首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferredoxins, the major distributors for electrons to various acceptor systems in plastids, contribute to redox regulation and antioxidant defence in plants. However, their function in plant immunity is not fully understood. In this study, we show that the expression of the major leaf ferredoxin gene Fd2 is suppressed by Pseudomonas syringae pv. tomato (Pst) DC3000 infection, and that knockout of Fd2 (Fd2‐KO) in Arabidopsis increases the plant's susceptibility to both Pst DC3000 and Golovinomyces cichoracearum. On Pst DC3000 infection, the Fd2‐KO mutant accumulates increased levels of jasmonic acid and displays compromised salicylic acid‐related immune responses. Fd2‐KO also shows defects in the accumulation of reactive oxygen species induced by pathogen‐associated molecular pattern‐triggered immunity. However, Fd2‐KO shows enhanced R‐protein‐mediated resistance to Pst DC3000/AvrRpt2 infection, suggesting that Fd2 plays a negative role in effector‐triggered immunity. Furthermore, Fd2 interacts with FIBRILLIN4 (FIB4), a harpin‐binding protein localized in chloroplasts. Interestingly, Fd2, but not FIB4, localizes to stromules that extend from chloroplasts. Taken together, our results demonstrate that Fd2 plays an important role in plant immunity.  相似文献   

2.
为了探讨拟南芥O-岩藻糖基转移酶(SPINDLY)在病原体相关分子模式诱导抗性中的作用,该研究以SPINDLY缺失拟南芥突变体spy-3为实验材料,从叶片表型、病情指数、病菌定殖量以及丁香假单胞菌(Pst DC3000)关键基因的表达水平等指标,系统考察了SPINDLY在壳寡糖诱导拟南芥抗Pst DC3000中的功能。结果显示:(1)spy-3突变体比野生型更易被Pst DC3000侵染。(2)与病菌侵染组相比,壳寡糖预处理明显缓解植株叶片黄化现象,显著降低Pst DC3000的定殖量。(3)壳寡糖预处理的spy-3植株中水杨酸和茉莉酸途径相关基因的表达量及水杨酸和茉莉酸含量均较病菌侵染组明显升高。(4)壳寡糖在spy-3中的诱抗效果与野生型相比无明显差别。研究表明,SPINDLY在植物先天免疫过程发挥重要作用,但并不影响壳寡糖的诱导抗性。  相似文献   

3.
Tomato stress-associated proteins (SAPs) belong to A20/AN1 zinc finger protein family, some of which have been shown to play important roles in plant stress responses. However, little is known about the functions and underlying molecular mechanisms of SAPs in plant immune responses. In the present study, we reported the function of tomato SlSAP3 in immunity to Pseudomonas syringae pv. tomato (Pst) DC3000. Silencing of SlSAP3 attenuated while overexpression of SlSAP3 in transgenic tomato increased immunity to Pst DC3000, accompanied with reduced and increased Pst DC3000-induced expression of SA signalling and defence genes, respectively. Flg22-induced reactive oxygen species (ROS) burst and expression of PAMP-triggered immunity (PTI) marker genes SlPTI5 and SlLRR22 were strengthened in SlSAP3-OE plants but were weakened in SlSAP3-silenced plants. SlSAP3 interacted with two SlBOBs and the A20 domain in SlSAP3 is critical for the SlSAP3-SlBOB1 interaction. Silencing of SlBOB1 and co-silencing of all three SlBOB genes conferred increased resistance to Pst DC3000, accompanied with increased Pst DC3000-induced expression of SA signalling and defence genes. These data demonstrate that SlSAP3 acts as a positive regulator of immunity against Pst DC3000 in tomato through the SA signalling and that SlSAP3 may exert its function in immunity by interacting with other proteins such as SlBOBs, which act as negative regulators of immunity against Pst DC3000 in tomato.  相似文献   

