共查询到20条相似文献,搜索用时 15 毫秒
1.
A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E) 总被引:19,自引:0,他引:19
Ruffel S Dussault MH Palloix A Moury B Bendahmane A Robaglia C Caranta C 《The Plant journal : for cell and molecular biology》2002,32(6):1067-1075
We show here that the pvr2 locus in pepper, conferring recessive resistance against strains of potato virus Y (PVY), corresponds to a eukaryotic initiation factor 4E (eIF4E) gene. RFLP analysis on the PVY-susceptible and resistant pepper cultivars, using an eIF4E cDNA from tobacco as probe, revealed perfect map co-segregation between a polymorphism in the eIF4E gene and the pvr2 alleles, pvr2(1) (resistant to PVY-0) and pvr2(2) (resistant to PVY-0 and 1). The cloned pepper eIF4E cDNA encoded a 228 amino acid polypeptide with 70-86% nucleotide sequence identity with other plant eIF4Es. The sequences of eIF4E protein from two PVY-susceptible cultivars were identical and differed from the eIF4E sequences of the two PVY-resistant cultivars Yolo Y (YY) (pvr2(1)) and FloridaVR2 (F) (pvr2(2)) at two amino acids, a mutation common to both resistant genotypes and a second mutation specific to each. Complementation experiments were used to show that the eIF4E gene corresponds to pvr2. Thus, potato virus X-mediated transient expression of eIF4E from susceptible cultivar Yolo Wonder (YW) in the resistant genotype YY resulted in loss of resistance to subsequent PVY-0 inoculation and transient expression of eIF4E from YY (resistant to PVY-0; susceptible to PVY-1) rendered genotype F susceptible to PVY-1. Several lines of evidence indicate that interaction between the potyvirus genome-linked protein (VPg) and eIF4E are important for virus infectivity, suggesting that the recessive resistance could be due to incompatibility between the VPg and eIF4E in the resistant genotype. 相似文献
2.
Nicaise V Gallois JL Chafiai F Allen LM Schurdi-Levraud V Browning KS Candresse T Caranta C Le Gall O German-Retana S 《FEBS letters》2007,581(5):1041-1046
The translation initiation factors eIF4E and eIF(iso)4E play a key role during virus infection in plants. During mRNA translation, eIF4E provides the cap-binding function and is associated with the protein eIF4G to form the eIF4F complex. Susceptibility analyses of Arabidopsis mutants knocked-out for At-eIF4G genes showed that eIF4G factors are indispensable for potyvirus infection. The colonization pattern by a viral recombinant carrying GFP indicated that eIF4G is involved at a very early infection step. Like eIF4E, eIF4G isoforms are selectively recruited for infection. Moreover, the eIF4G selective involvement parallels eIF4E recruitment. This is the first report of a coordinated and selective recruitment of eIF4E and eIF4G factors, suggesting the whole eIF4F recruitment. 相似文献
3.
Kyoka Kuroiwa Benoit Danilo Laura Perrot Christina Thenault Florian Veillet Fabien Delacote Philippe Duchateau Fabien Nogué Marianne Mazier Jean-Luc Gallois 《Plant biotechnology journal》2023,21(5):918-930
Resistance to potyviruses in plants has been largely provided by the selection of natural variant alleles of eukaryotic translation initiation factors (eIF) 4E in many crops. However, the sources of such variability for breeding can be limited for certain crop species, while new virus isolates continue to emerge. Different methods of mutagenesis have been applied to inactivate the eIF4E genes to generate virus resistance, but with limited success due to the physiological importance of translation factors and their redundancy. Here, we employed genome editing approaches at the base level to induce non-synonymous mutations in the eIF4E1 gene and create genetic diversity in cherry tomato (Solanum lycopersicum var. cerasiforme). We sequentially edited the genomic sequences coding for two regions of eIF4E1 protein, located around the cap-binding pocket and known to be important for susceptibility to potyviruses. We show that the editing of only one of the two regions, by gene knock-in and base editing, respectively, is not sufficient to provide resistance. However, combining amino acid mutations in both regions resulted in resistance to multiple potyviruses without affecting the functionality in translation initiation. Meanwhile, we report that extensive base editing in exonic region can alter RNA splicing pattern, resulting in gene knockout. Altogether our work demonstrates that precision editing allows to design plant factors based on the knowledge on evolutionarily selected alleles and enlarge the gene pool to potentially provide advantageous phenotypes such as pathogen resistance. 相似文献
4.
