首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas syringae pv. actinidiae ICMP 18884 biovar 3 (Psa3) produces necrotic lesions during infection of its kiwifruit host. Bacterial growth in planta and lesion formation are dependent upon a functional type III secretion system (T3S), which translocates multiple effector proteins into host cells. Associated with the T3S locus is the conserved effector locus (CEL), which has been characterized and shown to be essential for the full virulence in other P. syringae pathovars. Two effectors at the CEL, hopM1 and avrE1, as well as an avrE1-related non-CEL effector, hopR1, have been shown to be redundant in the model pathogen P. syringae pv. tomato DC3000 (Pto), a close relative of Psa. However, it is not known whether CEL-related effectors are required for Psa pathogenicity. The Psa3 allele of hopM1, and its associated chaperone, shcM, have diverged significantly from their orthologs in Pto. Furthermore, the CEL effector hopAA1-1, as well as a related non-CEL effector, hopAA1-2, have both been pseudogenized. We have shown that HopM1 does not contribute to Psa3 virulence due to a truncation in shcM, a truncation conserved in the Psa lineage, probably due to the need to evade HopM1-triggered immunity in kiwifruit. We characterized the virulence contribution of CEL and related effectors in Psa3 and found that only avrE1 and hopR1, additively, are required for in planta growth and lesion production. This is unlike the redundancy described for these effectors in Pto and indicates that these two Psa3 genes are key determinants essential for kiwifruit bacterial canker disease.  相似文献   

2.
3.
A pandemic isolate of Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) has devastated kiwifruit orchards growing cultivars of Actinidia chinensis. In contrast, A. arguta (kiwiberry) is not a host of Psa3. Resistance is mediated via effector-triggered immunity, as demonstrated by induction of the hypersensitive response in infected A. arguta leaves, observed by microscopy and quantified by ion-leakage assays. Isolates of Psa3 that cause disease in A. arguta have been isolated and analyzed, revealing a 51 kb deletion in the exchangeable effector locus (EEL). This natural EEL-mutant isolate and strains with synthetic knockouts of the EEL were more virulent in A. arguta plantlets than wild-type Psa3. Screening of a complete library of Psa3 effector knockout strains identified increased growth in planta for knockouts of four effectors–AvrRpm1a, HopF1c, HopZ5a, and the EEL effector HopAW1a –suggesting a resistance response in A. arguta. Hypersensitive response (HR) assays indicate that three of these effectors trigger a host species-specific HR. A Psa3 strain with all four effectors knocked out escaped host recognition, but a cumulative increase in bacterial pathogenicity and virulence was not observed. These avirulence effectors can be used in turn to identify the first cognate resistance genes in Actinidia for breeding durable resistance into future kiwifruit cultivars.  相似文献   

4.
【背景】噬菌体鸡尾酒可作为一种杀灭猕猴桃溃疡病病原菌(Pseudomonassyringaepv.actinidiae, Psa)的生物制剂,但关于噬菌体鸡尾酒在田间的防治效果和对猕猴桃植株叶际内生细菌群落结构影响的研究依然较少。【目的】探究噬菌体鸡尾酒在田间防控猕猴桃溃疡病的效果,以及噬菌体鸡尾酒对猕猴桃茎内叶际细菌微生态的影响。【方法】使用猕猴桃溃疡病病原菌感染健康植株,对比施用噬菌体鸡尾酒和传统铜制剂后溃疡病的发病情况,利用高通量测序技术分析猕猴桃叶际内生细菌群落结构的变化。【结果】与铜制剂相比,噬菌体鸡尾酒可更有效地控制猕猴桃溃疡病,改变叶际细菌群落的丰富度与多样性,增强群落结构的稳定性,改善群落物种功能基因丰度情况,一定程度使叶际细菌群落恢复至健康状态。【结论】噬菌体鸡尾酒在杀灭病原菌的同时具有良好的微生态调节功能,在猕猴桃溃疡病的生物防治中具有巨大的应用潜力。  相似文献   

