster and Santa Gertrudis composite taurine–zebu breeds. The association between the 303‐bp allele and POLL was confirmed in these breeds; however, an additional allele (305 bp) was also associated but not fully predictive of POLL. Across the data, CSAFG29 was in sufficient linkage disequilibrium to the POLL allele in Australian Brahman cattle that it could potentially be used as a diagnostic marker in that breed, but this may not be the case in other breeds. Further, we provide confirmatory evidence that the scur phenotype generally occurs in animals that are heterozygous for the POLL allele.  相似文献   

10.
11.
To identify genetic variants in Notch signalling pathway genes that may predict survival of Han Chinese patients with epithelial ovarian cancer (EOC), we analysed a total of 1273 single nucleotide polymorphisms (SNPs) within 75 Notch genes in 480 patients from a published EOC genomewide association study (GWAS). We found that PSEN1 rs165934 and MAML2 rs76032516 were associated with overall survival (OS) of patients by multivariate Cox proportional hazards regression analysis. Specifically, the PSEN1 rs165934 AA genotype was associated with a poorer survival (adjusted hazards ratio [adjHR] = 1.41, 95% CI = 1.07‐1.84, and P = .014), compared with the CC + CA genotype, while MAML2 rs76032516 AA + AC genotypes were associated with a poorer survival (adjHR = 1.58, 95% CI = 1.16‐2.14, P = .004), compared with the CC genotype. The combined analysis of these two SNPs revealed that the death risk increased as the number of unfavourable genotypes increased in a dose‐dependent manner (Ptrend < .001). Additionally, the expression quantitative trait loci analysis revealed that the SNP rs165932 in the rs165934 LD block (r2 = .946) was associated with expression levels of PSEN1, which might be responsible for the observed association with SNP rs165934. The associations of PSEN1 rs165934 and MAML2 rs76032516 of the Notch signalling pathway genes with OS in Chinese EOC patients are novel findings, which need to be validated in other large and independent studies.  相似文献   

12.
Numerous single nucleotide polymorphisms (SNPs), which have been identified as susceptibility factors for Parkinson's disease (PD) as per genome‐wide association studies, have not been fully characterized for PD patients in China. This study aimed to replicate the relationship between 12 novel SNPs of 12 genes and PD risk in southern Chinese population. Twelve SNPs of 12 genes were detected in 231 PD patients and 249 controls, using the SNaPshot technique. Meta‐analysis was used to assess heterogeneity of effect sizes between this study and published data. The impact of SNPs on gene expression was investigated by analysing the SNP‐gene association in the expression quantitative trait loci (eQTL) data sets. rs8180209 of SNCA (allele model: P = .047, OR = 0.77; additive model: P = .047, OR = 0.77), rs2270968 of MCCC1 (dominant model: P = .024, OR = 1.52), rs7479949 of DLG2 (recessive model; P = .019, OR = 1.52), rs10748818 of GBF1 (additive model: P < .001, OR = 0.37), and rs4771268 of MBNL2 (recessive model: P = .003, OR = 0.48) were replicated to be significantly associated with the increased risk of PD. Noteworthy, a meta‐analysis of previous studies suggested rs8180209, rs2270968, rs7479949 and rs4771268 were in line with those of our cohort. Our study replicated five novel functional SNPs in SNCA, MCCC1, DLG2, GBF1 and MBNL2 could be associated with increased risk of PD in southern Chinese population.  相似文献   

13.
This study was aimed to explore the correlation of intercellular adhesion molecule‐1 (ICAM‐1) K469E and megakaryoblastic leukaemia factor‐1 (MKL‐1) ?184C/T polymorphisms with the susceptibility to coronary heart disease (CHD) in the Chinese Han population. 100 CHD patients and 91 healthy people that had no blood connection with each other were enrolled in this case‐control study. ICAM‐1 and MKL‐1 polymorphisms were genotyped by polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) approach. Multiple logistic regression was used to analyse the correlation between polymorphisms of ICAM‐1 and MKL‐1 and CHD susceptibility. Differences of genotype and allele frequencies of the two SNPs between case and control groups were analysed by chi‐square test. Odds ratios (ORs) and 95% confidence intervals (CIs) were indicated relative susceptibility of CHD. The distributions of ICAM‐1 and MKL‐1 polymorphisms in each group conformed to Hardy‐Weinberg equilibrium (HWE). After adjusting for traditional risk factors, the TT genotype frequency of MKL‐1 ?184C/T polymorphism was found significantly higher in case group than in control group (P < .05). Meanwhile, T allele frequency increased in case group compared with control group, and the differences had statistical significance (P = .04, OR = 2.34, 95% CI = 1.34‐5.26). Logistic regression analysis in this study proved that smoking, hypertension, diabetes and triglyceride (TG) were all risk factors for CHD ICAM‐1 K469E polymorphism has no association with the onset of CHD. But MKL‐1 ?184C/T polymorphism is associated with the risk of CHD and T allele might be a susceptibility factor for CHD.  相似文献   