Allele-specific CAPS markers based on point mutations in resistance alleles at the pvr1 locus encoding eIF4E in Capsicum 总被引:1,自引:0,他引:1
Yeam I Kang BC Lindeman W Frantz JD Faber N Jahn MM 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2005,112(1):178-186
Marker-assisted selection has been widely implemented in crop breeding and can be especially useful in cases where the traits of interest show recessive or polygenic inheritance and/or are difficult or impossible to select directly. Most indirect selection is based on DNA polymorphism linked to the target trait, resulting in error when the polymorphism recombines away from the mutation responsible for the trait and/or when the linkage between the mutation and the polymorphism is not conserved in all relevant genetic backgrounds. In this paper, we report the generation and use of molecular markers that define loci for selection using cleaved amplified polymorphic sequences (CAPS). These CAPS markers are based on nucleotide polymorphisms in the resistance gene that are perfectly correlated with disease resistance, the trait of interest. As a consequence, the possibility that the marker will not be linked to the trait in all backgrounds or that the marker will recombine away from the trait is eliminated. We have generated CAPS markers for three recessive viral resistance alleles used widely in pepper breeding, pvr1, pvr1
1, and pvr1
2. These markers are based on single nucleotide polymorphisms (SNPs) within the coding region of the pvr1 locus encoding an eIF4E homolog on chromosome 3. These three markers define a system of indirect selection for potyvirus resistance in Capsicum based on genomic sequence. We demonstrate the utility of this marker system using commercially significant germplasm representing two Capsicum species. Application of these markers to Capsicum improvement is discussed. 相似文献
5.
Camille Gauffier Caroline Lebaron André Moretti Carole Constant Frédéric Moquet Grégori Bonnet Carole Caranta Jean‐Luc Gallois 《The Plant journal : for cell and molecular biology》2016,85(6):717-729
Genetic resistance to pathogens is important for sustainable maintenance of crop yields. Recent biotechnologies offer alternative approaches to generate resistant plants by compensating for the lack of natural resistance. Tomato (Solanum lycopersicum) and related species offer a model in which natural and TILLING‐induced potyvirus resistance alleles may be compared. For resistance based on translation initiation factor eIF4E1, we confirm that the natural allele Sh–eIF4E1PI24–pot1, isolated from the wild tomato species Solanum habrochaites, is associated with a wide spectrum of resistance to both potato virus Y and tobacco etch virus isolates. In contrast, a null allele of the same gene, isolated through a TILLING strategy in cultivated tomato S. lycopersicum, is associated with a much narrower resistance spectrum. Introgressing the null allele into S. habrochaites did not extend its resistance spectrum, indicating that the genetic background is not responsible for the broad resistance. Instead, the different types of eIF4E1 mutations affect the levels of eIF4E2 differently, suggesting that eIF4E2 is also involved in potyvirus resistance. Indeed, combining two null mutations affecting eIF4E1 and eIF4E2 re‐establishes a wide resistance spectrum in cultivated tomato, but to the detriment of plant development. These results highlight redundancy effects within the eIF4E gene family, where regulation of expression alters susceptibility or resistance to potyviruses. For crop improvement, using loss‐of‐function alleles to generate resistance may be counter‐productive if they narrow the resistance spectrum and limit growth. It may be more effective to use alleles encoding functional variants similar to those found in natural diversity. 相似文献
6.
