首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Experiments were undertaken to characterize the cytoplasmic ribosomal proteins (r-proteins) in Chlamydomonas reinhardtii and to compare immunologically several cytoplasmic r-proteins with those of chloroplast ribosomes of this alga, Escherichia coli, and yeast. The large and small subunits of the C. reinhardtii cytoplasmic ribosomes were shown to contain, respectively, 48 and 45 r-proteins, with apparent molecular weights of 12,000–59,000. No cross-reactivity was seen between antisera made against cytoplasmic r-proteins of Chlamydomonas and chloroplast r-proteins, except in one case where an antiserum made against a large subunit r-protein cross-reacted with an r-protein of the small subunit of the chloroplast ribosome. Antisera made against one out of five small subunit r-proteins and three large subunit r-proteins recognized r-proteins from the yeast large subunit. Each of the yeast r-proteins has been previously identified as an rRNA binding protein. The antiserum to one large subunit r-protein cross-reacted with specific large subunit r-proteins from yeast and E. coli.  相似文献   

2.
The polypeptides of the subunits of 70S ribosomes isolated from rye (Secale cereale L.) leaf chloroplasts were analyzed by two-dimensional polyacrylamide gel electrophoresis. The 50S subunit contained approx. 33 polypeptides in the range of relative molecular mass (Mr) 13000–36000, the 30S subunit contained approx. 25 polypeptides in the range of Mr 13000–40500. Antisera raised against the individual isolated ribosomal subunits detected approx. 17 polypeptides of the 50S and 10 polypeptides of the 30S subunit in the immunoblotting assay. By immunoblotting with these antisera the major antigenic ribosomal polypeptides (r-proteins) of the chloroplasts were clearly and specifically visualized also in separations of leaf extracts or soluble chloroplast supernatants. In extracts from rye leaves grown at 32° C, a temperature which is non-permissive for 70S-ribosome formation, or in supernatants from ribosome-deficient isolated plastids, six plastidic r-proteins were visualized by immunoblotting with the anti-50S-serum and two to four plastidic r-proteins were detected by immunoblotting with the anti-30S-serum, while other r-proteins that reacted with our antisera were missing. Those plastidic r-proteins that were present in 70S-ribosome-deficient leaves must represent individual unassembled ribosomal polypeptides that were synthesized on cytoplasmic 80S ribosomes. For the biogenesis of chloroplast ribosomes the mechanism of coordinate regulation appear to be less strict than those known for the biogenesis of bacterial ribosomes, thus allowing a marked accumulation of several unassembled ribosomal polypeptides of cytoplasmic origin.Abbreviations L polypeptide of large ribosomal subunit - Mr relative molecular mass - r-protein ribosomal polypeptide - S polypeptide of small ribosomal subunit - SDS sodium dodecyl sulfate  相似文献   

3.
4.
Analysis of 80S ribosomes of Arabidopsis (Arabidopsis thaliana) by use of high-speed centrifugation, sucrose gradient fractionation, one- and two-dimensional gel electrophoresis, liquid chromatography purification, and mass spectrometry (matrix-assisted laser desorption/ionization time-of-flight and electrospray ionization) identified 74 ribosomal proteins (r-proteins), of which 73 are orthologs of rat r-proteins and one is the plant-specific r-protein P3. Thirty small (40S) subunit and 44 large (60S) subunit r-proteins were confirmed. In addition, an ortholog of the mammalian receptor for activated protein kinase C, a tryptophan-aspartic acid-domain repeat protein, was found to be associated with the 40S subunit and polysomes. Based on the prediction that each r-protein is present in a single copy, the mass of the Arabidopsis 80S ribosome was estimated as 3.2 MD (1,159 kD 40S; 2,010 kD 60S), with the 4 single-copy rRNAs (18S, 26S, 5.8S, and 5S) contributing 53% of the mass. Despite strong evolutionary conservation in r-protein composition among eukaryotes, Arabidopsis 80S ribosomes are variable in composition due to distinctions in mass or charge of approximately 25% of the r-proteins. This is a consequence of amino acid sequence divergence within r-protein gene families and posttranslational modification of individual r-proteins (e.g. amino-terminal acetylation, phosphorylation). For example, distinct types of r-proteins S15a and P2 accumulate in ribosomes due to evolutionarily divergence of r-protein genes. Ribosome variation is also due to amino acid sequence divergence and differential phosphorylation of the carboxy terminus of r-protein S6. The role of ribosome heterogeneity in differential mRNA translation is discussed.  相似文献   

