首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The genetic variation within and among eight Tunisian natural populations of Lavandula multifida L., from different bioclimatic zones was assessed using random amplified polymorphic DNA (RAPDs). Of a total of 97 generated bands from seven selected primers, 84 bands were polymorphic. The genetic diversity within a population was high and varied according to the populations (0.308 < H’ < 0.459) without relationships to altitudes or pluviothermic indices of sites. The genetic differentiation among populations was high (GST = 0.395 and ΦST = 0.318). All population pairs were significantly differentiated. Among populations, within ecological groups genetic structure was high (0.219); whilst among them it was low (ΦCT = 0.049; P < 0.05). The correlation between ΦST and geographic distance matrices among pairs of populations was not significant, suggesting that genetic connectivity between populations has a stochastic component at all spatial scales. The neighbour‐joining cluster analysis showed that individuals from each population clustered together. UPGMA cluster analysis showed that population groupings are not strictly in accordance with bioclimates or geographic location. The genetic differentiation in L. multifida could have occurred at local scales because of genetic drift. Efforts should be made to protect all populations. The maintenance of substantial population size should be initiated via fencing and controlling collection to restore the regeneration of populations.  相似文献   

2.
Aim To elucidate the historical phylogeography of the dusky pipefish (Syngnathus floridae) in the North American Atlantic and Gulf of Mexico ocean basins. Location Southern Atlantic Ocean and northern Gulf of Mexico within the continental United States. Methods A 394‐bp fragment of the mitochondrial cytochrome b gene and a 235‐bp fragment of the mitochondrial control region were analysed from individuals from 10 locations. Phylogenetic reconstruction, haplotype network, mismatch distributions and analysis of molecular variance were used to infer population structure between ocean basins and time from population expansion within ocean basins. Six microsatellite loci were also analysed to estimate population structure and gene flow among five populations using genetic distance methods (FST, Nei’s genetic distance), isolation by distance (Mantel’s test), coalescent‐based estimates of genetic diversity and migration patterns, Bayesian cluster analysis and bottleneck simulations. Results Mitochondrial analyses revealed significant structuring between ocean basins in both cytochrome b (ΦST = 0.361, P < 0.0001; ΦCT = 0.312, P < 0.02) and control region (ΦST = 0.166, P < 0.0001; ΦCT = 0.128, P < 0.03) sequences. However, phylogenetic reconstructions failed to show reciprocal monophyly in populations between ocean basins. Microsatellite analyses revealed significant population substructuring between all locations sampled except for the two locations that were in closest proximity to each other (global FST value = 0.026). Bayesian analysis of microsatellite data also revealed significant population structuring between ocean basins. Coalescent‐based analyses of microsatellite data revealed low migration rates among all sites. Mismatch distribution analysis of mitochondrial loci supports a sudden population expansion in both ocean basins in the late Pleistocene, with the expansion of Atlantic populations occurring more recently. Main conclusions Present‐day populations of S. floridae do not bear the mitochondrial DNA signature of the strong phylogenetic discontinuity between the Atlantic and Gulf coasts of North America commonly observed in other species. Rather, our results suggest that Atlantic and Gulf of Mexico populations of S. floridae are closely related but nevertheless exhibit local and regional population structure. We conclude that the present‐day phylogeographic pattern is the result of a recent population expansion into the Atlantic in the late Pleistocene, and that life‐history traits and ecology may play a pivotal role in shaping the realized geographical distribution pattern of this species.  相似文献   