Jinhee Kim Won‐Hee Kang Jeena Hwang Hee‐Bum Yang Kim Dosun Chang‐Sik Oh Byoung‐Cheorl Kang 《Molecular Plant Pathology》2014,15(6):615-626
The protein–protein interaction between VPg (viral protein genome‐linked) of potyviruses and eIF4E (eukaryotic initiation factor 4E) or eIF(iso)4E of their host plants is a critical step in determining viral virulence. In this study, we evaluated the approach of engineering broad‐spectrum resistance in Chinese cabbage (Brassica rapa) to Turnip mosaic virus (TuMV), which is one of the most important potyviruses, by a systematic knowledge‐based approach to interrupt the interaction between TuMV VPg and B. rapa eIF(iso)4E. The seven amino acids in the cap‐binding pocket of eIF(iso)4E were selected on the basis of other previous results and comparison of protein models of cap‐binding pockets, and mutated. Yeast two‐hybrid assay and co‐immunoprecipitation analysis demonstrated that W95L, K150L and W95L/K150E amino acid mutations of B. rapa eIF(iso)4E interrupted its interaction with TuMV VPg. All eIF(iso)4E mutants were able to complement an eIF4E‐knockout yeast strain, indicating that the mutated eIF(iso)4E proteins retained their function as a translational initiation factor. To determine whether these mutations could confer resistance, eIF(iso)4E W95L, W95L/K150E and eIF(iso)4E wild‐type were over‐expressed in a susceptible Chinese cabbage cultivar. Evaluation of the TuMV resistance of T1 and T2 transformants demonstrated that the over‐expression of the eIF(iso)4E mutant forms can confer resistance to multiple TuMV strains. These data demonstrate the utility of knowledge‐based approaches for the engineering of broad‐spectrum resistance in Chinese cabbage. 相似文献
7.
Nieto C Morales M Orjeda G Clepet C Monfort A Sturbois B Puigdomènech P Pitrat M Caboche M Dogimont C Garcia-Mas J Aranda MA Bendahmane A 《The Plant journal : for cell and molecular biology》2006,48(3):452-462
The characterization of natural recessive resistance genes and virus-resistant mutants of Arabidopsis have implicated translation initiation factors of the 4E family [eIF4E and eIF(iso)4E] as susceptibility factors required for virus multiplication and resistance expression. To date, viruses controlled by these genes mainly belong to the family Potyviridae. Melon necrotic spot virus (MNSV) belongs to the family Tombusviridae (genus Carmovirus) and is an uncapped and non-polyadenylated RNA virus. In melon, nsv-mediated resistance is a natural source of recessive resistance against all strains of MNSV except MNSV-264. Analyses of chimeras between non-resistance-breaking and resistance-breaking strains have shown that the avirulence determinant maps to the 3'-untranslated region (3'-UTR) of the viral genome. Using a combination of positional cloning and microsynteny analysis between Arabidopsis thaliana and melon, we genetically and physically delimited the nsv locus to a single bacterial artificial chromosome clone and identified the melon eukaryotic translation initiation factor 4E (Cm-eIF4E) as a candidate gene. Complementation analysis using a biolistic transient expression assay, confirmed Cm-eIF4E as the product of nsv. A single amino acid change at position 228 of the protein led to the resistance to MNSV. Protein expression and cap-binding analysis showed that Cm-eIF4E encoded by a resistant plant was not affected in it's cap-binding activity. The Agrobacterium-mediated transient expression of the susceptibility allele of Cm-eIF4E in Nicotiana benthamiana enhanced MNSV-264 accumulation. Based on these results, a model to explain melon resistance to MNSV is proposed. These data, and data from other authors, suggest that translation initiation factors of the eIF4E family are universal determinants of plant susceptibility to RNA viruses. 相似文献
8.
