首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the most promising alternatives to toxic heavy metal-based paints is offered by the development of antifouling coatings in which the active ingredients are compounds naturally occurring in marine organisms and operating as natural antisettlement agents. Sessile marine macroalgae are remarkably free from settlement by fouling organisms. They produce a wide variety of chemically active metabolites in their surroundings, potentially as an aid to protect themselves against other settling organisms. In this study, a dichloromethane extract from the brown seaweed Sargassum muticum was tested in situ and, after 2 months of immersion, showed less fouling organisms on paints in which the extract was included, compared to paints containing only copper after 2 months of immersion. No barnacles or mussels have been observed on the test rack. Identification by NMR and GC/MS of the effective compound revealed the abundance of palmitic acid, a commonly found fatty acid. Pure palmitic acid showed antibacterial activity at 44 μg mL−1, and also inhibited the growth of the diatom Cylindrotheca closterium at low concentration (EC50 = 45.5 μg mL−1), and the germination of Ulva lactuca spores at 3 μg mL−1. No cytotoxicity was highlighted, which is promising in the aim of the development of an environmentally friendly antifouling paint.  相似文献   

2.
In this work, the antifouling activity of five alkaloids, isolated from trees of the Atlantic rainforest, was studied. The tested alkaloids were olivacine ( 1 ), uleine ( 2 ) and N‐methyltetrahydroellipticine ( 3 ) from Aspidosperma australe (‘yellow guatambú’) and the furoquinoline alkaloids kokusaginine ( 4 ) and flindersiamine ( 5 ) from Balfourodendron riedelianum (‘white guatambú’). All these compounds can be isolated from their natural sources in high yields in a sustainable way. The five compounds were subjected to laboratory tests (attachment test of the mussel Mytilus edulis platensis) and field trials, by incorporation into soluble matrix paints, and 45 days of exposure of the painted panels in the sea. The results show that compound 3 is a very potent antifoulant, and that compounds 4 and 5 are also very active, while compounds 1 and 2 did not show any significant antifouling activity. These results open the way for the development of environmentally friendly antifouling agents, based on abundant and easy‐to‐purify compounds that can be obtained in a sustainable way.  相似文献   

3.
KV Thomas 《Biofouling》2013,29(1):73-86

Antifouling paint booster biocides are a group of organic compounds added to antifouling paints to improve their efficacy. They have become prevalent since the requirement for alternative antifouling paints formulations for small boats (< 25 m). This need followed a ban on the use of triorganotin biocides in antifouling paints for small boats, in the late 1980's. Worldwide, around eighteen compounds are currently used as antifouling biocides, viz. benzmethylamide, chlorothalonil, copper pyrithione, dichlofluanid, diuron, fluorofolpet, Irgarol 1051, Sea‐Nine 211, Mancozeb, Polyphase, pyridine‐triphenyl‐borane, TCMS (2,3,5,6‐tetrachloro‐4‐methylsulfonyl) pyridine, TCMTB [2‐(thiocyanomethylthio)benzothia‐zole], Thiram, tolyfluanid, zinc pyrithione (ZPT), ziram and Zineb. Any booster biocide released into the environment is subjected to a complex set of processes. These processes include transport mechanisms, transformation, degradation, cross media partitioning, and bioaccumulation. This paper reviews the fate and behaviour data currently available in the public domain concerning antifouling paint booster biocides.  相似文献   

4.
To investigate the antifouling secondary metabolites from marine-derived fungi, we used bioassay-guided column chromatography techniques, such as HPLC, to separate and purify compounds from Cladosporium sp. F14. Extensive spectral analyses including 1D NMR spectra and MS were employed for structure elucidation of the compounds. Antilarval activity of the compounds was evaluated in settlement inhibition assays with laboratory-reared Balanus amphitrite and Bugula neritina larvae, while antibacterial activity was assessed with disc diffusion bioassay on growth inhibition of six marine bacterial species. In total, nine compounds were obtained. Among them, 3-phenyl-2-propenoic acid, cyclo-(Phe-Pro) and cyclo-(Val-Pro) had various antibacterial activities against three fouling bacteria, furthermore, 3-phenyl-2-propenoic acid and bis(2-ethylhexyl)phthalate effectively inhibited larval settlement of B. neritina and B. amphitrite larvae, respectively, indicating that the two compounds are potential natural antifouling agents.  相似文献   