3.
Common bottlenose dolphins (Tursiops truncatus) are found worldwide in temperate and tropical regions, often occurring as distinct coastal and offshore ecotypes. Along the west coast of the United States, two stocks are recognized for management based on morphological and photo‐identification studies: a California coastal stock, estimated at 450–500 individuals, and a California/Oregon/Washington offshore stock of about 1,000 animals. This study is the first to analyze genetic differentiation between these stocks. We examined both the hypervariable portion of the mitochondrial DNA (mtDNA) control region and fifteen microsatellite markers for coastal (n = 64) and offshore (n = 69) dolphins. Significant genetic differentiation was found between the two stocks for mtDNA (ΦST = 0.30, P < 0.001; FST = 0.14, P < 0.001) and microsatellite loci (FST = 0.19, P < 0.001). Coastal dolphins had less genetic diversity than offshore dolphins. Further substructuring within the offshore stock was not detected. The level of genetic differentiation between the coastal and offshore dolphins is consistent with long‐term separation and reinforces recognizing them as separate stocks. These findings are particularly important for management of the smaller, less genetically diverse, coastal stock that is vulnerable to a variety of anthropogenic threats.  相似文献   

4.
Humpback whales undertake long‐distance seasonal migrations between low latitude winter breeding grounds and high latitude summer feeding grounds. We report the first in‐depth population genetic study of the humpback whales that migrate to separate winter breeding grounds along the northwestern and northeastern coasts of Australia, but overlap on summer feeding grounds around Antarctica. Weak but significant differentiation between eastern and western Australia was detected across ten microsatellite loci (FST = 0.005, P = 0.001; DEST = 0.031, P = 0.001, n = 364) and mitochondrial control region sequences (FST = 0.017 and ΦST = 0.069, P = 0.001, n = 364). Bayesian clustering analyses using microsatellite data could not resolve any population structure unless sampling location was provided as a prior. This study supports the emerging evidence that weak genetic differentiation is characteristic among neighboring Southern Hemisphere humpback whale breeding populations. This may be a consequence of relatively high gene flow facilitated by overlapping summer feeding areas in Antarctic waters.  相似文献   

5.
Phylogeographical patterns of intraspecific variation can provide insights into the population‐level processes responsible for speciation and yield information useful for conservation purposes. In the present study, three hundred and forty‐five base pairs of the mitochondrial DNA control region were sequenced to analyse the genetic diversity, population structure and history, and phylogeography of finless porpoises (Neophocaena phocaenoides) in Chinese and Japanese waters of the North Pacific. Nucleotide and haplotype diversities were 0.44% and 0.79 ± 0.01 for Chinese and Japanese waters, respectively, but varied significantly among populations. Analysis of molecular variance showed a high level of genetic structure between populations (ΦST = 0.61, P < 0.001; FST = 0.52, P < 0.001). Eleven of 18 haplotypes were restricted to a single population, common haplotypes were found in two to four populations, but no haplotype was found throughout Sino‐Japanese waters, suggesting multiple colonization events followed by limited gene flow. The inferred age of demographic expansion was from the end stage of the last ice age to the Holocene. No obvious phylogeographical pattern was revealed, including between saline and fresh water populations. A low level of genetic diversity for each population and high among‐population differentiation in haplotype frequency were revealed, which suggest a role for random genetic drift, recent demographic bottlenecks, and reduced or limited gene flow in these populations. Some conservation considerations, with special reference to the unique Yangtze population, are discussed. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 193–204.  相似文献   

6.
Population structure and lineage diversification within a small, non‐dispersive hammerhead shark species, the bonnethead shark Sphyrna tiburo, was assessed. Sphyrna tiburo is currently described as one continuously distributed species along the Atlantic continental margins of North, Central and South America, but recent genetic analysis of an insular population (Trinidad) suggests the possibility of cryptic speciation. To address this issue S. tiburo were sampled at six sites along c. 6200 km of continuous, continental coastline and from one island location (Grand Bahama) across a discontinuity in their distribution (the Straits of Florida), in order to test if they constitute a single lineage over this distribution. A total of 1030 bp of the mitochondrial control region (CR) was obtained for 239 S. tiburo, revealing 73 distinct haplotypes, high nucleotide diversity (0·01089) and a pair of highly divergent lineages estimated to have separated 3·61–5·62 million years ago. Mitochondrial cytochrome oxidase I and nuclear internal transcribed spacer loci show the same pattern. Divergence is similar within S. tiburo to that observed between established elasmobranch sister species, providing further evidence of cryptic speciation. A global AMOVA based on CR confirms that genetic diversity is primarily partitioned among populations (ΦST = 0·828, P < 0·001) because the divergent lineages are almost perfectly segregated between Belize and North America–The Bahamas. An AMOVA consisting solely of the North American and Bahamian samples is also significantly different from zero (ΦST = 0·088, P < 0·001) and pairwise FST is significantly different between all sites. These findings suggest that S. tiburo comprises a species complex and supports previous research indicating fine population structure, which has implications for fisheries management and biodiversity conservation.  相似文献   