5.
The accumulation of heat shock protein 70 (Hsp70) generally occurs in plants infected with viruses. However, the effect of Hsp70 accumulation on plant viral infection and pathogenesis remains elusive. In this study, the expression of six Hsp70 genes was found to be induced by the four diverse RNA viruses, Tobacco mosaic virus, Potato virus X (PVX), Cucumber mosaic virus and Watermelon mosaic virus, in Nicotiana benthamiana. Heat treatment enhanced the accumulation and systemic infection of these viruses. Similar results were obtained for viral infection in plants heterologously expressing an Arabidopsis cytoplasmic Hsp70 through either a PVX vector or Agrobacterium infiltration. In contrast, viral infection was compromised in cytoplasmic NbHsp70c‐1 gene‐silenced plants. These data demonstrate that the cytoplasmic Hsp70s can enhance the infection of N. benthamiana by diverse viruses.  相似文献   

6.
Summary The cytoplasmic ribosomal proteins (r-proteins) of seventeen yeast species of the genera Saccharomyces and Kluyveromyces were analyzed by one-dimensional gradient polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. The electrophoretic patterns of cytoplasmic r-proteins from different species display extensive differences in both the 40S and the 60S subunit. Relatedness of species suggested by r-protein patterns correlates well with that based on DNA/DNA homology (Bicknell and Douglas 1970). Immunochemical cross-reactions and antibiotic susceptibility tests were also used to compare different species.Analyses of r-proteins from two different interspecific hybrids showed that their ribosomes were hybrid, containing r-proteins from both parents. These findings are discussed in relation to the evolution of yeast species and the regulation of expression of r-proteins in cucaryotes.  相似文献   

7.
Summary The proteins of cytoplasmic and mitochondrial ribosomes from the cow and the rat were analyzed by co-electrophoresis in two dimensional polyacrylamide gels to determine their relative evolutionary rates. In a pairwise comparison of individual ribosomal proteins (r-proteins) from the cow and the rat, over 85% of the cytoplasmic r-proteins have conserved electrophoretic properties in this system, while only 15% of the proteins of mitochondrial ribosomes from these animals fell into this category. These values predict that mammalian mitochondrial r-proteins are evolving about 13 times more rapidly than cytoplasmic r-proteins. Based on actual evolutionary rates for representative cytoplasmic r-proteins, this mitochondrial r-protein evolutionary rate corresponds to an amino acid substitution rate of 40×10–10 per site per year, placing mitochondrial r-proteins in the category of rapidly evolving proteins. The mitochondrial r-proteins are apparently evolving at a rate comparable to that of the mitochondrial rRNA, suggesting that functional constraints act more or less equally on both kinds of molecules in the ribosome. It is significant that mammalian mitochondrial r-proteins are evolving more rapidly than cytoplasmic r-proteins in the same cell, since both sets of r-proteins are encoded by nuclear genes. Such a difference in evolutionary rates implies that the functional constraints operating on ribosomes are somewhat relaxed for mitochondrial ribosomes.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   

8.
Eukaryotic ribosomes are made of two components, four ribosomal RNAs, and approximately 80 ribosomal proteins (r-proteins). The exact number of r-proteins and r-protein genes in higher plants is not known. The strong conservation in eukaryotic r-protein primary sequence allowed us to use the well-characterized rat (Rattus norvegicus) r-protein set to identify orthologues on the five haploid chromosomes of Arabidopsis. By use of the numerous expressed sequence tag (EST) accessions and the complete genomic sequence of this species, we identified 249 genes (including some pseudogenes) corresponding to 80 (32 small subunit and 48 large subunit) cytoplasmic r-protein types. None of the r-protein genes are single copy and most are encoded by three or four expressed genes, indicative of the internal duplication of the Arabidopsis genome. The r-proteins are distributed throughout the genome. Inspection of genes in the vicinity of r-protein gene family members confirms extensive duplications of large chromosome fragments and sheds light on the evolutionary history of the Arabidopsis genome. Examination of large duplicated regions indicated that a significant fraction of the r-protein genes have been either lost from one of the duplicated fragments or inserted after the initial duplication event. Only 52 r-protein genes lack a matching EST accession, and 19 of these contain incomplete open reading frames, confirming that most genes are expressed. Assessment of cognate EST numbers suggests that r-protein gene family members are differentially expressed.  相似文献   