5.
Two new avermectin derivatives, avermectins B1c and B1e ( 1 and 2 , resp.), as well as two known compounds, avermectin B2a ( 3 ) and ivermectin A1a ( 4 ), were isolated from a Beibu Gulf gorgonian coral, Anthogorgia caerulea. The structures of the new compounds were established by detailed spectroscopic analysis and by comparison with spectral data of related known compounds. Compounds 1 – 4 showed moderate antifouling activities against the larval settlement of Balanus amphitrite.  相似文献   

6.
Due to the regulations and bans regarding the use of traditional toxic chemicals against marine fouling organisms and the practical impediments to the commercialization of natural product antifoulants, there is an urgent need for compounds that are antifouling-active, environmentally friendly, and have a potential for commercial application. In this study, a series of common, commercially available pyrethroid products, which are generally used as environmentally safe insecticides, was evaluated for antifouling activity in the laboratory using an anti-settlement test with cyprids of the barnacle Balanus albicostatus and also in a field experiment. Laboratory assay showed that all eleven pyrethroids (namely, rich d-trans-allethrin, Es-biothrin, rich d-prallethrin, S-prallethrin, tetramethrin, rich d-tetramethrin, phenothrin, cyphenothrin, permethrin, cypermethrin, and high active cypermethrin) were able to inhibit barnacle settlement (EC50 range of 0.0316 to 87.00 μg/ml) without significant toxicity. Analysis of structure–activity relationships suggested that the cyano group at the α-carbon position had a significant influence on the expression of antifouling activity in pyrethroids. In the field, the antifouling activity of pyrethroids was further confirmed, with the most potent pyrethroids being cypermethrin and high active cypermethrin, which displayed efficiency comparable with that of tributyltin. In summary, our investigation indicated that these pyrethroids have a great and practical commercial potential as antifouling agents.  相似文献   

7.
Plant phenolics are known to display many pharmacological activities. In the current study, eight phenolic compounds, e.g., luteolin 5‐O‐β‐glucoside ( 1 ), methyl rosmarinate ( 2 ), apigenin ( 3 ), vicenin 2 ( 4 ), lithospermic acid ( 5 ), soyasaponin II ( 6 ), rubiadin 3‐O‐β‐primeveroside ( 7 ), and 4‐(β‐d ‐glucopyranosyloxy)benzyl 3,4‐dihydroxybenzoate ( 8 ), isolated from various plant species were tested at 0.2 mm against carbonic anhydrase‐II (CA‐II) and urease using microtiter assays. Urease inhibition rate for compounds 1  –  8 ranged between 5.0 – 41.7%, while only compounds 1 , 2 , and 4 showed a considerable inhibition over 50% against CA‐II with the IC50 values of 73.5 ± 1.05, 39.5 ± 1.14, and 104.5 ± 2.50 μm , respectively, where IC50 of the reference (acetazolamide) was 21.0 ± 0.12 μm . In silico experiments were also performed through two docking softwares (Autodock Vina and i‐GEMDOCK) in order to find out interactions between the compounds and CA‐II. Actually, compounds 6 (30.0%) and 7 (42.0%) possessed a better binding capability toward the active site of CA‐II. According to our results obtained in this study, among the phenolic compounds screened, particularly 1 , 2 , and 4 appear to be the promising inhibitors of CA‐II and may be further investigated as possible leads for diuretic, anti‐glaucoma, and antiepileptic agents.  相似文献   

8.
Phytochemical investigation from the tube roots of Butea superba, led to the isolation and identification of a new 2‐aryl‐3‐benzofuranone named superbanone ( 1 ), one benzoin, 2‐hydroxy‐1‐(2‐hydroxy‐4‐methoxyphenyl)‐2‐(4‐methoxyphenyl)ethanone ( 2 ), eight pterocarpans ( 3  –  10 ), and eleven isoflavonoids ( 11  –  21 ). Compound 2 was identified for the first time as a natural product. The structure of the isolated compounds was elucidated using spectroscopic methods, mainly 1D‐ and 2D‐NMR. The isolated compounds and their derivatives were evaluated for α‐glucosidase inhibitory and antimalarial activities. Compounds 3 , 7 , 8 , and 11 showed promising α‐glucosidase inhibitory activity (IC50 = 13.71 ± 0.54, 23.54 ± 0.75, 28.83 ± 1.02, and 12.35 ± 0.36 μm , respectively). Compounds 3 and 11 were twofold less active than the standard drug acarbose (IC50 = 6.54 ± 0.04 μm ). None of the tested compounds was found to be active against Plasmodium falciparum strain 94. On the basis of biological activity results, structure–activity relationships are discussed.  相似文献   