7.
Spinner dolphins (Stenella longirostris) exhibit different social behaviours at two regions in the Hawaiian Archipelago: off the high volcanic islands in the SE archipelago they form dynamic groups with ever‐changing membership, but in the low carbonate atolls in the NW archipelago they form long‐term stable groups. To determine whether these environmental and social differences influence population genetic structure, we surveyed spinner dolphins throughout the Hawaiian Archipelago with mtDNA control region sequences and 10 microsatellite loci (n = 505). F‐statistics, Bayesian cluster analyses, and assignment tests revealed population genetic separations between most islands, with less genetic structuring among the NW atolls than among the SE high islands. The populations with the most stable social structure (Midway and Kure Atolls) have the highest gene flow between populations (mtDNA ΦST < 0.001, P = 0.357; microsatellite FST = ?0.001; P = 0.597), and a population with dynamic groups and fluid social structure (the Kona Coast of the island of Hawai’i) has the lowest gene flow (mtDNA 0.042 < ΦST < 0.236, P < 0.05; microsatellite 0.016 < FST < 0.040, P < 0.001). We suggest that gene flow, dispersal, and social structure are influenced by the availability of habitat and resources at each island. Genetic comparisons to a South Pacific location (n = 16) indicate that Hawaiian populations are genetically depauperate and isolated from other Pacific locations (mtDNA 0.216 < FST < 0.643, P < 0.001; microsatellite 0.058 < FST < 0.090, P < 0.001); this isolation may also influence social and genetic structure within Hawai’i. Our results illustrate that genetic and social structure are flexible traits that can vary between even closely‐related populations.  相似文献   

8.
Nibea albiflora (yellow drum) is an important seafood fish species in East Asia. We explored the population genetic variation of N. albiflora along the coastal waters of the China Sea using microsatellite markers to facilitate a selective breeding programme that is undertaken in China. A total of 256 alleles were detected at 12 loci in four wild populations. A high level of genetic diversity was observed with the mean number of alleles and the observed and expected heterozygosity in each population ranging from 7.917 to 14.083, 0.701 to 0.764 and 0.765 to 0.841, respectively. Pairwise fixation index (FST) analysis indicated significant but weak genetic differentiation among populations from four localities (FST?=?0.030, P?<?0.01), which was also confirmed by analysis of molecular variance (AMOVA). Significant genetic differentiation was detected between Ningde and the other populations (FST?=?0.047–0.056, P?<?0.01). Structure analysis suggested that N. albiflora within the examined range might be composed of two stocks. The data of the present study revealed high genetic diversity and low genetic differentiation among the N. albiflora populations along the coast of the China Sea. This baseline information could be valuable for future selective breeding programmes of N. albiflora.  相似文献   

