首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wireless electric energy transmission is an important energy supply technology. However, most wireless energy supply based on electromagnetic induction cannot be used for energy transmission through a metal chamber. Herein, a novel idea for wireless electric energy transmission through various isolated solid media based on triboelectric nanogenerator (TENG) is presented. The electric energy is first transformed into mechanical vibration energy in mechanical wave that can propagate well in solid medium, and then the vibration energy is harvested by a TENG. By employing the spring steel sheets and freestanding triboelectric‐layer structure, the vibration TENG as an energy conversion unit has the advantages of high efficiency and facilitation, boosting this wireless energy transmission technology to be an alternative way of delivering electric energy through metal medium. The working principle and output performance have been systematically studied. A commercial capacitor can be charged from 0 to 10 V in 33 and 86 s isolated by an acrylic plate and a copper plate in thickness of 3 mm, respectively. The wireless electric transmission technology is also applied to deliver electric energy into a vacuum glove box and across glass wall successfully. This novel technology has great potential applications in implantable microelectronic devices, encrypted wireless communication, and even nondestructive testing.  相似文献   

2.
Blue energy harvested from the ocean is an important and promising renewable energy for the sustainable development of society. Triboelectric nanogenerators (TENGs) are considered one of the most promising approaches for harvesting blue energy. In this work, a liquid–solid‐contact triboelectric nanogenerator (LS TENG) is fabricated to enhance the friction and magnify energy output by 48.7 times, when compared with the solid–solid‐contact TENG with the same area. The buoy‐like LS TENG can harvest energy from different types of low‐frequency vibration (including up–down, shaking, and rotation movements). Moreover, the outputs of the LS TENGs network can reach 290 µA, 16 725 nC, and 300 V, and the LS TENGs network can directly power hundreds of LEDs and drive a radio frequency emitter to form a self‐powered wireless save our souls (SOS) system for ocean emergencies. This work renders an innovative and effective approach toward large‐scale blue energy harvesting and applications.  相似文献   

3.
Vibrations in living environments are generally distributed over a wide frequency spectrum and exhibit multiple motion directions over time, which renders most of the current vibration energy harvesters unpractical for their harvesting purposes. Here, a 3D triboelectric nanogenerator (3D‐TENG) is designed based on the coupling of the triboelectrification effect and the electrostatic induction effect. The 3D‐TENG operates in a hybridization mode of conjuntioning the vertical contact‐separation mode and the in‐plane sliding mode. The innovative design facilitates harvesting random vibrational energy in multiple directions over a wide bandwidth. An analytical model is established to investigate the mechano‐triboelectric transduction of 3D‐TENG and the results agree well with experimental data. The 3D‐TENG is able to harvest ambient vibrations with an extremely wide working bandwidth. Maximum power densities of 1.35 W m‐2 and 1.45 W m‐2 are achieved under out‐of‐plane and in‐plane excitation, respectively. The 3D TENG is designed for harvesting ambient vibration energy, especially at low frequencies, under a range of conditions in daily life and has potential applications in environmental/infrastructure monitoring and charging portable electronics.  相似文献   

4.
Vibration is a common mechanical phenomenon and possesses mechanical energy in ambient environment, which can serve as a sustainable source of power for equipment and devices if it can be effectively collected. In the present work, a novel soft and robust triboelectric nanogenerator (TENG) made of a silicone rubber‐spring helical structure with nanocomposite‐based elastomeric electrodes is proposed. Such a spring based TENG (S‐TENG) structure operates in the contact‐separation mode upon vibrating and can effectively convert mechanical energy from ambient excitation into electrical energy. The two fundamental vibration modes resulting from the vertical and horizontal excitation are analyzed theoretically, numerically, and experimentally. Under the resonant states of the S‐TENG, its peak power density is found to be 240 and 45 mW m?2 with an external load of 10 MΩ and an acceleration amplitude of 23 m s?2. Additionally, the dependence of the S‐TENG's output signal on the ambient excitation can be used as a prime self‐powered active vibration sensor that can be applied to monitor the acceleration and frequency of the ambient excitation. Therefore, the newly designed S‐TENG has a great potential in harvesting arbitrary directional vibration energy and serving as a self‐powered vibration sensor.  相似文献   