9.
10.
Begomoviruses of the Geminiviridae are usually transmitted by whiteflies and rarely by mechanical inoculation. We used tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, to address this issue. Most ToLCNDV isolates are not mechanically transmissible to their natural hosts. The ToLCNDV-OM isolate, originally identified from a diseased oriental melon plant, is mechanically transmissible, while the ToLCNDV-CB isolate, from a diseased cucumber plant, is not. Genetic swapping and pathological tests were performed to identify the molecular determinants involved in mechanical transmission. Various viral infectious clones were constructed and successfully introduced into Nicotiana benthamiana, oriental melon, and cucumber plants by Agrobacterium-mediated inoculation. Mechanical transmissibility was assessed via direct rub inoculation with sap prepared from infected N. benthamiana. The presence or absence of viral DNA in plants was validated by PCR, Southern blotting, and in situ hybridization. The results reveal that mechanical transmissibility is associated with the movement protein (MP) of viral DNA-B in ToLCNDV-OM. However, the nuclear shuttle protein of DNA-B plays no role in mechanical transmission. Analyses of infectious clones carrying a single amino acid substitution reveal that the glutamate at amino acid position 19 of MP in ToLCNDV-OM is critical for mechanical transmissibility. The substitution of glutamate with glycine at this position in the MP of ToLCNDV-OM abolishes mechanical transmissibility. In contrast, the substitution of glycine with glutamate at the 19th amino acid position in the MP of ToLCNDV-CB enables mechanical transmission. This is the first time that a specific geminiviral movement protein has been identified as a determinant of mechanical transmissibility.  相似文献   

11.
Alpha-momorcharin (α-MMC), a member of the plant ribosomal inactivating proteins (RIPs) family, has been proven to exhibit important biological properties in animals, including antiviral, antimicrobial, and antitumour activities. However, the mechanism by which α-MMC increases plant resistance to viral infections remains unclear. To study the effect of α-MMC on plant viral defence and how α-MMC increases plant resistance to viruses, recombinant DNA and transgenic technologies were employed to investigate the role of α-MMC in Nicotiana benthamiana resistance to tobacco mosaic virus (TMV) infection. Treatment with α-MMC produced through DNA recombinant technology or overexpression of α-MMC mediated by transgenic technology alleviated TMV-induced oxidative damage and reduced the accumulation of reactive oxygen species (ROS) during TMV-green fluorescent protein infection of N. benthamiana. There was a significant decrease in TMV replication in the upper leaves following local α-MMC treatment and in α-MMC-overexpressing plants relative to control plants. These results suggest that application or overexpression of α-MMC in N. benthamiana increases resistance to TMV infection. Finally, our results showed that overexpression of α-MMC up-regulated the expression of ROS scavenging-related genes. α-MMC confers resistance to TMV infection by means of modulating ROS homeostasis through controlling the expression of antioxidant enzyme-encoding genes. Overall, our study revealed a new crosstalk mechanism between α-MMC and ROS during resistance to viral infection and provides a framework to understand the molecular mechanisms of α-MMC in plant defence against viral pathogens.  相似文献   

12.
Summary It was previously observed that the stability of ribosomal protein (r-protein) mRNA in Escherichia coli decreases under the conditions where its translation is feedback inhibited by repressor r-protein. We have now demonstrated that the stability of mRNA for r-proteins S13, S11 and S4 increases in a strain carrying a mutation in the gene for S4, a translational repressor regulating these r-proteins. The results confirm the previous observations that translational repression increases the decay rate of r-protein mRNA, and in addition, show that the half-life of S13-S4 r-protein mRNA in cells growing under ordinary conditions is significantly shorter than its inherent stability would predict, due to the operation of translational feedback regulation.  相似文献   