4.
Plant cell walls undergo dynamic structural and chemical changes during plant development and growth. Floral organ abscission and lateral root emergence are both accompanied by cell‐wall remodeling, which involves the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA)‐derived peptide and its receptors, HAESA (HAE) and HAESA‐LIKE2 (HSL2). Plant cell walls also act as barriers against pathogenic invaders. Thus, the cell‐wall remodeling during plant development could have an influence on plant resistance to phytopathogens. Here, we identified IDA‐like 6 (IDL6), a gene that is prominently expressed in Arabidopsis leaves. IDL6 expression in Arabidopsis leaves is significantly upregulated when the plant is suffering from attacks of the bacterial Pseudomonas syringae pv. tomato (Pst) DC3000. IDL6 overexpression and knockdown lines respectively decrease and increase the Arabidopsis resistance to Pst DC3000, indicating that the gene promotes the Arabidopsis susceptibility to Pst DC3000. Moreover, IDL6 promotes the expression of a polygalacturonase (PG) gene, ADPG2, and increases PG activity in Arabidopsis leaves, which in turn reduces leaf pectin content and leaf robustness. ADPG2 overexpression restrains Arabidopsis resistance to Pst DC3000, whereas ADPG2 loss‐of‐function mutants increase the resistance to the bacterium. Pst DC3000 infection elevates the ADPG2 expression partially through HAE and HSL2. Taken together, our results suggest that IDL6‐HAE/HSL2 facilitates the ingress of Pst DC3000 by promoting pectin degradation in Arabidopsis leaves, and Pst DC3000 might enhance its infection by manipulating the IDL6‐HAE/HSL2‐ADPG2 signaling pathway.  相似文献   

5.
Vesicle-associated membrane proteins 721 and 722 (VAMP721/722) are secretory vesicle-localized arginine-conserved soluble N-ethylmaleimide-sensitive factor attachment protein receptors (R-SNAREs) to drive exocytosis in plants. They are involved in diverse physiological processes in plants by interacting with distinct plasma membrane (PM) syntaxins. Here, we show that synaptotagmin 5 (SYT5) is involved in plant defense against Pseudomonas syringae pv tomato (Pst) DC3000 by regulating SYP132-VAMP721/722 interactions. Calcium-dependent stimulation of in vitro SYP132-VAMP722 interaction by SYT5 and reduced in vivo SYP132-VAMP721/722 interaction in syt5 plants suggest that SYT5 regulates the interaction between SYP132 and VAMP721/722. We interestingly found that disease resistance to Pst DC3000 bacterium but not to Erysiphe pisi fungus is compromised in syt5 plants. Since SYP132 plays an immune function to bacteria, elevated growth of surface-inoculated Pst DC3000 in VAMP721/722-deficient plants suggests that SYT5 contributes to plant immunity to Pst DC3000 by promoting the SYP132-VAMP721/722 immune secretory pathway.  相似文献   

6.
  • Plant immunity is regulated by a huge phytohormone regulation network. Ethylene(ET) and brassinosteroids (BRs) play critical roles in plant response to biotic stress; however, the relationship between BR and ET in plant immunity is unclear.
  • We used chemical treatments, genetic approaches and inoculation experiments to investigate the relationship between ET and BR in plant defense against Pst DC3000 in Nicotiana benthamiana.
  • Foliar applications of ET and BR enhanced plant resistance to Pst DC3000 inoculation, while treatment with brassinazole (BRZ, a specific BR biosynthesis inhibitor) eliminated the ET induced plant resistance to Pst DC3000. Silencing of DWARF 4(DWF4, a key BR biosynthetic gene), BRASSINOSTEROID INSENSITIVE 1 (BRI1, aBR receptor) and BRASSINOSTEROID-SIGNALING KINASE 1 (BSK1, downstream of BRI1) also neutralised the ET‐induced plant resistance to Pst DC3000. ET can induce callose deposition and reactive oxygen species (ROS) accumulation to resistPst DC3000, BRZ‐treated and gene‐silenced were completely eliminate this response.
  • Our results suggest BR is involved in ET‐induced plant resistance, the involvement of ET in plant resistance is possibly by the induction of callose deposition and ROS accumulation, in a BR‐dependent manner.
  相似文献   

7.

Introduction

The rhizobacterial tomato pathogen Pseudomonas syringae pv. tomato str. DC3000 (PstDC3000), like many plant pathogenic bacteria, can elicit hypersensitive response in non-host plant cells. PstDC3000 uses a type III protein secretion system (T3SS) to deliver effector proteins.