14.
Auxin plays a pivotal role in many facets of plant development. It acts by inducing the interaction between auxin‐responsive [auxin (AUX)/indole‐3‐acetic acid (IAA)] proteins and the ubiquitin protein ligase SCFTIR to promote the degradation of the AUX/IAA proteins. Other cofactors and chaperones that participate in auxin signaling remain to be identified. Here, we characterized rice (Oryza sativa) plants with mutations in a cyclophilin gene (OsCYP2). cyp2 mutants showed defects in auxin responses and exhibited a variety of auxin‐related growth defects in the root. In cyp2 mutants, lateral root initiation was blocked after nuclear migration but before the first anticlinal division of the pericycle cell. Yeast two‐hybrid and in vitro pull‐down results revealed an association between OsCYP2 and the co‐chaperone Suppressor of G2 allele of skp1 (OsSGT1). Luciferase complementation imaging assays further supported this interaction. Similar to previous findings in an Arabidopsis thaliana SGT1 mutant (atsgt1b), degradation of AUX/IAA proteins was retarded in cyp2 mutants treated with exogenous 1‐naphthylacetic acid. Our results suggest that OsCYP2 participates in auxin signal transduction by interacting with OsSGT1.  相似文献   

15.
Ethnic Han Chinese are at high risk of developing oesophageal squamous cell carcinoma (ESCC). Aberrant activation of the AKT signalling pathway is involved in many cancers, including ESCC. Some single nucleotide polymorphisms (SNPs) in genes involved in this pathway may contribute to ESCC susceptibility. We selected five potentially functional SNPs in AKT1 (rs2494750, rs2494752 and rs10138277) and AKT2 (rs7254617 and rs2304186) genes and investigated their associations with ESCC risk in 1117 ESCC cases and 1096 controls in an Eastern Chinese population. None of individual SNPs exhibited an association with ESCC risk. However, the combined analysis of three AKT1 SNPs suggested that individuals carrying one of AKT1 variant genotypes had a decreased ESCC risk [adjusted odds ratio (OR) = 0.60, 95% CI = 0.42–0.87]. Further stratified analysis found that AKT1 rs2294750 SNP was associated with significantly decreased ESCC risk among women (adjusted OR = 0.63, 95% CI = 0.43–0.94) and non‐drinkers (OR = 0.79, 95% CI = 0.64–0.99). Similar protective effects on women (adjusted OR = 0.56, 95% CI = 0.37–0.83) and non‐drinker (adjusted OR = 0.75, 95% CI = 0.60–0.94) were also observed for the combined genotypes of AKT1 SNPs. Consistently, logistic regression analysis indicated significant gene–gene interactions among three AKT1 SNPs (P < 0.015). A three‐AKT1 SNP haplotype (C‐A‐C) showed a significant association with a decreased ESCC risk (adjusted OR = 0.70, 95% CI = 0.52–0.94). Multifactor dimensionality reduction analysis confirmed a high‐order gene–environment interaction in ESCC risk. Overall, we found that three AKT1 SNPs might confer protection against ESCC risk; nevertheless, these effects may be dependent on other risk factors. Our results provided evidence of important gene–environment interplay in ESCC carcinogenesis.  相似文献   

16.
17.
Intermuscular fat content in protected designations of origin dry‐cured hams is a very important meat quality trait that affects the acceptability of the product by the consumers. An excess in intermuscular fat (defined as the level of fat deposition between leg muscles) is a defect that depreciates the final product. In this study we carried out a genome‐wide association study for visible intermuscular fat (VIF) of hams in the Italian Large White pig breed. This trait was evaluated on the exposed muscles of green legs in 1122 performance‐tested gilts by trained personnel, according to a classification scale useful for routine and cheap evaluation. All animals were genotyped with the Illumina PorcineSNP60 BeadChip. The genome‐wide association study identified three QTL regions on porcine chromosome 1 (SSC1; accounting for ~79% of the SNPs below the 5.0E?04 threshold) and SSC2, two on SSC7 and one each on SSC3, SSC6, SSC9, SSC11, SSC13, SSC15, SSC16 and SSC17. The most significant SNP (ALGA0004143 on SSC1 at 77.3 Mb; PFDR < 0.05), included in the largest QTL region which spanned about 6.8 Mb on SSC1, is located within the glutamate ionotropic receptor kainate type subunit 2 (GRIK2) gene. Functional annotation of all genes included in QTL regions for VIF suggested that intermuscular fat in the Italian Large White breed is a complex trait apparently influenced by complex biological mechanisms also involving obesity‐related processes. These QTL target mainly chromosome regions different from those affecting subcutaneous and intramuscular fat deposition.  相似文献   

