Ralfuranones, aryl-furanone secondary metabolites, are involved in the virulence of Ralstonia solanacearum in solanaceous plants. Ralfuranone I (6) has been suggested as a biosynthetic precursor for other ralfuranones; however, this conversion has not been confirmed. We herein investigate the biosynthesis of ralfuranones using feeding experiments with ralfuranone I (6) and its putative metabolite, ralfuranone B (2). The results obtained demonstrated that the biosynthesis of ralfuranones proceeded in enzymatic and non-enzymatic manners. 相似文献
Bacterial wilt is a devastating disease of potato and can cause an 80% production loss. To control wilt using bacteriophage therapy, we isolated and characterized twelve lytic bacteriophages from different water sources in Kenya and China. Based on the lytic curves of the phages with the pathogen Ralstonia solanacearum, one optimal bacteriophage cocktail, P1, containing six phage isolations was formulated and used for studying wilt prevention and treatment efficiency in potato plants growing in pots. The preliminary tests showed that the phage cocktail was very effective in preventing potato bacterial wilt by injection of the phages into the plants or decontamination of sterilized soil spiked with R. solanacearum. Eighty percent of potato plants could be protected from the bacterial wilt (caused by R. solanacearum reference strain GIM1.74 and field isolates), and the P1 cocktail could kill 98% of live bacteria spiked in the sterilized soil at one week after spraying. However, the treatment efficiencies of P1 depended on the timing of application of the phages, the susceptibility of the plants to the bacterial wilt, as well as the virulence of the bacteria infected, suggesting that it is important to apply the phage therapy as soon as possible once there are early signs of the bacterial wilt. These results provide the basis for the development of bacteriophagebased biocontrol of potato bacterial wilt as an alternative to the use of antibiotics.
AIMS: To screen novel micro-organisms and enzymes capable of degrading 3-hydroxypalmitic acid methyl ester (3-OH PAME), the quorum-sensing signal molecule (quormone), which regulates the virulence of Ralstonia solanacearum. METHODS AND RESULTS: Ideonella sp. 0-0013, a betaproteobacterium isolated from soil using the selective-enrichment culture method, was grown on plates containing 3-OH PAME as its main carbon source. beta-Hydroxypalmitate methyl ester hydrolase (betaHPMEH) purified from the supernatant of the Ideonella sp. 0-0013 culture exhibited high hydrolysing activity towards the ester bond of 3-OH PAME and eliminated the 3-OH PAME activity, thereby reducing the virulence of R. solanacearum. An Escherichia coli transformant of the betahpmeh gene expression vector degraded 3-OH PAME, and the crude enzyme from the transformant inhibited in vitro production of the R. solanacearum exopolysaccharide (EPS). CONCLUSIONS: The ability of betaHPMEH to hydrolyse 3-OH PAME inhibited the production of EPS by the R. solanacearum wild-type strain, indicating that betaHPMEH inhibits the effects of activation of virulence genes. This ability will be potentially useful for pest control of the wilt disease caused by this bacterium. SIGNIFICANCE AND IMPACT OF THE STUDY: This enzyme is the first protein that has been found to degrade a quormone other than N-acyl homoserine lactone. 相似文献
A filamentous bacteriophage (?), ?RS603, which is infectious to the phytopathogen Ralstonia solanacearum was isolated. ?RS603 was found to have a circular single‐stranded DNA genome composed of 7679 nucleotides and to contain 13 putative open reading frames (ORFs). The ?RS603 genome showed strong similarity with those of Ralstonia phages ?RSM1 and ?RSM3, as reported by Askora et al. The ?RS603 genome had no ORFs corresponding to ORFs 2, 3, 13 and 14 (integrase) of ?RSM3. ?RS603 had an ORF that was homologous to other Ralstonia phages ?RSS0 and ?RSS1; however, ?RSM1 and ?RSM3 did not. 相似文献
The detection of pathogen‐associated molecular patterns (PAMPs) by plant pattern recognition receptors (PRRs) is an essential part of plant immunity. Until recently, elf18, an epitope of elongation factor‐Tu (EF‐Tu), was the sole confirmed PAMP of Ralstonia solanacearum, the causal agent of bacterial wilt disease, limiting our understanding of R. solanacearum–plant interactions. Therefore, we set out to identify additional R. solanacearum PAMPs based on the hypothesis that genes encoding PAMPs are under selection to avoid recognition by plant PRRs. We calculated Tajima's D, a population genetic test statistic which identifies genes that do not evolve neutrally, for 3003 genes conserved in 37 R. solanacearum genomes. The screen flagged 49 non‐neutrally evolving genes, including not only EF‐Tu but also the gene for Cold Shock Protein C, which encodes the PAMP csp22. Importantly, an R. solanacearum allele of this PAMP was recently identified in a parallel independent study. Genes coding for efflux pumps, some with known roles in virulence, were also flagged by Tajima's D. We conclude that Tajima's D is a straightforward test to identify genes encoding PAMPs and other virulence‐related genes in plant pathogen genomes. 相似文献
通过构建嗜水气单胞菌AH-1 Quorum Sensing(QS)2个关键调节基因ahyI,ahyR的突变菌株,来系统分析嗜水气单胞菌AH-1Ⅲ型分泌系统基因,揭示它们由QS系统调控.在ahyI突变菌中,TTSS分泌效应因子(effector)aexT量显著提高.通过构建LacZ-TTSS基因启动子融合表达,进一步表明QS系统负调控编码TTSS组分的基因. 相似文献