5.
Vibration in mechanical equipment can serve as a sustainable energy source to power sensors and devices if it can be effectively collected. In this work, a honeycomb structure inspired triboelectric nanogenerator (HSI‐TENG) consisting of two copper electrode layers with sponge bases and one honeycomb frame filled with polytetrafluoroethylene (PTFE) balls is proposed to harvest vibration energy. The application of a compact honeycomb structure increases the maximum power density of HSI‐TENG by 43.2% compared to the square grid structure and provides superior advantages in large‐scale manufacturing. More importantly, the nonspring‐assisted HSI‐TENG can generate electricity once the PTFE balls obtain sufficient kinetic energy to separate from the bottom electrode layer regardless of the vibration frequency and direction. This is fundamentally different from the spring‐assisted harvesters that can only work around their natural frequencies. The vibration model and working criteria of the HSI‐TENG are established. Furthermore, the HSI‐TENG is successfully used to serve as a self‐powered sensor to monitor engine conditions by analyzing the electrical output of the HSI‐TENG installed on a diesel engine. Therefore, the nonspring‐assisted HSI‐TENG provides a novel strategy for highly effective vibration energy harvesting and self‐powered machinery monitoring.  相似文献   

6.
Energy and the environment are two of the main issues facing the world today. As a consequence abundant renewable green energy sources such as wave energy, have become hot topics. Here, a multiple‐frequency triboelectric nanogenerator based on the water balloon (WB‐TENG) is proposed for harvesting water wave energy in any direction. Owing to the high elasticity of the water balloon, the WB‐TENG can realize a multiple‐frequency response to low‐frequency external mechanical simulations to generate high‐frequency electrical output. In addition, the water balloon can achieve self‐support without any additional supporting structure because of its tension, to make WB‐TENG still produce electrical output under slight vibration, which can also bring high energy conversion efficiency. Moreover, the fabricated WB‐TENG generates a maximum instantaneous short‐circuit current and an open‐circuit voltage of 147 µA and 1221 V, respectively. Most noteworthy, under the same conditions, the total transferred charge of WB‐TENG is 28 times than that of traditional TENG based on double plate structure during one working cycle. Therefore, this design can provide an effective way to promote the development of TENGs in blue energy.  相似文献   

7.
Packaging is a critical aspect of triboelectric nanogenerators (TENG) toward practical applications, since the performance of TENG is greatly affected by environmental conditions such as humidity. A waterproof triboelectric–electromagnetic hybrid generator (WPHG) for harvesting mechanical energy in harsh environments is reported. Since the mechanical transmission from the external mechanical source to the TENG is through a noncontact force between the paired magnets, a fully isolated packaging of TENG part can be easily achieved. At the same time, combining with metal coils, these magnets can be fabricated to be electromagnetic generators (EMG). The characteristics and advantages of outputs from both TENG and EMG are systematically studied and compared to each other. By using transformers and full‐wave rectifiers, 2.3 mA for total short‐circuit current and 5 V for open‐circuit voltage are obtained for WPHG under a rotation speed of 1600 rpm, and it can charge a supercapacitor (20 mF) to 1 V in 22s. Finally, the WPHG is demonstrated to harvest wind energy in the rainy condition and water‐flow energy under water. The reported WPHG renders an effective and sustainable technology for ambient mechanical energy harvesting in harsh environments. Solid progress in both the packaging of TENG and the practical applications of the hybrid generator toward practical power source and self‐powered systems is presented.  相似文献   