JeeNa Hwang Jinjie Li Wing-Yee Liu Song-Ji An Hwajin Cho Nam Han Her Inhwa Yeam Dosun Kim Byoung-Cheorl Kang 《Molecules and cells》2009,27(3):329-336
To evaluate the involvement of translation initiation factors eIF4E and eIFiso4E in Chilli veinai mottle virus (ChiVMV) infection in pepper, we conducted a genetic analysis using a segregating population derived from a cross between Capsicum annuum ‘Dempsey’ containing an eIF4E mutation (pvr1 2 ) and C. annuum ‘Perennial’ containing an eIFiso4E mutation (pvr6). C. annuum ‘Dempsey’ was susceptible and C. annuum ‘Perennial’ was resistant to ChiVMV. All F1 plants showed resistance, and F2 individuals segregated in a resistant-susceptible ratio of 166:21, indicating that many resistance loci were involved. Seventy-five F2 and 329 F3 plants of 17 families were genotyped with pvr1 2 and pvr6 allele-specific markers, and the genotype data were compared with observed resistance to viral infection. All plants containing homozygous genotypes of both pvr1 2 and pvr6 were resistant to ChiVMV, demonstrating that simultaneous mutations in eIF4E and eIFiso4E confer resistance to ChiVMV in pepper. Genotype analysis of F2 plants revealed that all plants containing homozygous genotypes of both pvr1 2 and pvr6 showed resistance to ChiVMV. In protein-protein interaction experiments, ChiVMV viral genome-linked protein (VPg) interacted with both eIF4E and eIFiso4E. Silencing of eIF4E and eIFiso4E in the VIGS experiment showed reduction in ChiVMV accumulation. These results demonstrated that ChiVMV can use both eIF4E and eIFiso4E for replication, making simultaneous mutations in eIF4E and eIFiso4E necessary to prevent ChiVMV infection in pepper. These authors contributed equally to this work. 相似文献
9.
Cup is an eIF4E-binding protein (4E-BP) that plays a central role in translational regulation of localized mRNAs during early Drosophila development. In particular, Cup is required for repressing translation of the maternally contributed oskar, nanos, and gurken mRNAs, all of which are essential for embryonic body axis determination. Here, we present the 2.8 Å resolution crystal structure of a minimal eIF4E–Cup assembly, consisting of the interacting regions of the two proteins. In the structure, two separate segments of Cup contact two orthogonal faces of eIF4E. The eIF4E-binding consensus motif of Cup (YXXXXLΦ) binds the convex side of eIF4E similarly to the consensus of other eIF4E-binding proteins, such as 4E-BPs and eIF4G. The second, noncanonical, eIF4E-binding site of Cup binds laterally and perpendicularly to the eIF4E β-sheet. Mutations of Cup at this binding site were shown to reduce binding to eIF4E and to promote the destabilization of the associated mRNA. Comparison with the binding mode of eIF4G to eIF4E suggests that Cup and eIF4G binding would be mutually exclusive at both binding sites. This shows how a common molecular surface of eIF4E might recognize different proteins acting at different times in the same pathway. The structure provides insight into the mechanism by which Cup disrupts eIF4E–eIF4G interaction and has broader implications for understanding the role of 4E-BPs in translational regulation. 相似文献
10.
The potyvirus recessive resistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-cell trafficking 总被引:2,自引:0,他引:2
Gao Z Johansen E Eyers S Thomas CL Noel Ellis TH Maule AJ 《The Plant journal : for cell and molecular biology》2004,40(3):376-385
From the characterization of the recessive resistance gene, sbm1, in pea we have identified the eukaryotic translation initiation factor, eIF4E, as a susceptibility factor required for infection with the Potyvirus, Pea seed-borne mosaic virus. A functional analysis of the mode of action of the product of the dominant allele revealed a novel function for eIF4E in its support for virus movement from cell-to-cell, in addition to its probable support for viral RNA translation, and hence replication. Different resistance specificities in two independent pea lines were explained by different mutations in eIF4E. On the modelled structure of eIF4E the coding changes were in both cases lying in and around the structural pocket involved in binding the 5'-m7G cap of eukaryotic mRNAs. Protein expression and cap-binding analysis showed that eIF4E encoded by a resistant plant could not bind to m7G-Sepharose, a result which may point to functional redundancy between eIF4E and the paralogous eIF(iso)4E in resistant peas. These observations, together with related findings for other potyvirus recessive resistances, provide a more complete picture of the potyvirus life cycle. 相似文献
11.