13.
Phylogenomics of prokaryotic ribosomal proteins   总被引:1,自引:0,他引:1  
Yutin N  Puigbò P  Koonin EV  Wolf YI 《PloS one》2012,7(5):e36972
Archaeal and bacterial ribosomes contain more than 50 proteins, including 34 that are universally conserved in the three domains of cellular life (bacteria, archaea, and eukaryotes). Despite the high sequence conservation, annotation of ribosomal (r-) protein genes is often difficult because of their short lengths and biased sequence composition. We developed an automated computational pipeline for identification of r-protein genes and applied it to 995 completely sequenced bacterial and 87 archaeal genomes available in the RefSeq database. The pipeline employs curated seed alignments of r-proteins to run position-specific scoring matrix (PSSM)-based BLAST searches against six-frame genome translations, mitigating possible gene annotation errors. As a result of this analysis, we performed a census of prokaryotic r-protein complements, enumerated missing and paralogous r-proteins, and analyzed the distributions of ribosomal protein genes among chromosomal partitions. Phyletic patterns of bacterial and archaeal r-protein genes were mapped to phylogenetic trees reconstructed from concatenated alignments of r-proteins to reveal the history of likely multiple independent gains and losses. These alignments, available for download, can be used as search profiles to improve genome annotation of r-proteins and for further comparative genomics studies.  相似文献   

14.
Two distinct transient expression approaches were compared with assess the impact of the viral suppressor p19 on a recombinant protein production performed in Nicotiana benthamiana suspension culture. A parental N. benthamiana cell line was transiently transformed with either an Agrobacterium containing a gene construct for a murine IgG1 (R514) or concurrently with two Agrobacteria containing R514 or p19. In addition, a stably transformed N. benthamiana cell line that constitutively expresses p19 was transformed with R514‐containing Agrobacterium. The parental N. benthamiana cell line that had been co‐cultivated with both p19 and R514 achieved the highest yield of IgG1 (1.06 mg IgG1/kg FW; 0.024% TSP) compared with that obtained without p19 (0.61 mg IgG1/kg FW; 0.014% TSP). The N. benthamiana cell line that had been stably transformed with p19 only reached 0.25 mg IgG1/kg FW (0.009% TSP) when co‐cultured with R514‐containing Agrobacterium. Dual agroinfiltration of N. benthamiana leaves with p19 and R514 was also performed to assess for Agrobacteria efficiencies and 147.7 mg IgG1/kg FW were obtained. Therefore, our results demonstrate that transient co‐transformation of plant cell suspension culture with two transformation vectors is feasible and that the use of the viral suppressor of silencing p19 significantly raises the production of the protein of interest. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

15.
Translationally controlled tumour protein (TCTP) is a ubiquitously distributed protein in eukaryotes, involved in the regulation of several processes, including cell cycle progression, cell growth, stress protection, apoptosis and maintenance of genomic integrity. Its expression is induced during the early stages of tomato (Solanum lycopersicum) infection by the potyvirus Pepper yellow mosaic virus (PepYMV, a close relative of Potato virus Y). Tomato TCTP is a protein of 168 amino acids, which contains all the conserved domains of the TCTP family. To study the effects of TCTP silencing in PepYMV infection, Nicotiana benthamiana plants were silenced by virus‐induced gene silencing (VIGS) and transgenic tomato plants silenced for TCTP were obtained. In the early stages of infection, both tomato and N. benthamiana silenced plants accumulated less virus than control plants. Transgenic tomato plants showed a drastic reduction in symptoms and no viral accumulation at 14 days post‐inoculation. Subcellular localization of TCTP was determined in healthy and systemically infected N. benthamiana leaves. TCTP was observed in both the nuclei and cytoplasm of non‐infected cells, but only in the cytoplasm of infected cells. Our results indicate that TCTP is a growth regulator necessary for successful PepYMV infection and that its localization is altered by the virus, probably to favour the establishment of virus infection. A network with putative interactions that may occur between TCTP and Arabidopsis thaliana proteins was built. This network brings together experimental data of interactions that occur in other eukaryotes and helps us to discuss the possibilities of TCTP involvement in viral infection.  相似文献   