9.
This paper focuses on the activity spectrum of three dimethylalkyl tertiary amines as potential active molecules and the corresponding ammonium salt-based antifouling (AF) paints. Bioassays (using marine bacteria, microalgae and barnacles) and field tests were combined to assess the AF activity of coatings. Bioassay results demonstrated that the ammonium salt-based paints did not inhibit the growth of microorganisms (except the dimethyldodecylammonium-based coatings) and that the tertiary amines were potent towards bacteria, diatoms, and barnacle larvae at non-toxic concentrations (therapeutic ratio, LC50/EC50, < 1). The results from field tests indicated that the ammonium salt-based coatings inhibited the settlement of macrofouling and the dimethylhexadecylammonium-based coatings provided protection against slime in comparison with PVC blank panels. Thus, results from laboratory assays did not fully concur with the AF activity of the paints in the field trial.  相似文献   

10.
Preliminary screening of extracts of the leaves and stems of four Turraea plant species (Meliaceae) on second instar larvae of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) showed that the methanolic extract of Turraea abyssinica leaves possess good toxic potential with LD50 of 270.7 ppm. Fractionation of this extract led to isolation of a new limonoid derivative, 12α‐diacetoxywalsuranolide (1) and three other known limonoids [1α,7α,12α‐triacetoxy‐4α‐carbomethoxy‐11β‐hydroxy‐14β,15β‐epoxyhavanensin (2), 11‐epi‐21‐hydroxytoonacilide (3), 11β,12α‐diacetoxycedrelone (4)]. The structures of the compounds were established by IR, UV, mass spectrometry and 1D/2D NMR analyses, and in the case of the known compounds, also by comparison with reported data. All the isolates were tested for their larvicidal activities at different dose range against second instar larvae of T. absoluta. They were found to be more active (with LD50 < 7.0 ppm) compared to the reference compound azadirachtin (LD50 value of 7.8 ppm).  相似文献   

11.
Marine derived actinomycetes constituting 185 strains were screened for their antifouling activity against the marine seaweed, Ulva pertusa, and fouling diatom, Navicula annexa. Strain 291-11 isolated from the seaweed, Undaria pinnatifida, rhizosphere showed the highest antifouling activity and was identified as Streptomyces praecox based on a 16S rDNA sequence analysis. Strain 291-11 was therefore named S. praecox 291-11. The antifouling compounds from S. praecox 291-11 were isolated, and their structures were analyzed. The chemical constituents representing the antifouling activity were identified as (6S,3S)-6-benzyl-3-methyl-2,5-diketopiperazine (bmDKP) and (6S,3S)-6-isobutyl-3-methyl-2,5-diketopiperazine (imDKP) by interpreting the nuclear magnetic resonance and high-resolution mass spectroscopy data. Approximately 4.8 mg of bmDKP and 3.1 mg of imDKP were isolated from 1.2 g of the S. praecox 291-11 crude extract. Eight different compositions of culture media were investigated for culture, the TBFeC medium being best for bmDKP and TCGC being the optimum for imDKP production. Two compounds respectively showed a 17.7 and 21 therapeutic ratio (LC50/EC50) to inhibit zoospores, and two compounds respectively showed a 263 and 120.2 therapeutic ratio to inhibit diatoms.  相似文献   

12.
Activity‐guided fractionation strategy was used to investigate chemical constituents from the roots of Podocarpus macrophyllus. Successfully, two new norditerpenes, 2β‐hydroxymakilactone A ( 1 ) and 3β‐hydroxymakilactone A ( 2 ), along with ten known analogues ( 3  –  12 ) were isolated. The structures of 1 and 2 were elucidated by spectroscopic analysis including 1D‐, 2D‐NMR, and HR‐ESI‐MS data. The previously reported structure of 2,3‐dihydro‐2α‐hydroxypodolide was revised as 2,3‐dihydro‐2β‐hydroxypodolide ( 3 ) by spectroscopic analysis, and was further confirmed by X‐ray crystallographic analysis. Cytotoxic activities of all isolated compounds against five human solid tumour cell lines (AGS, HeLa, MDA‐MB‐231, HepG‐2, and PANC‐1) were evaluated. All of them exhibited anti‐proliferative activities (IC50 = 0.3 – 27 μm ), except for 10 . Compounds 1 , 4 , 5 , 6 , and 8 exhibited potent inhibitory activities with IC50 < 1 μm against HeLa and AGS cells.  相似文献   