Asiya Batool Sabreena Aashaq Khurshid I. Andrabi 《Journal of cellular biochemistry》2019,120(9):14201-14212
Eukaryotic initiation factor 4E (eIF4E), a fundamental effector and rate limiting element of protein synthesis, binds the 7-methylguanosine cap at the 5′ end of eukaryotic messenger RNA (mRNA) specifically as a constituent of eIF4F translation initiation complex thus facilitating the recruitment of mRNA to the ribosomes. This review focusses on the engagement of signals contributing to growth factor originated maxim and their role in the activation of eIF4E to achieve a collective influence on cellular growth, with a key focus on conjuring vital processes like protein synthesis. The review invites considerable interest in elevating the appeal of eIF4E beyond its role in regulating translation viz a viz cancer genesis, attributed to its phosphorylation state that improves the prospect for the growth of the cancerous cell. This review highlights the latest studies that have envisioned to target these pathways and ultimately the translational machinery for therapeutic intervention. The review also brings forward the prospect of eIF4E to act as a converging juncture for signaling pathways like mTOR/PI3K and Mnk/MAPK to promote tumorigenesis. 相似文献
12.
Le Gao Jinyan Luo Xueni Ding Tao Wang Ting Hu Puwen Song Rui Zhai Hongyun Zhang Kai Zhang Kai Li Haijian Zhi 《Molecular Plant Pathology》2020,21(3):303-317
Soybean mosaic virus (SMV), a potyvirus, is the most prevalent and destructive viral pathogen in soybean-planting regions of China. Moreover, other potyviruses, including bean common mosaic virus (BCMV) and watermelon mosaic virus (WMV), also threaten soybean farming. The eukaryotic translation initiation factor 4E (eIF4E) plays a critical role in controlling resistance/susceptibility to potyviruses in plants. In the present study, much higher SMV-induced eIF4E1 expression levels were detected in a susceptible soybean cultivar when compared with a resistant cultivar, suggesting the involvement of eIF4E1 in the response to SMV by the susceptible cultivar. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that soybean eIF4E1 interacted with SMV VPg in the nucleus and with SMV NIa-Pro/NIb in the cytoplasm, revealing the involvement of VPg, NIa-Pro, and NIb in SMV infection and multiplication. Furthermore, transgenic soybeans silenced for eIF4E were produced using an RNA interference approach. Through monitoring for viral symptoms and viral titers, robust and broad-spectrum resistance was confirmed against five SMV strains (SC3/7/15/18 and SMV-R), BCMV, and WMV in the transgenic plants. Our findings represent fresh insights for investigating the mechanism underlying eIF4E-mediated resistance in soybean and also suggest an effective alternative for breeding soybean with broad-spectrum viral resistance. 相似文献
13.