9.
Biogeographic barriers potentially restrict gene flow but variation in dispersal or vagility can influence the effectiveness of these barriers among different species and produce characteristic patterns of population genetic structure. The objective of this study was to investigate interspecific and intraspecific genetic structure in two closely related species that differ in several life‐history characteristics. The grey teal Anas gracilis is geographically widespread throughout Australia with a distribution that crosses several recognized biogeographic barriers. This species has high vagility as its extensive movements track broad‐scale patterns in rainfall. In contrast, the closely related chestnut teal A. castanea is endemic to the mesic southeastern and southwestern regions of Australia and is more sedentary. We hypothesized that these differences in life‐history characteristics would result in more pronounced population structuring in the chestnut teal. We sequenced five nuclear loci (nuDNA) for 49 grey teal and 23 chestnut teal and compared results to published mitochondrial DNA (mtDNA) sequences. We used analysis of molecular variance to examine population structure, and applied coalescent based approaches to estimate demographic parameters. As predicted, chestnut teal were more strongly structured at both mtDNA and nuDNA (ΦST= 0.163 and 0.054, respectively) than were grey teal (ΦST < 0.0001 for both sets of loci). Surprisingly, a greater proportion of the total genetic variation was partitioned among populations within species (ΦSC= 0.014 and 0.047 for nuDNA and mtDNA, respectively) than between the two species (ΦCT < 0.0001 for both loci). The ‘Isolation with Migration’ coalescent model suggested a late Pleistocene divergence between the taxa, but remarkably, a deeper divergence between the southeastern and southwestern populations of chestnut teal. We conclude that dispersal potential played a prominent role in the structuring of populations within these species and that divergent selection associated with ecology and life history traits likely contributed to rapid and recent speciation in this pair.  相似文献   

10.
Fine‐scale genetic structure of large mammals is rarely analysed. Yet it is potentially important in estimating gene flow between the now fragmented wildlife habitats and in predicting re‐colonization following local extinction events. In this study, we examined the extent to which warthog populations from five localities in Uganda are genetically structured using both mitochondrial control region sequence and microsatellite allele length variation. Four of the localities (Queen Elizabeth, Murchison Falls, Lake Mburo and Kidepo Valley) are national parks with relatively good wildlife protection practices and the other (Luwero), not a protected area, is characterized by a great deal of hunting. In the total sample, significant genetic differentiation was observed at both the mtDNA locus (FST = 0.68; P < 0.001) and the microsatellite loci (FST = 0.14; P < 0.001). Despite the relatively short geographical distances between populations, significant genetic differentiation was observed in all pair‐wise population comparisons at the two marker sets (mtDNA FST = 0.21–0.79, P < 0.001; microsatellite FST = 0.074–0.191, P < 0.001). Significant heterozygote deficiency was observed at most loci within protected areas while no significant deviation from Hardy–Weinberg expectation was observed in the unprotected Luwero population. We explain these results in terms of: (i) a strong philopatry among warthogs, (ii) a Wahlund effect resulting from the sampling regime and (iii) break down of social structure in the disturbed Luwero population.  相似文献   

11.
To enhance the understanding of larval dispersal in marine organisms, species with a sedentary adult stage and a pelagic larval phase of known duration constitute ideal candidates, because inferences can be made about the role of larval dispersal in population connectivity. Members of the immensely diverse marine fauna of the Indo‐Malay Archipelago are of particular importance in this respect, as biodiversity conservation is becoming a large concern in this region. In this study, the genetic population structure of the pink anemonefish, Amphiprion perideraion, is analyzed by applying 10 microsatellite loci as well as sequences of the mitochondrial control region to also allow for a direct comparison of marker‐derived results. Both marker systems detected a strong overall genetic structure (ΦST = 0.096, P < 0.0001; mean Dest = 0.17; FST = 0.015, P < 0.0001) and best supported regional groupings (ΦCT = 0.199 < 0.0001; FCT = 0.018, < 0.001) that suggested a differentiation of the Java Sea population from the rest of the archipelago. Differentiation of a New Guinea group was confirmed by both markers, but disagreed over the affinity of populations from west New Guinea. Mitochondrial data suggest higher connectivity among populations with fewer signals of regional substructure than microsatellite data. Considering the homogenizing effect of only a few migrants per generation on genetic differentiation between populations, marker‐specific results have important implications for conservation efforts concerning this and similar species.  相似文献   