16.
17.
Complementary (c)DNA clones corresponding to the full-length genome of T36CA (a Californian isolate of Citrus tristeza virus with the T36 genotype), which shares 99.1% identity with that of T36FL (a T36 isolate from Florida), were made into a vector system to express the green fluorescent protein (GFP). Agroinfiltration of two prototype T36CA-based vectors (pT36CA) to Nicotiana benthamiana plants resulted in local but not systemic GFP expression/viral infection. This contrasted with agroinfiltration of the T36FL-based vector (pT36FL), which resulted in both local and systemic GFP expression/viral infection. A prototype T36CA systemically infected RNA silencing-defective N. benthamiana lines, demonstrating that a genetic basis for its defective systemic infection was RNA silencing. We evaluated the in planta bioactivity of chimeric pT36CA-pT36FL constructs and the results suggested that nucleotide variants in several open reading frames of the prototype T36CA could be responsible for its defective systemic infection. A single amino acid substitution in each of two silencing suppressors, p20 (S107G) and p25 (G36D), of prototype T36CA facilitated its systemic infectivity in N. benthamiana (albeit with reduced titre relative to that of T36FL) but not in Citrus macrophylla plants. Enhanced virus accumulation and, remarkably, robust systemic infection of T36CA in N. benthamiana and C. macrophylla plants, respectively, required two additional amino acid substitutions engineered in p65 (N118S and S158L), a putative closterovirus movement protein. The availability of pT36CA provides a unique opportunity for comparative analysis to identify viral coding and noncoding nucleotides or sequences involved in functions that are vital for in planta infection.  相似文献   

18.
19.
Cytosolic ribosomes are among the largest multisubunit cellular complexes. Arabidopsis thaliana ribosomes consist of 79 different ribosomal proteins (r-proteins) that each are encoded by two to six (paralogous) genes. It is unknown whether the paralogs are incorporated into the ribosome and whether the relative incorporation of r-protein paralogs varies in response to environmental cues. Immunopurified ribosomes were isolated from A. thaliana rosette leaves fed with sucrose. Trypsin digested samples were analyzed by qTOF-LC-MS using both MS(E) and classical MS/MS. Peptide features obtained by using these two methods were identified using MASCOT and Proteinlynx Global Server searching the theoretical sequences of A. thaliana proteins. The A. thaliana genome encodes 237 r-proteins and 69% of these were identified with proteotypic peptides for most of the identified proteins. These r-proteins were identified with average protein sequence coverage of 32% observed by MS(E) . Interestingly, the analysis shows that the abundance of r-protein paralogs in the ribosome changes in response to sucrose feeding. This is particularly evident for paralogous RPS3aA, RPS5A, RPL8B, and RACK1 proteins. These results show that protein synthesis in the A. thaliana cytosol involves a heterogeneous ribosomal population. The implications of these findings in the regulation of translation are discussed.  相似文献   

20.
Many Gram‐negative plant pathogenic bacteria express effector proteins of the XopQ/HopQ1 family which are translocated into plant cells via the type III secretion system during infection. In Nicotiana benthamiana, recognition of XopQ/HopQ1 proteins induces an effector‐triggered immunity (ETI) reaction which is not associated with strong cell death but renders plants immune against Pseudomonas syringae and Xanthomonas campestris pv. vesicatoria strains. Additionally, XopQ suppresses cell death in N. benthamiana when transiently co‐expressed with cell death inducers. Here, we show that representative XopQ/HopQ1 proteins are recognized similarly, likely by a single resistance protein of the TIR‐NB‐LRR class. Extensive analysis of XopQ derivatives indicates the recognition of structural features. We performed Agrobacterium‐mediated protein expression experiments in wild‐type and EDS1‐deficient (eds1) N. benthamiana leaves, not recognizing XopQ/HopQ1. XopQ recognition limits multiplication of Agrobacterium and attenuates levels of transiently expressed proteins. Remarkably, XopQ fails to suppress cell death reactions induced by different effectors in eds1 plants. We conclude that XopQ‐mediated cell death suppression in N. benthamiana is due to the attenuation of Agrobacterium‐mediated protein expression rather than the cause of the genuine XopQ virulence activity. Thus, our study expands our understanding of XopQ recognition and function, and also challenges the commonly used co‐expression assays for elucidation of in planta effector activities, at least under conditions of ETI induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号