13.
Using various chromatographic methods, a new hexacyclic triterpenoid, 2β,3β,24β‐trihydroxy‐12,13‐cyclotaraxer‐l4‐en‐28oic acid ( 1 ), together with ten known compounds, 2α,3α,23‐trihydroxyurs‐12,20(30)‐dien‐28oic acid ( 2 ), 6,7‐dehydroroyleanone ( 3 ), horminone ( 4 ), 7‐O‐methylhorminone ( 5 ), sugiol ( 6 ), demethylcryptojaponol ( 7 ), 14‐deoxycoleon U ( 8 ), 5,6‐didehydro‐7‐hydroxy‐taxodone ( 9 ), ferruginol ( 10 ), and dichroanone ( 11 ), were isolated from the roots of Salvia deserta. Their structures were identified on the basis of spectroscopic analysis and comparison with the reported data. The individual compounds ( 1 , 3  –  8 ) were screened for cytotoxic activity, using the sulforhodamine B bioassay (SRB) method. As the results, Compounds 3 , 5 , and 8 showed cytotoxic potency against A549, MDA‐MB‐231, KB, KB‐VIN, and MCF7 cell lines with IC50 values ranging from 6.5 to 10.2 μm .  相似文献   

14.
Three new alkylated chalcones, villosins A – C ( 1  –  3 ), five known analogues, together with ten known coumarins, were isolated from Fatoua villosa. The structures of the new compounds were elucidated by extensive spectroscopic analysis, including 1D‐, 2D‐NMR, and MS data. Compounds 1  –  3 showed cytotoxicity against five kinds of human tumor cell lines (NB4, A549, SHSY5Y, PC3, and MCF7) with IC50 values ranging from 1.4 ± 0.1 to 5.7 ± 0.3 μm .  相似文献   

15.
Twenty novel simple alkyl isocyanides derived from citronellol were synthesized and evaluated for their antifouling activity and toxicity against cypris larvae of the barnacle, Balanus amphitrite. The anti-barnacle activity of the synthesized isocyanides was in the EC50 range of 0.08–1.49 μg ml?1. Simple isocyanides containing a benzoate and chloro group showed the most potent anti-barnacle activity. In addition, none of the synthesized compounds showed significant toxicity and LC50 values were <10 μg ml?1. The LC50/EC50 ratios of almost all of the synthesized compounds were >102. The results indicate that these simple isocyanides are promising low-toxicity antifouling agents.  相似文献   

16.
Three new diphenyl ether derivatives, talaromycins A–C ( 1 – 3 , resp.), together with six known analogs, 4 – 9 , were isolated from a gorgonian‐derived fungus, Talaromyces sp. The structures of the new compounds were determined by analysis of extensive NMR spectroscopic data. All of the isolated metabolites, 1 – 9 , were evaluated for their cytotoxic and antifouling activities. Compound 4 exhibited pronounced cytotoxicity against the tested human cell lines with the IC50 values ranging from 4.3 to 9.8 μM . Compounds 3, 5, 8 , and 9 showed potent antifouling activities against the larval settlement of the barnacle Balanus amphitrite with the EC50 values ranging from 2.2 to 4.8 μg/ml.  相似文献   