Objectives

We compared metabolomic responses of Arabidopsis suspension cells to a wild-type PstDC3000, a T3SS deletion mutant PstDC3000D28E, and a pathogen associated molecular pattern (PAMP) flagellin’s N-terminal domain’s 22-aa peptide (flg22) to obtain metabolomics insights into the plant cell PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI).

Methods

Using targeted HPLC-MRM-MS and untargeted GC-MS approaches, we monitored qualitative and quantitative changes of 312 metabolites in central and specialized metabolic pathways in a time-course study.

Results

The overall metabolomic changes induced by the three treatments included phenylpropanoid, flavonoid, and phytohormone biosynthetic pathways, as well as primary metabolism in amino acid and sugar biosynthesis. In addition to shared metabolites, flg22, PstDC3000D28E and PstDC3000 each caused unique metabolite changes in the course of the development of PTI and ETI.

Conclusion

PstDC3000D28E triggered PTI responses were different from those of flg22. This study has not only revealed the discernible metabolomics features associated with the flg22, PstDC3000D28E and PstDC3000 treatments, but also laid a foundation toward further understanding of metabolic regulation and responses underlying plant PTI and ETI.
  相似文献   

8.
GacS/GacA is a conserved two-component system that functions as a master regulator of virulence-associated traits in many bacterial pathogens, including Pseudomonas spp., that collectively infect both plant and animal hosts. Among many GacS/GacA-regulated traits, type III secretion of effector proteins into host cells plays a critical role in bacterial virulence. In the opportunistic plant and animal pathogen Pseudomonas aeruginosa, GacS/GacA negatively regulates the expression of type III secretion system (T3SS)-encoding genes. However, in the plant pathogenic bacterium Pseudomonas syringae, strain-to-strain variation exists in the requirement of GacS/GacA for T3SS deployment, and this variability has limited the development of predictive models of how GacS/GacA functions in this species. In this work we re-evaluated the function of GacA in P. syringae pv. tomato DC3000. Contrary to previous reports, we discovered that GacA negatively regulates the expression of T3SS genes in DC3000, and that GacA is not required for DC3000 virulence inside Arabidopsis leaf tissue. However, our results show that GacA is required for full virulence of leaf surface-inoculated bacteria. These data significantly revise current understanding of GacS/GacA in regulating P. syringae virulence.  相似文献   

9.
Programmed cell death (PCD) is a precise, genetically controlled cellular process with important roles in plant growth, development, and response to biotic and abiotic stress. However, the genetic mechanisms that control PCD in plants are unclear. Two Arabidopsis genes, DAL1 and DAL2 (for Drosophila DIAP1 like 1 and 2), encoding RING finger proteins with homology to DIAP1 were identified, and a series of experiments were performed to elucidate their roles in the regulation of PCD and disease resistance. Expression of DAL1 and DAL2 genes was induced in Arabidopsis plants after inoculation with virulent and avirulent strains of Pseudomonas syrinage pv. tomato (Pst) DC3000 or after infiltration with fumonisin B1 (FB1). Plants with mutations in the DAL1 and DAL2 genes displayed more severe disease after inoculation with an avirulent strain of Pst DC3000, but they showed similar disease severity as the wild-type plant after inoculation with a virulent strain of Pst DC3000. Significant accumulations of reactive oxygen species (ROS) and increased cell death were observed in the dal1 and dal2 mutant plants after inoculation with the avirulent strain of Pst DC3000. The dal mutant plants underwent extensive PCD upon infiltration of FB1 and displayed higher levels of ROS accumulation, callose deposition, and autofluorescence than the wild-type plants. Our data suggest that DAL1 and DAL2 may act as negative regulators of PCD in Arabidopsis.  相似文献   