5.
Pseudomonas syringae pv. actinidiae (Psa) causes the bacterial canker disease on kiwifruit vines. The disease outbreak has been reported in several countries worldwide, including New Zealand. Here, we briefly reviewed the current situation of Psa infection of kiwifruit vines in New Zealand, the effects of Psa on the New Zealand’s kiwifruit industry, and the disease control and breeding programmes undertaken in response to the outbreak of Psa in New Zealand. Then the methodology of an alternative breeding approach or in vitro breeding, which is a non-GM approach to obtain useful plant tissue culture-derived genetic variation in crop plants, was discussed. As a specific example of potential application of in vitro breeding, a novel plant breeding project idea based on the elemental defence mechanism is to generate Cu/Zn tolerant kiwifruit varieties that exhibit improved Psa tolerance.  相似文献   

6.
Abstract

Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, is considered the main pathogen of yellow-, green- and red-fleshed kiwifruit. All major kiwifruit producing countries in the world have been affected by this bacterial pathogen, leading to substantial economic losses. The control of bacterial canker of kiwifruit is based only on preventive methods or on the use of copper compounds that can cause phytotoxicity problems. In this study, the in vitro antibacterial activity of seven different plant extracts against eight Psa strains has been evaluated. The inhibition of 100% of the Psa growth was observed, after 24?h, for the extracts of Polygonum cuspidatum roots (POL-roots), Hypericum perforatum roots elicited with chitosan oligosaccharides (HYP-COS roots) and non-fermented grape pomace (ITA-pomace). The strongest antibacterial activity was exhibited by POL-roots, with a geometric mean of minimum inhibitory concentration of 100% of growth (GMMIC100) of 105.11 µg/mL after 24?h, and with a GMMIC100 value of 148.65 µg/mL after 48?h. Moreover, POL-roots extract showed the best bactericidal activity with a GMMBC of 210.22 µg/mL. No phytotoxic activity was observed up to 15 days in the leaves of Actinidia chinensis “Belen” treated with plant extracts at 500 µg/mL.  相似文献   

7.
New economically important diseases on crops and forest trees emerge recurrently. An understanding of where new pathogenic lines come from and how they evolve is fundamental for the deployment of accurate surveillance methods. We used kiwifruit bacterial canker as a model to assess the importance of potential reservoirs of new pathogenic lineages. The current kiwifruit canker epidemic is at least the fourth outbreak of the disease on kiwifruit caused by Pseudomonas syringae in the mere 50 years in which this crop has been cultivated worldwide, with each outbreak being caused by different genetic lines of the bacterium. Here, we ask whether strains in natural (non‐agricultural) environments could cause future epidemics of canker on kiwifruit. To answer this question, we evaluated the pathogenicity, endophytic colonization capacity and competitiveness on kiwifruit of P. syringae strains genetically similar to epidemic strains and originally isolated from aquatic and subalpine habitats. All environmental strains possessing an operon involved in the degradation of aromatic compounds via the catechol pathway grew endophytically and caused symptoms in kiwifruit vascular tissue. Environmental and epidemic strains showed a wide host range, revealing their potential as future pathogens of a variety of hosts. Environmental strains co‐existed endophytically with CFBP 7286, an epidemic strain, and shared about 20 virulence genes, but were missing six virulence genes found in all epidemic strains. By identifying the specific gene content in genetic backgrounds similar to known epidemic strains, we developed criteria to assess the epidemic potential and to survey for such strains as a means of forecasting and managing disease emergence.  相似文献   

8.
猕猴桃溃疡病抗性育种研究进展   总被引:2,自引:0,他引:2  
猕猴桃细菌性溃疡病是一种危害世界猕猴桃生产的毁灭性病害,目前尚未有有效的防治办法。培育抗性品种是保证猕猴桃产业健康发展的重要途径之一,猕猴桃溃疡病抗性育种成为近年来猕猴桃研究的热点。但是,目前大部分猕猴桃种质资源对溃疡病的抗性不明,限制了猕猴桃优异抗性种质资源的发掘和利用。虽然人们发展出了一些猕猴桃溃疡病抗性鉴定和评价方法,但是使用效果并不理想,存在较大的局限性,鉴定的准确性和稳定性还有待提高。该文针对猕猴桃溃疡病抗性育种中的几个方面,如抗性材料的选育(现有品种的抗性、抗性砧木研究和野生抗溃资源等),抗性鉴定和评价技术(大田鉴定、活体或离体鉴定等)及抗性机理研究等进行综述,并针对存在的问题,提出建设性意见。在猕猴桃溃疡病抗性育种过程中,最关键的是要建立一个科学、系统的溃疡病抗性评价体系,以对猕猴桃种质资源进行大规模的抗性普查和评估,在此基础上充分利用种间杂交和工程育种技术加快抗性育种进程,并以此带动猕猴桃溃疡病抗性机理的深入研究和抗病基因的挖掘和利用等,旨在从根本上解决猕猴桃生产中受溃疡病困扰这一关键难题,促进猕猴桃产业绿色、健康和可持续性发展。  相似文献   