Anna Bastet Delyan Zafirov Nathalie Giovinazzo Anouchka Guyon‐Debast Fabien Nogu Christophe Robaglia Jean‐Luc Gallois 《Plant biotechnology journal》2019,17(9):1736-1750
In many crop species, natural variation in eIF4E proteins confers resistance to potyviruses. Gene editing offers new opportunities to transfer genetic resistance to crops that seem to lack natural eIF4E alleles. However, because eIF4E are physiologically important proteins, any introduced modification for virus resistance must not bring adverse phenotype effects. In this study, we assessed the role of amino acid substitutions encoded by a Pisum sativum eIF4E virus‐resistance allele (W69L, T80D S81D, S84A, G114R and N176K) by introducing them independently into the Arabidopsis thaliana eIF4E1 gene, a susceptibility factor to the Clover yellow vein virus (ClYVV). Results show that most mutations were sufficient to prevent ClYVV accumulation in plants without affecting plant growth. In addition, two of these engineered resistance alleles can be combined with a loss‐of‐function eIFiso4E to expand the resistance spectrum to other potyviruses. Finally, we use CRISPR‐nCas9‐cytidine deaminase technology to convert the Arabidopsis eIF4E1 susceptibility allele into a resistance allele by introducing the N176K mutation with a single‐point mutation through C‐to‐G base editing to generate resistant plants. This study shows how combining knowledge on pathogen susceptibility factors with precise genome‐editing technologies offers a feasible solution for engineering transgene‐free genetic resistance in plants, even across species barriers. 相似文献
14.
Trans‐species synthetic gene design allows resistance pyramiding and broad‐spectrum engineering of virus resistance in plants 下载免费PDF全文
Anna Bastet Baptiste Lederer Nathalie Giovinazzo Xavier Arnoux Sylvie German‐Retana Catherine Reinbold Véronique Brault Damien Garcia Samia Djennane Sophie Gersch Olivier Lemaire Christophe Robaglia Jean‐Luc Gallois 《Plant biotechnology journal》2018,16(9):1569-1581
To infect plants, viruses rely heavily on their host's machinery. Plant genetic resistances based on host factor modifications can be found among existing natural variability and are widely used for some but not all crops. While biotechnology can supply for the lack of natural resistance alleles, new strategies need to be developed to increase resistance spectra and durability without impairing plant development. Here, we assess how the targeted allele modification of the Arabidopsis thaliana translation initiation factor eIF4E1 can lead to broad and efficient resistance to the major group of potyviruses. A synthetic Arabidopsis thaliana eIF4E1 allele was designed by introducing multiple amino acid changes associated with resistance to potyvirus in naturally occurring Pisum sativum alleles. This new allele encodes a functional protein while maintaining plant resistance to a potyvirus isolate that usually hijacks eIF4E1. Due to its biological functionality, this synthetic allele allows, at no developmental cost, the pyramiding of resistances to potyviruses that selectively use the two major translation initiation factors, eIF4E1 or its isoform eIFiso4E. Moreover, this combination extends the resistance spectrum to potyvirus isolates for which no efficient resistance has so far been found, including resistance‐breaking isolates and an unrelated virus belonging to the Luteoviridae family. This study is a proof‐of‐concept for the efficiency of gene engineering combined with knowledge of natural variation to generate trans‐species virus resistance at no developmental cost to the plant. This has implications for breeding of crops with broad‐spectrum and high durability resistance using recent genome editing techniques. 相似文献
15.
Significance of eIF4E expression in skin squamous cell carcinoma 总被引:1,自引:0,他引:1
Cutaneous squamous cell carcinoma (SCC) is a malignant tumour of keratinising epidermal cells. This type of skin cancer is the second leading cause of death after melanoma, and it is the second most common type of non-melanoma skin cancer after basal cell carcinoma. The cellular and molecular events involved in the progression of skin cancers are largely unknown. Increased protein synthesis is necessary for the transition of cells from quiescence to proliferation. Translational control is critical for the proper regulation of the cell cycle, tissue induction and growth. Eukaryotic initiation factor eIF4E, an important regulator of translation, plays critical roles in neo-plastic transformation and cancer progression. We investigated eIF4E expression in 49 skin samples (six normal tissues, eight Bowen diseases, seven stage I, 10 stage II, 13 stage III and five stage IV SCCs). Results obtained demonstrated that all SCC samples, evaluated by SDS-PAGE, Western blotting and cap-affinity chromatography using m7GTP-sepharose, presented eIF4E expression (13.6+/-1.2), whereas, starting from stage 0 (4.1+/-0.9) to stage I (7.4+/-1.4), stage II (12.1+/-2.4), stage III (18.1+/-3.0) and stage IV (26.2+/-3.8) SCCs, a constant and significant increase of protein over expression (P<0.001) was observed. A high expression of eIF4E is correlated with advanced stages. The results presented in this study demonstrate a possible role of eIF4E in SCC. 相似文献
16.