10.
11.
Suayib Üstün 《Autophagy》2018,14(8):1465-1466
Macroautophagy/autophagy and the ubiquitin-proteasome system (UPS) are major proteolytic pathways that are increasingly recognized as battlegrounds during host-microbe interactions in eukaryotes. In plants, the UPS has emerged as central component of innate immunity and is manipulated by bacterial pathogens to enhance virulence. Autophagy has been ascribed a similar importance for anti-bacterial immunity in animals, but the contribution of autophagy to host-bacteria interactions remained elusive in plants. Here, we present and discuss our recent findings that revealed anti- and pro-bacterial roles of autophagy pathways during bacterial infection in the model plant Arabidopsis thaliana. We discovered that selective autophagy mediated by the autophagy cargo receptor AT4G24690/NBR1 limits growth of Pseudomonas syringae pv. tomato DC3000 (Pst) by suppressing the establishment of an aqueous extracellular space (‘water-soaking’). In turn, Pseudomonas employs the effector protein HopM1 to activate autophagy and proteasome degradation (‘proteaphagy’), thereby enhancing its pathogenicity. Thus, our study demonstrates that distinct selective autophagy pathways contribute to host immunity and bacterial pathogenesis during Pst infection and provide evidence for an intimate crosstalk between the proteasome and autophagy system in plant-bacterial interactions.  相似文献   

12.
Bacteriocins are regarded as important factors mediating microbial interactions, but their exact role in community ecology largely remains to be elucidated. Here, we report the characterization of a mutant strain, derived from Pseudomonas syringae pv. tomato DC3000 (Pst), that was incapable of growing in plant extracts and causing disease. Results showed that deficiency in a previously unannotated gene saxE led to the sensitivity of the mutant to Ca2+ in leaf extracts. Transposon insertions in the bacteriocin gene syrM, adjacent to saxE, fully rescued the bacterial virulence and growth of the ΔsaxE mutant in plant extracts, indicating that syrM-saxE encode a pair of bacteriocin immunity proteins in Pst. To investigate whether the syrM-saxE system conferred any advantage to Pst in competition with other SyrM-sensitive pathovars, we compared the growth of a SyrM-sensitive strain co-inoculated with Pst strains with or without the syrM gene and observed a significant syrM-dependent growth reduction of the sensitive bacteria on plate and in lesion tissues upon desiccation–rehydration treatment. These findings reveal an important biological role of SyrM-like bacteriocins and help to understand the complex strategies used by P. syringae in adaptation to the phyllosphere niche in the context of plant disease.  相似文献   

13.

Background

Chlorosis of leaf tissue normally observed during pathogen infection may result from the degradation of chloroplasts. There is a growing evidence to suggest that the chloroplast plays a significant role during pathogen infection. Although most degradation of the organelles and cellular structures in plants is mediated by autophagy, its role in chloroplast catabolism during pathogen infection is largely unknown.

Results

In this study, we investigated the function of autophagy in chloroplast degradation during avirulent Pst DC3000 (AvrRps4) infection. We examined the expression of defensive marker genes and suppression of bacterial growth using the electrolyte leakage assay in normal light (N) and low light (L) growing environments of wild-type and atg5-1 plants during pathogen treatment. Stroma-targeted GFP proteins (CT-GFP) were observed with LysoTracker Red (LTR) staining of autophagosome-like structures in the vacuole. The results showed that Arabidopsis expressed a significant number of small GFP-labeled bodies when infected with avirulent Pst DC3000 (AvrRps4). While barely detectable, there were small GFP-labeled bodies in plants with the CT-GFP expressing atg5-1 mutation. The results showed that chloroplast degradation depends on autophagy and this may play an important role in inhibiting pathogen growth.

Conclusion

Autophagy plays a role in chloroplast degradation in Arabidopsis during avirulent Pst DC3000 (AvrRps4) infection. Autophagy dependent chloroplast degradation may be the primary source of reactive oxygen species (ROS) as well as the pathogen-response signaling molecules that induce the defense response.  相似文献   

14.
Plants exist in a complex multitrophic environment, where they interact with and compete for resources with other plants, microbes and animals. Plants have a complex array of defense mechanisms, such as the cell wall being covered with a waxy cuticle serving as a potent physical barrier. Although some pathogenic fungi infect plants by penetrating through the cell wall, many bacterial pathogens invade plants primarily through stomata on the leaf surface. Entry of the foliar pathogen, Pseudomonas syringae pathovar tomato DC3000 (hereafter PstDC3000), into the plant corpus occurs through stomatal openings, and consequently a key plant innate immune response is the transient closure of stomata, which delays disease progression. Here, we present evidence that the root colonization of the rhizobacteria Bacillus subtilis FB17 (hereafter FB17) restricts the stomata‐mediated pathogen entry of PstDC3000 in Arabidopsis thaliana. Root binding of FB17 invokes abscisic acid (ABA) and salicylic acid (SA) signaling pathways to close light‐adapted stomata. These results emphasize the importance of rhizospheric processes and environmental conditions as an integral part of the plant innate immune system against foliar bacterial infections.  相似文献   