12.
The endangered twoline skiffia Neotoca bilineata, a viviparous fish of the subfamily Goodeinae, endemic to central Mexico (inhabiting two basins, Cuitzeo and Lerma‐Santiago) was evaluated using genetic and habitat information. The genetic variation of all remaining populations of the species was analysed using both mitochondrial and microsatellite markers and their habitat conditions were assessed using a water quality index (IWQ). An 80% local extinction was found across the distribution of N. bilineata. The species was found in three of the 16 historical localities plus one previously unreported site. Most areas inhabited by the remaining populations had IWQ scores unsuitable for the conservation of freshwater biodiversity. Populations showed low but significant genetic differentiation with both markers (mtDNA φST = 0·076, P < 0·001; microsatellite FST = 0·314, P < 0·001). Borbollon, in the Cuitzeo Basin, showed the highest level of differentiation and was identified as a single genetic unit by Bayesian assignment methods. Rio Grande de Morelia and Salamanca populations showed the highest genetic diversity and also a high migration rate facilitated by an artificial channel that connected the two basins. Overall, high genetic diversity values were observed compared with other freshwater fishes (average Na = 16 alleles and loci and mean ±s.d . Ho = 0·63 ± 0·10 and nucleotide diversity π = 0·006). This suggests that the observed genetic diversity has not diminished as rapidly as the species' habitat destruction. No evidence of correlation between habitat conditions and genetic diversity was found. The current pattern of genetic diversity may be the result of both historical factors and recent modifications of the hydrological system. The main threat to the species may be the rapid habitat deterioration and associated demographic stochasticity rather than genetic factors.  相似文献   

13.
Dispersal shapes demographic processes and therefore is fundamental to understanding biological, ecological, and evolutionary processes acting within populations. However, assessing population connectivity in scoters (Melanitta sp.) is challenging as these species have large spatial distributions that span remote landscapes, have varying nesting distributions (disjunct vs. continuous), exhibit unknown levels of dispersal, and vary in the timing of the formation of pair bonds (winter vs. fall/spring migration) that may influence the distribution of genetic diversity. Here, we used double‐digest restriction‐associated DNA sequence (ddRAD) and microsatellite genotype data to assess population structure within the three North American species of scoter (black scoter, M. americana; white‐winged scoter, M. deglandi; surf scoter, M. perspicillata), and between their European congeners (common scoter, M. nigra; velvet scoter, M. fusca). We uncovered no or weak genomic structure (ddRAD ΦST < 0.019; microsatellite FST < 0.004) within North America but high levels of structure among European congeners (ddRAD ΦST > 0.155, microsatellite FST > 0.086). The pattern of limited genomic structure within North America is shared with other sea duck species and is often attributed to male‐biased dispersal. Further, migratory tendencies (east vs. west) of female surf and white‐winged scoters in central Canada are known to vary across years, providing additional opportunities for intracontinental dispersal and a mechanism for the maintenance of genomic connectivity across North America. In contrast, the black scoter had relatively elevated levels of divergence between Alaska and Atlantic sites and a second genetic cluster found in Alaska at ddRAD loci was concordant with its disjunct breeding distribution suggestive of a dispersal barrier (behavioral or physical). Although scoter populations appear to be connected through a dispersal network, a small percentage (<4%) of ddRAD loci had elevated divergence which may be useful in linking areas (nesting, molting, staging, and wintering) throughout the annual cycle.  相似文献   

14.
The genetic diversity and population structure of the vulnerable Chinese Egret (Egretta eulophotes) were surveyed in the present study from three archipelagoes that cover the most southerly to the very northerly parts of the Chinese distribution range of this species, using a 433-bp fragment of the mitochondrial control region (CR). Among 90 individual samples, 31 different haplotypes were defined by 30 polymorphic sites. Overall haplotype diversity, nucleotide diversity and mean sequence divergence (p-distance) of this egret were 0.920, 0.0088 and 1.11%, respectively. NJ tree and parsimony network for the CR haplotypes of the Chinese Egret showed little genetic structure, and analysis of molecular variance indicated low but significant genetic differentiation (haplotype-based ΦST = 0.03267, P < 0.05 and distance-based ΦST = 0.04194, P < 0.05) among populations. The significant Fu’s F S tests (Fu’s F S  = −16.946, P < 0.01) and mismatch distribution analysis (τ = 4.463, SSD = 0.0081, P = 0.12) suggested that the low genetic differentiation and little geographical structure of the genetic differentiation might be explained by the population expansion. The Mantel test (haplotype-based F ST, r = 0.639, P = 0.34 and distance-based F ST, r = 0.947, P = 0.15) suggest that the significant genetic differentiation among populations was likely due to isolation by distance.  相似文献   