8.
The emergence of stretchable textile‐based mechanical energy harvester and self‐powered active sensor brings a new life for wearable functional electronics. However, single energy conversion mode and weak sensing capabilities have largely hindered their development. Here, in virtue of silver‐coated nylon yarn and silicone rubber elastomer, a highly stretchable yarn‐based triboelectric nanogenerator (TENG) with coaxial core–sheath and built‐in spring‐like spiral winding structures is designed for biomechanical energy harvesting and real‐time human‐interactive sensing. Based on the two advanced structural designs, the yarn‐based TENG can effectively harvest or respond rapidly to omnifarious external mechanical stimuli, such as compressing, stretching, bending, and twisting. With these excellent performances, the yarn‐based TENG can be used in a self‐counting skipping rope, a self‐powered gesture‐recognizing glove, and a real‐time golf scoring system. Furthermore, the yarn‐based TENG can also be woven into a large‐area energy‐harvesting fabric, which is capable of lighting up light emitting diodes (LEDs), charging a commercial capacitor, powering a smart watch, and integrating the four operational modes of TENGs together. This work provides a new direction for textile‐based multimode mechanical energy harvesters and highly sensitive self‐powered motion sensors with potential applications in sustainable power supplies, self‐powered wearable electronics, personalized motion/health monitoring, and real‐time human‐machine interactions.  相似文献   

9.
This paper presents a fully enclosed duck‐shaped triboelectric nanogenerator (TENG) for effectively scavenging energy from random and low‐frequency water waves. The design of the TENG incorporates the freestanding rolling mode and the pitch motion of a duck‐shaped structure generated by incident waves. By investigating the material and structural features, a unit of the TENG device is successfully designed. Furthermore, a hybrid system is constructed using three units of the TENG device. The hybrid system achieves an instantaneous peak current of 65.5 µA with an instantaneous output power density of up to 1.366 W m?2. Following the design, a fluid–solid interaction analysis is carried out on one duck‐shaped TENG to understand the dynamic behavior, mechanical efficiency, and stability of the device under various water wave conditions. In addition, the hybrid system is experimentally tested to enable a commercial wireless temperature sensor node. In summary, the unique duck‐shaped TENG shows a simple, cost‐effective, environmentally friendly, light‐weight, and highly stable system. The newly designed TENG is promising for building a network of generators to harvest existing blue energy in oceans, lakes, and rivers.  相似文献   

10.
With the advantages of its light weight, low cost, and high efficiency especially at low operation frequency, the triboelectric nanogenerator (TENG) is considered to be a potential solution for self‐powered sensor networks and large‐scale renewable blue energy. However, the conventional TENG converts mechanical energy into electrical energy only via either electrostatic induction or electrostatic breakdown. Here, a novel dual‐mode TENG is presented, which can simultaneously harvest mechanical energy by electrostatic induction and dielectric breakdown in a single device. Based on the complementary working mechanism, it achieves a great improvement in the output performance with the sum of two TENGs via a single mechanism and reveals the effect of dielectric layer thickness on the triboelectrification, electrostatic induction, and air breakdown. This study establishes a new methodology to optimize TENGs and provides a new tool to investigate the triboelectrification, electrostatic induction and dielectric breakdown simultaneously.  相似文献   

11.
With the development of the Internet of Things (IoTs), widely distributed electronics in the environment require effective in situ energy harvesting technologies, which is made challenging by the unstable supply and severe conditions in some environments. In this work, a hybrid all‐in‐one power source (AoPS) is demonstrated for widely adaptive environmental energy harvesting. With a novel structure, the AoPS hybridizes high‐performance spherical triboelectric nanogenerators (TENGs) with solar cells, enabling the harvesting of most typical environmental energies from wind, rain drops, and sun light, for complementary supply. The spherical TENG units with a packaged structure can work robustly to collect energy from fluid. Nearly continuous direct current and a high average power of 5.63 mW can be obtained by four TENG units, which is further complemented by solar cells. Typical application scenarios are also demonstrated, achieving self‐powered soil moisture control, forest fire prevention and pipeline monitoring. The work realizes the concept of an environmental power source that can be deployed in the environment with high adaptability to make use of all kinds of surrounding energies for powering electronics in all‐weather conditions, providing a reliable foundation for the era of the IoTs.  相似文献   