15.
16.
In nature, the phytopathogen usually initiates its infection on the leaf surface before moving into the internal space through natural openings. Little is known about immediate response of the leaf to the surface-colonizing phytopathogen and its correlation with individual microbe-associated molecular patterns (MAMPs). In this study, we monitored the dynamic changes in the cytosolic Ca2+ concentration ([Ca2+]cyt) in the Arabidopsis leaf expressing luminescence protein aequorin as the response to the surface-inoculating Pseudomonas syringae DC3000 (Pst DC3000) with a touching-free system. The significant [Ca2+]cyt transient rise was evoked in the leaf right after inoculation, and its magnitude was correlated with the pathogen concentration. Pharmacological studies revealed that the rising [Ca2+]cyt occurs primarily from the cAMP-mediated Ca2+ mobility pathway, but not Gd3+-sensitive Ca2+ influx channel in the plasma membrane, which was distinct from those induced by individual MAMPs (lipopolysaccharide, flagellin, and elongation factor Tu). Pretreating the leaf with Pst DC3000 or MAMPs significantly attenuated its responses to subsequent treatments of any of them, which indicates that the leaf has the convergent mechanism of sensitivity to the pathogen and MAMPs. Furthermore, Pst DC3000 mutants defective in flagellum, type III secretion apparatus, and phytotoxin coronine production significantly lost their multiplication ability in the leaf apoplast, but evoked [Ca2+]cyt responses comparable with that of the wild type. Taken together, these data indicates that the [Ca2+]cyt in the leaf has the sensitive response to the surface-inoculating phytopathogen, which was distinct from those of individual MAMPs and had no correlation with the pathogen pathogenesis capacity.  相似文献   

17.
In Sun Hwang  Byung Kook Hwang 《Planta》2010,232(6):1409-1421
Plant cytochrome P450 enzymes are involved in a wide range of biosynthetic reactions, leading to various fatty acid conjugates, plant hormones, or defensive compounds. Herein, we have identified the pepper cytochrome P450 gene CaCYP450A, which is differentially induced during Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaCYP450A contains a heme-binding motif, PXFXXGXRXCXG, located in the C-terminal region and a hydrophobic membrane anchor region at the N terminal. Knock-down of CaCYP450A by virus-induced gene silencing (VIGS) led to increased susceptibility to Xcv infection in pepper. CaCYP450A-overexpressing Arabidopsis plants exhibited lower pathogen growth and reduced disease symptoms, and they were more resistant to Pseudomonas syringae pv. tomato (Pst) and Hyaloperonospora arabidopsidis than wild-type plants. Overexpression of CaCYP450A also enhanced H2O2 accumulation and cell death. However, CaCYP450A Arabidopsis ortholog CYP94B3 mutants showed enhanced susceptibility to virulent Pst DC3000, but not to avirulent Pst DC3000 avrRpm1 or virulent H. arabidopsidis infection. Taken together, these results suggest that CaCYP450A is required for defense responses to microbial pathogens in plants. The nucleotide sequence data reported here has been deposited in the GenBank database under the accession number HM581974.  相似文献   

18.
Lee SC  Hwang IS  Hwang BK 《Planta》2011,234(6):1111-1125
Proteomics facilitates our understanding of cellular processes and network functions in the plant defense response during abiotic and biotic stresses. Here, we demonstrate that the ectopic expression of the Capsicum annuum antimicrobial protein CaAMP1 gene in Arabidopsis thaliana confers enhanced tolerance to methyl viologen (MV)-induced oxidative stress, which is accompanied by lower levels of lipid peroxidation. Quantitative comparative proteome analyses using two-dimensional gel electrophoresis coupled with mass spectrometry identified some of the oxidative stress- and disease-related proteins that are differentially regulated by CaAMP1 overexpression in Arabidopsis leaves. Antioxidant- and defense-related proteins, such as 2-cys peroxiredoxin, l-ascorbate peroxidase, peroxiredoxin, glutathione S-transferase and copper homeostasis factor, were up-regulated in the CaAMP1 transgenic leaf tissues. In contrast, GSH-dependent dehydroascorbate reductase and WD-40 repeat family protein were down-regulated by CaAMP1 overexpression. In addition, CaAMP1 overexpression enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 infection and also H2O2 accumulation in Arabidopsis. The identified antioxidant- and defense-related genes were differentially expressed during MV-induced oxidative stress and Pst DC3000 infection. Taken together, we conclude that CaAMP1 overexpression can regulate the differential expression of defense-related proteins in response to environmental stresses to maintain reactive oxygen species (ROS) homeostasis.  相似文献   

19.