9.
The first outbreaks of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae biovar 3 were detected in France in 2010. P. syringae pv. actinidiae causes leaf spots, dieback, and canker that sometimes lead to the death of the vine. P. syringae pv. actinidifoliorum, which is pathogenic on kiwi as well, causes only leaf spots. In order to conduct an epidemiological study to track the spread of the epidemics of these two pathogens in France, we developed a multilocus variable-number tandem-repeat (VNTR) analysis (MLVA). MLVA was conducted on 340 strains of P. syringae pv. actinidiae biovar 3 isolated in Chile, China, France, Italy, and New Zealand and on 39 strains of P. syringae pv. actinidifoliorum isolated in Australia, France, and New Zealand. Eleven polymorphic VNTR loci were identified in the genomes of P. syringae pv. actinidiae biovar 3 ICMP 18744 and of P. syringae pv. actinidifoliorum ICMP 18807. MLVA enabled the structuring of P. syringae pv. actinidiae biovar 3 and P. syringae pv. actinidifoliorum strains in 55 and 16 haplotypes, respectively. MLVA and discriminant analysis of principal components revealed that strains isolated in Chile, China, and New Zealand are genetically distinct from P. syringae pv. actinidiae strains isolated in France and in Italy, which appear to be closely related at the genetic level. In contrast, no structuring was observed for P. syringae pv. actinidifoliorum. We developed an MLVA scheme to explore the diversity within P. syringae pv. actinidiae biovar 3 and to trace the dispersal routes of epidemic P. syringae pv. actinidiae biovar 3 in Europe. We suggest using this MLVA scheme to trace the dispersal routes of P. syringae pv. actinidiae at a global level.  相似文献   

10.
The type III secretion system (T3SS) is an important virulence factor of pathogenic bacteria, but the natural occurrence of variants of bacterial plant pathogens with deficiencies in their T3SS raises questions about the significance of the T3SS for fitness. Previous work on T3SS-deficient plant pathogenic bacteria has focused on strains from plants or plant debris. Here we have characterized T3SS-deficient strains of Pseudomonas syringae from plant and nonplant substrates in pristine nonagricultural contexts, many of which represent recently described clades not yet found associated with crop plants. Strains incapable of inducing a hypersensitive reaction (HR) in tobacco were detected in 65% of 126 samples from headwaters of rivers (mountain creeks and lakes), snowpack, epilithic biofilms, wild plants and leaf litter and constituted 2 to 100% of the P. syringae population associated with each sample. All HR strains lacked at least one gene in the canonical hrp/hrc locus or the associated conserved effector locus, but most lacked all six of the genes tested (hrcC, hrpL, hrpK1, avrE1 and hrpW1) and represented several disparate phylogenetic clades. Although most HR strains were incapable of causing symptoms on cantaloupe seedlings as expected, strains in the recently described TA-002 clade caused severe symptoms in spite of the absence of any of the six conserved genes of the canonical T3SS according to PCR and Southern blot assays. The phylogenetic context of the T3SS variants we observed provides insight into the evolutionary history of P. syringae as a pathogen and as an environmental saprophyte.  相似文献   

11.
Complete sequences of the Rrn 18 genes were obtained from 13 strains of the nonphotosynthetic algal genus Polytoma. Phylogenetic analyses showed that these strains formed two clades. One clade shows only modest sequence diversity but is represented by strains collected at widely dispersed sites in Europe and America. The other clade consists of a single isolate from the Canary Islands. Both clades lie well within the extended clade that includes all species of Chlamydomonas for which sequence data are available. The two Polytoma clades are separated from each other by several green species, suggesting that the extant nonphotosynthetic Chlamydomonadaceae arose from photosynthetic ancestors at least twice. These results suggest that nonphotosynthetic mutants are capable of establishing lineages that can spread widely but have a higher probability of extinction than their photosynthetic congeners.  相似文献   