12.
Triboelectric nanogenerator (TENG) has been considered to be a more effective technology to harvest various types of mechanic vibration energies such as wind energy, water energy in the blue energy, and so on. Considering the vast energy from the blue oceans, harvesting of the water energy has attracted huge attention. There are two major types of “mechanical” water energy, water wave energy in random direction and water flow kinetic energy. However, although the most reported TENG can be used to efficiently harvest one type of water energy, to simultaneously collect two or more types of such energy still remains challenging. In this work, two different freestanding, multifunctional TENGs are successfully developed that can be used to harvest three types of energies including water waves, air flowing, and water flowing. These two new TENGs designed in accordance with the same freestanding model yield the output voltages of 490 and ≈100 V with short circuit currents of 24 and 2.7 µA, respectively, when operated at a rotation frequency of 200 rpm and the movement frequency of 3 Hz. Moreover, the developed multifunctional TENG can also be explored as a self‐powered speed sensor of wind by correlating the short‐circuit current with the wind speed.  相似文献   

13.
Water wave energy is a promising renewable energy source that may alleviate the rising concerns over current resource depletion, but it is rarely exploited due to the lack of efficient energy harvesting technologies. In this work, a hybrid system with a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) based on an optimized inner topological structure is reported to effectively harvest water wave energy. The TENG with etched polytetrafluoroethylene films and Cu electrodes utilizing the contact‐freestanding mode is designed into a cubic structure, in which the EMG is well hybridized. An integration of TENG and EMG achieves mutual compensation of their own merits, enabling the hybrid system to deliver satisfactory output over a broad range of operation frequency. The output performance of TENG with varied inner topological structures is experimentally and theoretically compared, and a concept is proposed to further clarify the energy conversion efficiency, which should be considered in designing energy harvesting devices. The influences of oscillation frequency, amplitude, and dielectric materials on the output performance of the hybrid system are comprehensively studied on different platforms. Furthermore, the optimum operation frequency ranges for TENG and EMG are concluded. The proposed hybrid nanogenerator renders an effective approach toward large‐scale blue energy harvesting over a broad frequency range.  相似文献   

14.
By harvesting the flowing kinetic energy of water using a rotating triboelectric nanogenerator (R‐TENG), this study demonstrates a self‐powered wastewater treatment system that simultaneously removes rhodamine B (RhB) and copper ions through an advanced electrochemical unit. With the electricity generated by R‐TENG, the removal efficiency (RE) of RhB can reach the vicinity of 100% within just 15 min when the initial concentration of RhB is around 100 ppm at optimized conditions. The removal efficiency of copper ions can reach 97.3% after 3 h within an initial concentration of 150 ppm at an optimized condition. Importantly, a better performance and higher treating efficiency are found by using the pulsed output of R‐TENG than those using direct current (DC) supply for pollutant removal when consuming equal amount of energy. The recovered copper layer on the cathode through R‐TENG is much denser, more uniform, and with smaller grain size (d = 20 nm) than those produced by DC process, which also hints at very promising applications of the R‐TENG in electroplating industry. In light of the merits such as easy portability, low cost, and effectiveness, this R‐TENG‐based self‐powered electrochemical system holds great potential in wastewater treatment and electroplating industry.  相似文献   

15.
In this work, a sponge structure triboelectric nanogenerator (TENG) named as porous conductive polymer (PCP)‐TENG, is demonstrated. The measured volume charge density of PCP‐TENG is reached to 60 mC m?3 by utilizing wide inner surface of the sponge structure as contact surface. Moreover, the PCP‐TENG generates a continuous sinusoidal‐like alternative current. Notably, the PCP‐TENG can effectively harvest vibrational mechanical energy from various directions and amplitudes. With these characteristics, the PCP‐TENG can be implemented in a wide variety of settings, such as inside of a tire. It is confirmed that the PCP‐TENG generates electrical power for operating a commercial light‐emitting diode and a humidity sensor even under small deformation of the tire.  相似文献   

16.
Material abrasion in contact‐based freestanding mode‐triboelectric nanogenerators (FS‐TENGs) seriously deteriorates device mechanical durability and electrical stability, which causes TENGs to be only applicable in the harvesting of mechanical energy at low‐frequency. Here, a wide‐frequency and ultra‐robust rotational TENG is reported that is composed of a built‐in traction rope structure and capable of transforming from contact mode to non‐contact mode automatically as driven by the centrifugal force. With optimizing the fixed x and y position on slider and center shaft, respectively, the mode transition threshold speed can be reduced to 225 rpm. Additionally, the automatic working mode transition TENG exhibits excellent electrical stability, which can maintain 90% electric output after over 24 h of continuous operation, while the contact and non‐contact mode TENGs only retain 30% and 2% output, respectively. The high stability and large output density ensure its usage in the fast and effective charging of commercial capacitors or electronics. This work provides a prospective strategy for rotational TENGs to extend the frequency operation region and mechanical durability for practical applications.  相似文献   