Vincent Leroux Lapointe Matthias Trost Pierre Thibault Catherine Bangeranye Serafin Piñol‐Roma Katherine L B Borden 《The EMBO journal》2009,28(8):1087-1098
The eukaryotic translation initiation factor 4E (eIF4E) controls gene expression through its effects on mRNA export and cap‐dependent translation, both of which contribute to its oncogenic potential. In contrast to its translation function, the mRNA export function of eIF4E is poorly understood. Using an RNP isolation/mass spectrometry approach, we identified candidate cofactors of eIF4E mRNA export including LRPPRC. This protein associates with mRNAs containing the eIF4E‐sensitivity element (4E‐SE), and its overexpression alters the nuclear export of several eIF4E‐sensitive mRNAs. LRPPRC‐mediated alteration of eIF4E's mRNA export function requires the integrity of its eIF4E‐binding site and it coincides with the subcellular re‐distribution of eIF4E. The eIF4E export RNP is distinct in composition from the bulk mRNA export pathway, in that eIF4E‐ and eIF4E‐sensitive mRNAs do not associate with general mRNA export factors such as TAP/NXF1 or REF/Aly. Our data indicate that mRNA export pathways have evolved for specific mRNAs enabling the differential regulation of biochemical pathways by modulating the expression of groups of genes at the level of their export. 相似文献
17.
Translation initiation factors eIF4E and eIFiso4E are required for polysome formation and regulate plant growth in tobacco 总被引:2,自引:0,他引:2
Eukaryotic initiation factor eIF4E plays a pivotal role in translation initiation. As a component of the ternary eIF4F complex, eIF4E interacts with the mRNA cap structure to facilitate recruitment of the 40S ribosomal subunit onto mRNA. Plants contain two distinct cap-binding proteins, eIF4E and eIFiso4E, that assemble into different eIF4F complexes. To study the functional roles of eIF4E and eIFiso4E in tobacco, we isolated two corresponding cDNAs, NteIF4E1 and NteIFiso4E1, and used these to deplete cap-binding protein levels in planta by antisense downregulation. Antibodies raised against recombinant NteIF4E1 detected three distinct cap-binding proteins in tobacco leaf extracts; NteIF4E and two isoforms of NteIFiso4E. The three cap-binding proteins were immuno-detected in all tissues analysed and were coordinately regulated, with peak expression in anthers and pollen. Transgenic tobacco plants showing significant depletion of either NteIF4E or the two NteIFiso4E isoforms displayed normal vegetative development and were fully fertile. Interestingly, NteIFiso4E depletion resulted in a compensatory increase in NteIF4E levels, whereas the down-regulation of NteIF4E did not trigger a reciprocal increase in NteIFiso4E levels. The antisense depletion of both NteIF4E and NteIFiso4E resulted in plants with a semi-dwarf phenotype and an overall reduction in polyribosome loading, demonstrating that both eIF4E and eIFiso4E support translation initiation in planta, which suggests their potential role in the regulation of plant growth. 相似文献
18.