18.
Considerable diversity exists in porcine ear size, which is an important morphological feature of pig breeds. Previously, we localized four crucial candidate genes—high mobility group AT‐hook 2 (HMGA2), LEM domain‐containing 3 (LEMD3), methionine sulfoxide reductase B3 (MSRB3) and Wnt inhibitory factor 1 (WIF1)—on Sus Scrofa chromosome 5 affecting porcine ear size, then cloned LEMD3 and MSBR3. In this study, we performed rapid amplification of cDNA ends to obtain full‐length cDNA sequences of 2338‐bp WIF1 and 2998‐bp HMGA2. Using quantitative real‐time PCR, we revealed that WIF1 expression was highest in ear cartilage of 60‐day‐old pigs and that this is therefore a better candidate gene for ear size than HMGA2. We further screened coding sequence variants in both genes and identified only one missense mutation (WIF1:c.1167C>G) in a conserved epidermal growth factor‐like domain from the mammalian WIF1 protein. The protein‐altering mutation was significantly associated with ear size across the Large White × Minzhu hybrid and Beijing Black pig populations. When WIF1:c.1167C>G was included as fixed effect in the model to re‐run a genome‐wide association study in the Large White × Minzhu intercross population the P‐value of the peak SNP on SSC5 from re‐running the genome‐wide association study dropped from 2.45E‐12 to 7.33E‐05. Taken together, the WIF1:c.1167C>G could be an important mutation associated with ear size. Our findings provide helpful information for further studies of the molecular mechanisms controlling porcine ear size.  相似文献   

19.
The biotransformations of cholic acid ( 1a ), deoxycholic acid ( 1b ), and hyodeoxycholic acid ( 1c ) to bendigoles and other metabolites with bacteria isolated from the rural slaughterhouse of Cayambe (Pichincha Province, Ecuador) were reported. The more active strains were characterized, and belong to the genera Pseudomonas and Rhodococcus. Various biotransformation products were obtained depending on bacteria and substrates. Cholic acid ( 1a ) afforded the 3‐oxo and 3‐oxo‐4‐ene derivatives 2a and 3a (45% and 45%, resp.) with Pmendocina ECS10, 3,12‐dioxo‐4‐ene derivative 4a (60%) with Rherythropolis ECS25, and 9,10‐secosteroid 6 (15%) with Rherythropolis ECS12. Bendigole F ( 5a ) was obtained in 20% with Pfragi ECS22. Deoxycholic acid ( 1b ) gave 3‐oxo derivative 2b with Pprosekii ECS1 and Rherythropolis ECS25 (20% and 61%, resp.), while 3‐oxo‐4‐ene derivative 3b was obtained with Pprosekii ECS1 and Pmendocina ECS10 (22% and 95%, resp.). Moreover, P. fragi ECS9 afforded bendigole A ( 8b ; 80%). Finally, P. mendocina ECS10 biotransformed hyodeoxycholic acid ( 1c ) to 3‐oxo derivative 2c (50%) and Rherythropolis ECS12 to 6α‐hydroxy‐3‐oxo‐23,24‐dinor‐5β‐cholan‐22‐oic acid ( 9c , 66%). Bendigole G ( 5c ; 13%) with Pprosekii ECS1 and bendigole H ( 8c ) with Pprosekii ECS1 and Rherythropolis ECS12 (20% and 16%, resp.) were obtained.  相似文献   

20.
Both insufficient and excessive male inflorescence size leads to a reduction in maize yield. Knowledge of the genetic architecture of male inflorescence is essential to achieve the optimum inflorescence size for maize breeding. In this study, we used approximately eight thousand inbreds, including both linkage populations and association populations, to dissect the genetic architecture of male inflorescence. The linkage populations include 25 families developed in the U.S. and 11 families developed in China. Each family contains approximately 200 recombinant inbred lines (RILs). The association populations include approximately 1000 diverse lines from the U.S. and China. All inbreds were genotyped by either sequencing or microarray. Inflorescence size was measured as the tassel primary branch number (TBN) and tassel length (TL). A total of 125 quantitative trait loci (QTLs) were identified (63 for TBN, 62 for TL) through linkage analyses. In addition, 965 quantitative trait nucleotides (QTNs) were identified through genomewide study (GWAS) at a bootstrap posterior probability (BPP) above a 5% threshold. These QTLs/QTNs include 24 known genes that were cloned using mutants, for example Ramosa3 (ra3), Thick tassel dwarf1 (td1), tasselseed2 (ts2), liguleless2 (lg2), ramosa1 (ra1), barren stalk1 (ba1), branch silkless1 (bd1) and tasselseed6 (ts6). The newly identified genes encode a zinc transporter (e.g. GRMZM5G838098 and GRMZM2G047762), the adapt in terminal region protein (e.g. GRMZM5G885628), O‐methyl‐transferase (e.g. GRMZM2G147491), helix‐loop‐helix (HLH) DNA‐binding proteins (e.g. GRMZM2G414252 and GRMZM2G042895) and an SBP‐box protein (e.g. GRMZM2G058588). These results provide extensive genetic information to dissect the genetic architecture of inflorescence size for the improvement of maize yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号