Main conclusion

Proteomics and functional analyses of the Arabidopsis Pseudomonas syringae pv. tomato interactions reveal that Arabidopsis nitrilases are required for plant defense and R gene-mediated resistant responses to microbial pathogens. A high-throughput in planta proteome screen has identified Arabidopsis nitrilase 2 (AtNIT2), which was de novo-induced by Pseudomonas syringae pv. tomato (Pst) infection. The AtNIT2, AtNIT3, and AtNIT4 genes, but not AtNIT1, were distinctly induced in Arabidopsis leaves by Pst infection. Notably, avirulent Pst DC3000 (avrRpt2) infection led to significant induction of AtNIT2 and AtNIT4 in leaves. Pst DC3000 and Pst DC3000 (avrRpt2) significantly grew well in leaves of nitrilase transgenic (nit2i-2) and mutant (nit1-1 and nit3-1) lines compared to the wild-type leaves. In contrast, NIT2 overexpression in nit2 mutants led to significantly high growth of the two Pst strains in leaves. The nitrilase transgenic and mutant lines exhibited enhanced susceptibility to Hyaloperonospora arabidopsidis infection. The nit2 mutation enhanced Pst DC3000 (avrRpt2) growth in salicylic acid (SA)-deficient NahG transgenic and sid2 and npr1 mutant lines. Infection with Pst DC3000 or Pst DC3000 (avrRpt2) induced lower levels of indole-3-acetic acid (IAA) in nit2i and nit2i NahG plants than in wild-type plants, but did not alter the IAA level in NahG transgenic plants. This suggests that Arabidopsis nitrilase 2 is involved in IAA signaling of defense and R gene-mediated resistance responses to Pst infection. Quantification of SA in these transgenic and mutant plants demonstrates that Arabidopsis nitrilase 2 is not required for SA-mediated defense response to the virulent Pst DC3000 but regulates SA-mediated resistance to the avirulent Pst DC3000 (avrRpt2). These results collectively suggest that Arabidopsis nitrilase genes are involved in plant defense and R gene-mediated resistant responses to microbial pathogens.
  相似文献   

20.
The quality and quantity of mulberry leaves are often affected by various environmental factors. The plant NPR1 and its homologous genes are important for plant systemic acquired resistance. Here, the full‐length cDNAs encoding the NPR1 and NPR4 genes (designated MuNPR1 and MuNPR4, respectively) were isolated from Morus multicaulis. Sequence analysis of the amino acids and protein modeling of the MuNPR1 and MuNPR4 proteins showed that MuNPR1 shares some conserved characteristics with its homolog MuNPR4. MuNPR1 was shown to have different expression patterns than MuNPR4 in mulberry plants. Interestingly, MuNPR1 or MuNPR4 transgenic Arabidopsis produced an early flowering phenotype, and the expression of the pathogenesis‐related 1a gene was promoted in MuNPR1 transgenic Arabidopsis. The MuNPR1 transgenic plants showed more resistance to Pseudomonas syringae pv. tomato DC3000 (Pst. DC3000) than did the wild‐type Arabidopsis. Moreover, the ectopic expression of MuNPR1 might lead to enhanced scavenging ability and suppress collase accumulation. In contrast, the MuNPR4 transgenic Arabidopsis were hypersensitive to Pst. DC3000 infection. In addition, transgenic Arabidopsis with the ectopic expression of either MuNPR1 or MuNPR4 showed sensitivity to salt and drought stresses. Our data suggest that both the MuNPR1 and MuNPR4 genes play a role in the coordination between signaling pathways, and the information provided here enables the in‐depth functional analysis of the MuNPR1 and MuNPR4 genes and may promote mulberry resistance breeding in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号