12.
Vibrio nigripulchritudo is an emerging pathogen of farmed shrimp in New Caledonia and other regions in the Indo-Pacific. The molecular determinants of V. nigripulchritudo pathogenicity are unknown; however, molecular epidemiological studies have suggested that pathogenicity is linked to particular lineages. Here, we performed high-throughput sequencing-based comparative genome analysis of 16 V. nigripulchritudo strains to explore the genomic diversity and evolutionary history of pathogen-containing lineages and to identify pathogen-specific genetic elements. Our phylogenetic analysis revealed three pathogen-containing V. nigripulchritudo clades, including two clades previously identified from New Caledonia and one novel clade comprising putatively pathogenic isolates from septicemic shrimp in Madagascar. The similar genetic distance between the three clades indicates that they have diverged from an ancestral population roughly at the same time and recombination analysis indicates that these genomes have, in the past, shared a common gene pool and exchanged genes. As each contemporary lineage is comprised of nearly identical strains, comparative genomics allowed differentiation of genetic elements specific to shrimp pathogenesis of varying severity. Notably, only a large plasmid present in all highly pathogenic (HP) strains encodes a toxin. Although less/non-pathogenic strains contain related plasmids, these are differentiated by a putative toxin locus. Expression of this gene by a non-pathogenic V. nigripulchritudo strain resulted in production of toxic culture supernatant, normally an exclusive feature of HP strains. Thus, this protein, here termed ‘nigritoxin'', is implicated to an extent that remains to be precisely determined in the toxicity of V. nigripulchritudo.  相似文献   

13.
Aims: Two well‐characterized Vibrio parahaemolyticus pathogenicity factors – thermostable direct haemolysin (TDH) and TDHrelated haemolysin – are produced by strains containing the tdh and trh genes, respectively. Most strains of V. parahaemolyticus contain two nonredundant type III secretion systems (T3SS), T3SS1 and T3SS2, both of which contribute to pathogenicity. Furthermore, a recent study has revealed two distinct lineages of the V. parahaemolyticus T3SS2: T3SS2α and T3SS2β. The aim of this study was to determine the incidence of these pathogenicity factors in environmental isolates of V. parahaemolyticus. Methods and Results: We collected 130 V. parahaemolyticus isolates (TCBS agar) containing tdh and/or trh (determined by colony hybridization) from sediment, oyster and water in the northern Gulf of Mexico and screened them and 12 clinical isolates (PCR and agarose gel electrophoresis) for pathogenicity factors tdh, trh, T3SS1, T3SS2α and T3SS2β. The majority of potential pathogens were detected in the sediment, including all tdh?/trh+ isolates. T3SS2α components were detected in all tdh+/trh ? isolates and zero of 109 trh+ isolates. One T3SS2α gene, vopB2, was found in all tdh+/trh? clinical strains but not in any of the 130 environmental strains. Fluorescence in situ hybridization adapted for individual gene recognition (RING‐FISH) was used to confirm the presence/absence of vopB2. T3SS2β was found in all tdh?/trh+ isolates and in no tdh+/trh? isolates. Conclusions: The combination of haemolysins found in each isolate consistently corresponded to the presence and type of T3SS detected. The vopB2 gene may represent a novel marker for identifying increased virulence among strains. Significance and Impact of the Study: This is the first study to confirm the presence of T3SS2β genes in V. parahaemolyticus strains isolated from the Gulf of Mexico and one of the few that examines the distribution and co‐existence of tdh, trh, T3SS1, T3SS2α and T3SS2β in a large collection of environmental strains.  相似文献   