17.
A ionization technique in mass spectrometry called Direct Analysis in Real Time Mass Spectrometry (DART TOF-MS) coupled with a Direct Binding Assay was used to identify and characterize anti-viral components of an elderberry fruit (Sambucus nigra L.) extract without either derivatization or separation by standard chromatographic techniques. The elderberry extract inhibited Human Influenza A (H1N1) infection in vitro with an IC50 value of 252 ± 34 μg/mL. The Direct Binding Assay established that flavonoids from the elderberry extract bind to H1N1 virions and, when bound, block the ability of the viruses to infect host cells. Two compounds were identified, 5,7,3′,4′-tetra-O-methylquercetin (1) and 5,7-dihydroxy-4-oxo-2-(3,4,5-trihydroxyphenyl)chroman-3-yl-3,4,5-trihydroxycyclohexanecarboxylate (2), as H1N1-bound chemical species. Compound 1 and dihydromyricetin (3), the corresponding 3-hydroxyflavonone of 2, were synthesized and shown to inhibit H1N1 infection in vitro by binding to H1N1 virions, blocking host cell entry and/or recognition. Compound 1 gave an IC50 of 0.13 μg/mL (0.36 μM) for H1N1 infection inhibition, while dihydromyricetin (3) achieved an IC50 of 2.8 μg/mL (8.7 μM). The H1N1 inhibition activities of the elderberry flavonoids compare favorably to the known anti-influenza activities of Oseltamivir (Tamiflu®; 0.32 μM) and Amantadine (27 μM).  相似文献   

18.
Clonal cultures of Alexandrium species collected from a shrimp pond on the northern coast of Vietnam were established and morphologically identified as Alexandrium minutum. Nucleotide sequences of domains 1 and 2 of the large subunit ribosomal (LSU) rRNA gene showed high sequence similarity to A. minutum isolates from Malaysia. Paralytic shellfish toxin profile of the clones was characterized by the dominance of GTX4, GTX1, and NEO. GTX3, GTX2, and dcSTX were also present in trace amount. Toxin content varied among the strains and growth stages, ranged from 3.0 to 12.5 fmol cell−1. In addition to these known toxin components, a new gonyautoxin derivative was detected by HPLC, eluting between GTX4 and GTX1. The peak of this compound disappeared under non-oxidizing HPLC condition but unchanged either after treated with 0.05 M ammonium phosphate/10% mercaptoethanol or 0.1N HCl hydrolysis. LCMS ion scanning showed a parental ion of [M + H]+ at m/z 396, [M − SO3]+ at m/z 316, and [M − SO4]+ at m/z 298. Based on these results, the derivative was identified as deoxy-GTX4-12ol, and this represents the first report of this toxin analogue.  相似文献   

19.
The marine red algal genus Laurencia has abundant halogenated secondary metabolites, which exhibit novel structural types and possess various unique biological potentials, including antifouling activity. In this study, we report the isolation, structure elucidation, and antifouling activities of two novel brominated diterpenoids, aplysin-20 aldehyde ( 1 ), 13-dehydroxyisoaplysin-20 ( 2 ), and its congeners. We screened marine red alga Laurencia venusta Yamada for their antifouling activity against the mussel Mytilus galloprovincialis. Ethyl acetate extracts of L. venusta from Hiroshima and Chiba, Japan, were isolated and purified, and the compound structures were identified using 1D and 2D NMR, HR-APCI-MS, IR, and chemical synthesis. Seven secondary metabolites were identified, and their antifouling activities were evaluated. Compounds 1 , 2 , and aplysin-20 ( 3 ) exhibited strong activities against M. galloprovincialis. Therefore, these compounds can be explored as natural antifouling drugs.  相似文献   

20.
Four new vibsane‐type diterpenoids, vibsanol I ( 1 ), 15‐hydroperoxyvibsanol A ( 2 ), 14‐hydroperoxyvibsanol B ( 3 ), 15‐O‐methylvibsanin U ( 4 ), and a new natural product, 5,6‐dihydrovibsanin B ( 5 ), as well as six known analogues, were isolated from the twigs and leaves of Viburnum odoratissimum. Their structures were elucidated by spectroscopic analyses and chemical derivatization method. All compounds showed different levels of cytotoxicity against five cell lines (HL‐60, A‐549, SMMC‐7721, MCF‐7, and SW480). Remarkably, 14,18‐O‐diacetyl‐15‐O‐methylvibsanin U ( 4a ) showed significant cytotoxicity against HL‐60, A‐549, SMMC‐7721, MCF‐7, and SW480, with IC50 values of 0.15 ± 0.01, 0.69 ± 0.01, 0.41 ± 0.02, 0.75 ± 0.03, and 0.48 ± 0.03 μm , respectively. In addition, vibsanin K ( 10 ) was identified as a HSP90 inhibitor with an IC50 value of 19.16 μm .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号