15.
In the winter of 2007–2008, a large number of fish were killed by chilling damage that occurred in the Pescadores (Penghu Archipelago). Such extreme weather events can cause rapid population changes, which provide an opportunity to understand the possible restoration mechanism of coral reef fishes in the Pescadores. The fine-scale genetic structure of the rabbitfish, Siganus fuscescens (Siganidae), was assessed using amplified fragment length polymorphism analysis. Significant genetic differences (lower gene flow) were observed between rabbitfish from the northern and southern parts of the Pescadores (Chenkong-Soukang, Φ ST 0.075, P?<?0.001) but not between those from the northern Pescadores and northeastern Taiwan (Chenkong-Keelung, Φ ST 0.03, P?>?0.02). The northern Pescadores and northeastern Taiwan have been shown to be relatively connected. The population structure of rabbitfish has complemented and helped support fish population recovery after several chilling events in the Pescadores.  相似文献   

16.
Speciation is a continuous and dynamic process, and studying organisms during the early stages of this process can aid in identifying speciation mechanisms. The mallard (Anas platyrhynchos) and Mexican duck (A. [p.] diazi) are two recently diverged taxa with a history of hybridization and controversial taxonomy. To understand their evolutionary history, we conducted genomic scans to characterize patterns of genetic diversity and divergence across the mitochondrial DNA (mtDNA) control region, 3523 autosomal loci and 172 Z‐linked sex chromosome loci. Between the two taxa, Z‐linked loci (ΦST = 0.088) were 5.2 times more differentiated than autosomal DNA (ΦST = 0.017) but comparable to mtDNA (ΦST = 0.092). This elevated Z differentiation deviated from neutral expectations inferred from simulated data that incorporated demographic history and differences in effective population sizes between marker types. Furthermore, 3% of Z‐linked loci, compared to <0.1% of autosomal loci, were detected as outlier loci under divergent selection with elevated relative (ΦST) and absolute (dXY) estimates of divergence. In contrast, the ratio of Z‐linked and autosomal differentiation among the seven Mexican duck sampling locations was close to 1:1 (ΦST = 0.018 for both markers). We conclude that between mallards and Mexican ducks, divergence at autosomal markers is largely neutral, whereas greater divergence on the Z chromosome (or some portions thereof) is likely the product of selection that has been important in speciation. Our results contribute to a growing body of literature indicating elevated divergence on the Z chromosome and its likely importance in avian speciation.  相似文献   

17.
Aim To test the potential of two contrasting biogeographical hypotheses (‘Indian/Pacific Ocean Basin’ vs. ‘Wallace's Line’) to explain the distribution of genetic diversity among populations of a marine fish in Southeast Asia. Location The marine waters of Asia and Southeast Asia: from India to Japan, and east to the Indonesian islands of Sulawesi and Flores. Methods We sequenced a 696 base pair fragment of cytochrome b DNA of 100 individuals of Hippocampus trimaculatus Leach 1814 (three‐spot seahorse), obtained from across its range. We tested our hypotheses using phylogenetic reconstructions and analyses of molecular variance. Results Significant genetic divergence was observed among the specimens. Two distinct lineages emerged that diverged by an average of 2.9%. The genetic split was geographically associated, but surprisingly it indicated a major east–west division similar to the terrestrial Wallace's Line (ΦST = 0.662, P < 0.001) rather than one consistent with an Indian‐Pacific ocean basin separation hypothesis (ΦST = 0.023, P = 0.153). Samples from east of Wallace's Line, when analysed separately, however, were consistent with an Indian/Pacific Ocean separation (ΦST = 0.461, P = 0.005). The degree of genetic and geographical structure within each lineage also varied. Lineage A, to the west, was evolutionarily shallow (star‐like), and the haplotypes it contained often occurred over a wide area. Lineage B to the east had greater genetic structure, and there was also some evidence of geographical localization of sublineages within B. Main conclusions Our results indicate that the genetic diversity of marine organisms in Southeast Asia may reflect a more complex history than the simple division between two major ocean basins that has been proposed by previous authors. In particular, the east–west genetic division observed here is novel among marine organisms examined to date. The high haplotype, but low nucleotide diversity to the west of Wallace's Line is consistent with post‐glacial colonization of the Sunda Shelf. Additional data are needed to test the generality of these patterns.  相似文献   