14.
Bacterial canker is a devastating disease of kiwifruit caused by the bacterium Pseudomonas syringe pv. actinidiae. Canker disease of kiwifruit in Korea has been controlled using streptomycin for more than two decades. Four streptomycin-resistant strains, belonging to biovar 2, which are found only in Korea, were collected between 2013 and 2014 from different orchards located in Jeju, Korea. The genetic background for streptomycin resistance among P. syringe pv. actinidiae strains were determined by examining the presence of strA-strB or aadA, which are genes frequently found in streptomycin-resistant bacteria, and a point mutation at codon 43 in the rpsL gene. All four streptomycin-resistant strains of P. syringe pv. actinidiae investigated in this study contained strA-strB as a resistant determinant. The presence of the aadA gene and a mutation in codon 43 of the rpsL gene was not identified.  相似文献   

15.
Symbiodinium reside intracellularly in a complex symbiosome (host and symbiont‐derived) within cnidarian hosts in a specific host‐symbiont association. Symbiodinium is a diverse genus with variation greater than other dinoflagellate orders. In this paper, our investigation into specificity examines antigenic variation in the algal mucilage secretions at the host‐symbiont interface. Cultured Symbiodinium from a variety of clades were labeled with one of two antibodies to symbiont mucilage (PC3, developed using a clade B alga cultured from Aiptasia pallida; BF10, developed using a clade F alga cultured from Briareum sp.). The labeling was visualized with a fluorescent marker and examined with epifluorescence and confocal microscopy. PC3 antigen was found in cultured Symbiodinium from clades A and B, but not clades C, D, E and F. The correlation between labeling and clade may account for some of the specificity between host and symbiont in the field. Within clades A and B there was variation in the amount of label present. BF10 antigen was more specific and only found in cultures of the same cp23S‐rDNA strain the antibody was created against. These results indicate that the mucilage secretions do vary both qualitatively and quantitatively amongst Symbiodinium strains. Since the mucilage forms the host‐symbiont interface, variation in its molecular composition is likely to be the source of any signals involved in recognition and specificity.  相似文献   

16.
猕猴桃细菌性溃疡病生防菌的筛选、鉴定及其防效初探   总被引:1,自引:0,他引:1  
从健康猕猴桃植株中筛选具有生防潜力的内生放线菌,为猕猴桃细菌性溃疡病防治提供材料。采用平板渗透法筛选对猕猴桃细菌性溃疡病具有拮抗作用的内生放线菌,通过测定不同拮抗内生放线菌发酵液对猕猴桃溃疡病病原菌(Pseudomonas syringae pv.Actinidiae,Psa)的最低抑制浓度(Minimal Inhibitory Concentrations,MIC)筛选高抗性菌株;采用喷雾法及注干法进行高抗性菌株的田间防治试验;结合形态、生理生化特征及16S r DNA序列分析,明确高抗性菌株分类地位。从431株内生放线菌中筛选出7株具有明显抗性的菌株,其中菌株M109的抑菌效果最强(MIC值为0.91 mg/m L)。田间试验表明,菌株M109的喷雾法防效为72.1%,注干法防效为84.6%。分类鉴定结果显示菌株M109为肉桂地链霉菌(Streptomyces cinnamonensis)。试验表明,肉桂地链霉菌S.cinnamonensis M109对猕猴桃细菌性溃疡病防效显著,具有应用潜力。  相似文献   

17.
Aims: To compare 167 Norwegian human and nonhuman Escherichia coli O157:H7/NM (nonmotile) isolates with respect to an A/T single nucleotide polymorphism (SNP) in the tir gene and to detect specific SNPs that differentiate STEC O157 into distinct virulence clades (1–3 and 8). Methods and Results: We developed a multiplex PCR followed by single base sequencing for detection of the SNPs, and examined the association among SNP genotype, virulence profile (stx and eae status), multilocus variable number of tandem repeats analysis (MLVA) profile and clinical outcome. We found an over‐representation of the T allele among human strains compared to nonhuman strains, including 5/6 haemolytic‐uraemic syndrome cases. Fourteen strains belonged to clade 8, followed by two clade 2 strains. No clade 1 nor 3 isolates were observed. stx1 in combination with either stx2EDL933 or stx2c were frequently observed among human strains, whereas stx2c was dominating in nonhuman strains. MLVA indicated that only single cases or small outbreaks with E. coli O157 have been observed in Norway through the years 1993–2008. Conclusion: We observed that the tir‐255 A/T SNP and the stx status were different between human and nonhuman O157 strains. No major outbreaks were observed, and only a few strains were differentiated into the virulence clades 2 and 8. Significance and Impact of the Study: The detection of virulence clade‐specific SNPs enables the rapid designation of virulent E. coli O157 strains, especially in outbreak situations.  相似文献   