17.
The triboelectric nanogenerator (TENG) offers a simple and cost‐effective method to harness waste energy and works on the principle of contact electrification and electrostatic induction. The performance and application of TENG depend to a great extent on the material used for fabrication. The most widely used materials include polymers and a few metals, well‐arranged in the triboelectric series so as to promote electrification upon contact. New triboelectric materials are important for extending the applications and specificity of the TENG. A TENG based on a metal–organic framework (MOF) of the zeolitic imidazole family is reported here. The zeolitic imidazole framework‐8 (ZIF‐8) and Kapton are used as the active materials for MOF–TENG fabrication. Surface potential, structural, morphological and electrical measurements reveals detailed characteristics of ZIF‐8, confirming the MOF as a potential candidate for TENG applications. The MOF–TENG generates a sustainable output of 164 V and 7 µA in vertical contact–separation mode. Finally, a self‐powered UV counterfeit system and a tetracycline sensor are successfully developed and demonstrated with the MOF–TENG. The sensor is highly selective and reusable simply by washing.  相似文献   

18.
Triboelectric nanogenerators (TENGs) provide one of the most promising techniques for large‐scale blue energy harvesting. However, lack of reasonable designs has largely hindered TENG from harvesting energy from both rough and tranquil seas. In this paper, an oblate spheroidal TENG assembled by two novel TENG parts is elaborately designed for both situations. The TENG in the upper part is based on spring steel plates without other substrate materials, which makes it possible to output considerable power in rough seas and occupy small space. The TENG in the lower part consists of two copper‐coated polymer films and a rolling ball which can capture small wave energy from tranquil seas. The working mechanism and output performance are systematically studied. A maximum open‐circuit voltage of 281 V and a short‐circuit current of 76 µA can be achieved by one upper part, enough to charge a commercial capacitor for potential applications. More important, the proposed oblate spheroidal shell not only guarantees high sensitivity of the TENG in the lower part, but also qualifies the TENG with unique self‐stabilization and low consumables for the next generation of TENGs with new structural design toward all‐weather blue energy harvesting.  相似文献   

19.
Water waves are increasingly regarded as a promising source for large‐scale energy applications. Triboelectric nanogenerators (TENGs) have been recognized as one of the most promising approaches for harvesting wave energy. This work examines a freestanding, fully enclosed TENG that encloses a rolling ball inside a rocking spherical shell. Through the optimization of materials and structural parameters, a spherical TENG of 6 cm in diameter actuated by water waves can provide a peak current of 1 μA over a wide load range from a short‐circuit condition to 10 GΩ, with an instantaneous output power of up to 10 mW. A multielectrode arrangement is also studied to improve the output of the TENG under random wave motions from all directions. Moreover, at a frequency of 1.43 Hz, the wave‐driven TENG can directly drive tens of LEDs and charge a series of supercapacitors to rated voltage within several hours. The stored energy can power an electronic thermometer for 20 min. This rolling‐structured TENG is extremely lightweight, has a simple structure, and is capable of rocking on or in water to harvest wave energy; it provides an innovative and effective approach toward large‐scale blue energy harvesting of oceans and lakes.  相似文献   

20.
As an alternative technology, stretchable electronics attract long‐lasting attention. A newly‐designed stretchable nanogenerator with unique dual‐mode energy conversion is reported. The ability of converting the input mechanical stimuli to either electric or light output is achieved by monolithically integrating a transparent single‐electrode triboelectric nanogenerator (S‐TENG) with a ZnS based mechanoluminescence (ML) composite. This stretchable device with versatile functions promotes the development of the smart systems to efficiently and diversely utilize ubiquitous mechanical energy and demonstrates great potential for artificial e‐skins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号