Ribavirin augments doxorubicin's efficacy in human hepatocellular carcinoma through inhibiting doxorubicin‐induced eIF4E activation 下载免费PDF全文
Jun Tan Jingfen Ye Meijun Song Mi Zhou Yaoren Hu 《Journal of biochemical and molecular toxicology》2018,32(1)
Activation of eukaryotic translation initiation factor 4E (eIF4E) is a cellular survival mechanism in response to chemotherapy in cancers. In this work, we demonstrate that targeting eIF4E by ribavirin sensitizes hepatocellular carcinoma (HCC) cell response to doxorubicin. Ribavirin inhibits growth and survival of HCC cells, and to a greater extent than in normal liver cells. Its combination with doxorubicin achieves greater efficacy than single drug in vitro and in vivo. Ribavirin suppresses phosphorylation of molecules involved in Akt/mTOR/eIF4E pathway. Overexpression of the phosphomimetic form (S209D) but not the nonphosphorylatable form (S209A) eIF4E significantly reverses the inhibitory effects of ribavirin. Interestingly, doxorubicin significantly increases p‐eIF4E(S209) level in a dose‐ and time‐dependent manner, suggesting that doxorubicin induces eIF4E activation in HCC cells. In addition, eIF4E activation induced by doxorubicin in HCC cells is inhibited by ribavirin. Our work demonstrates the greater efficacy of ribavirin and doxorubicin combination and its underlying mechanisms. 相似文献
19.
Salaün P Pyronnet S Morales J Mulner-Lorillon O Bellé R Sonenberg N Cormier P 《Developmental biology》2003,255(2):428-439
The mRNA's cap-binding protein eukaryotic translation initiation factor (eIF)4E is a major target for the regulation of translation initiation. eIF4E activity is controlled by a family of translation inhibitors, the eIF4E-binding proteins (4E-BPs). We have previously shown that a rapid dissociation of 4E-BP from eIF4E is related with the dramatic rise in protein synthesis that occurs following sea urchin fertilization. Here, we demonstrate that 4E-BP is destroyed shortly following fertilization and that 4E-BP degradation is sensitive to rapamycin, suggesting that proteolysis could be a novel means of regulating 4E-BP function. We also show that eIF4E/4E-BP dissociation following fertilization is sensitive to rapamycin. Furthermore, while rapamycin modestly affects global translation rates, the drug strongly inhibits cyclin B de novo synthesis and, consequently, precludes the completion of the first mitotic cleavage. These results demonstrate that, following sea urchin fertilization, cyclin B translation, and thus the onset of mitosis, are regulated by a rapamycin-sensitive pathway. These processes are effected at least in part through eIF4E/4E-BP complex dissociation and 4E-BP degradation. 相似文献
20.
Kang BC Yeam I Frantz JD Murphy JF Jahn MM 《The Plant journal : for cell and molecular biology》2005,42(3):392-405
Mutations in the eIF4E homolog encoded at the pvr1 locus in Capsicum result in broad-spectrum potyvirus resistance attributed to the pvr1 resistance allele, a gene widely deployed in agriculture for more than 50 years. We show that two other resistance genes, previously known to be eIF4E with narrower resistance spectra, pvr2(1) and pvr2(2), are alleles at the pvr1 locus. Based on these data and current nomenclature guidelines, we have re-designated these alleles, pvr1(1) and pvr1(2), respectively. Point mutations in pvr1, pvr1(1), and pvr1(2) grouped to similar regions of eIF4E and were predicted by protein homology models to cause conformational shifts in the encoded proteins. The avirulence determinant in this potyvirus system has previously been identified as VPg, therefore yeast two-hybrid and GST pull-down assays were carried out with proteins encoded by the pvr1 alleles and VPg from two different strains of Tobacco etch virus (TEV) that differentially infected Capsicum lines carrying these genes. While the protein encoded by the susceptible allele pvr1+ interacted strongly, proteins translated from all three resistance alleles (pvr1, pvr1(1), and pvr1(2)) failed to bind VPg from either strain of TEV. This failure to bind correlated with resistance or reduced susceptibility, suggesting that interruption of the interaction between VPg and this eIF4E paralog may be necessary, but is not sufficient for potyvirus resistance in vivo. Among the three resistance alleles, only the pvr1 gene product failed to bind m7-GTP cap-analog columns, suggesting that disrupted cap binding is not required for potyvirus resistance. 相似文献