18.
[背景]近年来,猪链球菌4型(Streptococcus suis serotype 4,SS4)分离率逐渐上升,但是有关SS4的系统研究报道匮乏.[目的]研究19株SS4临床分离株的病原学特征.[方法]以2株猪链球菌2型(Streptococcus suis serotype 2,SS2)强毒株为参考菌株,对19株S...  相似文献   

19.
Euglena viridis (subgenus Euglena) serves as the type species for the genus Euglena. In this study, molecular phylogenetic analyses using a small subunit (SSU) and a combined SSU–partial large subunit rDNA data set for members of the genus Euglena showed that strains identified as E. viridis on the basis of morphology are distributed between two separate nonsister clades. Although all the E. viridis strains examined were morphologically indistinguishable and possessed spherical mucocysts and stellate chloroplasts with one paramylon center, there was a high degree of sequence divergence between the E. viridis strains in different clades, making this a cryptic species. Like E. viridis, all taxa from the subgenus Euglena are characterized by having one or more stellate chloroplasts with paramylon grains clustered around the center of the chloroplast. These additional taxa were divided into four clades in all the molecular analyses. Strains of Euglena stellata formed two nonsister clades whose members had a single aggregate chloroplast with paramylon center and spindle‐shaped mucocysts. A geniculata clade included species with one or two stellate chloroplasts with paramylon centers and spherical mucocysts, and the cantabrica clade had members with one stellate chloroplast with paramylon center and spherical mucocysts often arranged in spiral rows. Interspersed among these were three additional clades bearing taxa from the subgenus Calliglena that contains members with discoid plastids and pyrenoids that may or may not be capped with paramylon. These taxa formed a laciniata clade, mutabilis clade, and gracilis clade. This study demonstrates that E. viridis and E. stellata are cryptic species that can only be distinguished at the molecular level. Because E. viridis is the designated type species for the genus Euglena, we designated an epitype for E. viridis.  相似文献   

20.
Du  Mengqian  Hu  Weimin  Tamura  Takashi  Alshahni  Mohamed Mahdi  Satoh  Kazuo  Yamanishi  Chiaki  Naito  Toshio  Makimura  Koichi 《Mycopathologia》2021,186(2):189-198
Background

Candida auris is an emerging pathogen associated with outbreaks in clinical settings. Isolates of the pathogen have been geographically clustered into four clades with high intra-clade clonality. Pathogenicity varies among the clades, highlighting the importance of understanding these differences.

Objectives

To examine the physiological and biochemical properties of each clade of C. auris to improve our understanding of the fungus.

Methods

Optimal growth temperatures of four strains from three clades, East Asia, South Asia and South Africa, were explored. Moreover, assimilation and antifungal susceptibility properties of 22 C. auris strains from the three clades were studied.

Results

The optimal growth temperatures of all strains were 35–37 °C. Assimilation testing demonstrated that the commercial API ID 32 C system can be used to reliably identify C. auris based on the biochemical properties of the yeast. Notably, C. auris can be uniquely differentiated from commonly clinical fungi by its ability to assimilate raffinose and inability to utilize D-xylose, suggesting a useful simple screening tool. The antifungal susceptibility results revealed that all strains are resistant against fluconazole (minimal inhibitory concentration (MIC) 4 to?>?64 µg/mL) and miconazole (MIC 8 to?>?16 µg/mL), with strains from the Japanese lineage showing relatively lower MIC values (1–4 µg/mL). Conversely, itraconazole, voriconazole, amphotericin B, micafungin and caspofungin were active against most of the tested strains. On the clade level, East Asian strains generally showed lower MICs against azoles comparing to the other clades, while they displayed MICs against flucytosine higher than those of strains from South Africa and South Asia clades.

Conclusion

Our data suggest a simple identification approach of C. auris based on its physiological and biochemical properties and highlight aspects of C. auris population from various clades.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号