18.
Identifying factors that cause genetic differentiation in plant populations and the spatial scale at which genetic structuring can be detected will help to understand plant population dynamics and identify conservation units. In this study, we determined the genetic structure and diversity of Pterocarpus officinalis, a widespread tropical wetland tree, at three spatial scales: (1) drainage basin “watershed” (<10 km), (2) within Puerto Rico (<100 km), and (3) Caribbean-wide (>1000 km) using AFLP. At all three spatial scales, most of the genetic variation occurred within populations, but as the spatial scale increased from the watershed to the Caribbean region, there was an increase in the among population variation (ΦST=0.19 to ΦST=0.53). At the watershed scale, there was no significant differentiation (P=0.77) among populations in the different watersheds, although there was some evidence that montane and coastal populations differed (P<0.01). At the island scale, there was significant differentiation (P<0.001) among four populations in Puerto Rico. At the regional scale (>1000 km), we found significant differentiation (P<0.001) between island and continental populations in the Caribbean region, which we attributed to factors associated with the colonization history of P. officinalis in the Neotropics. Given that genetic structure can occur from local to regional spatial scales, it is critical that conservation recommendations be based on genetic information collected at the appropriate spatial scale.  相似文献   

19.
The polymorphism of the mitochondrial gene cytochrome oxidase III was studied in the Mediterranean octopus, Octopus vulgaris Cuvier, 1797. A total of 202 specimens from seven sampling sites were analysed with the aim of elucidating patterns of genetic structure in the central Mediterranean Sea and to give an insight into the phylogeny of the Octopus genus. Phylogenetic analyses showed that individuals from the central Mediterranean belong to the O. vulgaris species whose limits should nevertheless be clarified. Concerning genetic structure, two high-frequency haplotypes were present in all locations. The overall genetic divergence (ΦST = 0.05, P < 0.05) indicated a significant genetic structuring in the study area and an AMOVA highlighted a significant break between western and eastern Mediterranean basins (ΦCT = 0.094, P < 0.05). Possible explanations for the observed patterns of genetic structuring are discussed with reference to their relevance for fisheries management.  相似文献   

20.
Knowledge of the mechanisms limiting connectivity and gene flow in deep‐sea ecosystems is scarce, especially for deep‐sea sharks. The Portuguese dogfish (Centroscymnus coelolepis) is a globally distributed and near threatened deep‐sea shark. C. coelolepis population structure was studied using 11 nuclear microsatellite markers and a 497‐bp fragment from the mtDNA control region. High levels of genetic homogeneity across the Atlantic (ΦST = ?0.0091, FST = 0.0024, > 0.05) were found suggesting one large population unit at this basin. The low levels of genetic divergence between Atlantic and Australia (ΦST = 0.0744, < 0.01; FST = 0.0015, > 0.05) further suggested that this species may be able to maintain some degree of genetic connectivity even across ocean basins. In contrast, sharks from the Mediterranean Sea exhibited marked genetic differentiation from all other localities studied (ΦST = 0.3808, FST = 0.1149, < 0.001). This finding suggests that the shallow depth of the Strait of Gibraltar acts as a barrier to dispersal and that isolation and genetic drift may have had an important role shaping the Mediterranean shark population over time. Analyses of life history traits allowed the direct comparison among regions providing a complete characterization of this shark's populations. Sharks from the Mediterranean had markedly smaller adult body size and size at maturity compared to Atlantic and Pacific individuals. Together, these results suggest the existence of an isolated and unique population of C. coelolepis inhabiting the Mediterranean that most likely became separated from the Atlantic in the late Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号