首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone has an architecture which is optimized for its mechanical environment. In various conditions, this architecture is altered, and the underlying cause for this change is not always known. In the present paper, we investigated the sensitivity of the bone microarchitecture for four factors: changes in bone cellular activity, changes in mechanical loading, changes in mechanotransduction, and changes in mechanical tissue properties. The goal was to evaluate whether these factors can be the cause of typical bone structural changes seen in various pathologies. For this purpose, we used an established computational model for the simulation of bone adaptation. We performed two sensitivity analyses to evaluate the effect of the four factors on the trabecular structure, in both developing and adult bone. According to our simulations, alterations in mechanical load, bone cellular activities, mechanotransduction, and mechanical tissue properties may all result in bone structural changes similar to those observed in various pathologies. For example, our simulations confirmed that decreases in loading and increases in osteoclast number and activity may lead to osteoporotic changes. In addition, they showed that both increased loading and decreased bone matrix stiffness may lead to bone structural changes similar to those seen in osteoarthritis. Finally, we found that the model may help in gaining a better understanding of the contribution of individual disturbances to a complicated multi-factorial disease process, such as osteogenesis imperfecta.  相似文献   

2.
There are substantial changes in maternal skeletal dynamics during pregnancy, lactation, and after lactation. The purpose of this study was to correlate changes in cortical and cancellous bone mass, structure, and dynamics with mechanical properties during and after the first reproductive cycle in rats. Rats were mated and groups were taken at parturition, end of lactation and 8 wk after weaning, and were compared with age-matched, nulliparous controls. Measurements were taken on femoral cortical bone and lumbar vertebral body cancellous bone. At the end of pregnancy, there was an increase in cortical periosteal bone formation and an increase in cortical volume, but a suppression of turnover in cancellous bone with no change in cancellous or cortical mechanical properties. Lactation was associated with a decrease in cortical and cancellous bone strength with a decrease in bone volume, but an increase in turnover on cancellous and endocortical surfaces. After lactation, there was a partial or full restoration of mechanical properties. This study demonstrates substantial changes in bone mechanics that correlate with changes in bone structure and dynamics during the first reproductive cycle in rats. The greatest changes were observed during the lactation period with partial or full recovery in the postlactational period.  相似文献   

3.
Progressive tissue expansion induces significant gross, histologic, and bony changes in skulls and long bones of neonatal miniature swine. These bony changes consist of erosion underlying tissue expanders, with bony lipping and bone deposition at the periphery of the expander. Cranial suture lines underneath expanders appear effaced and convoluted. Serial CT scans reveal decreased bone thickness and volume (p less than 0.02) but identical bone density (p = 0.60) beneath expanders. Increased bone volume and thickness occur at the periphery of expanders (p less than 0.02). Bone density (CT number) is unaffected by tissue expansion in both cranial and long bones. These findings have histomorphometric correlates: Osteoclastic bone resorption occurs underneath expanders with periosteal reaction at the periphery of expanders. Cranial sutures are similarly affected, but no cranial synostosis results. No changes to the inner table of the skull or stigmata of increased intracranial pressure were observed either in CT scans or in behavioral changes in long-term animals. The pathophysiology of bony changes is a remodeling effect, not one of simple pressure deformation. Increased bone resorption and complete inhibition of bone formation occur until the pressure is removed. Cranial bone is significantly more affected than long bone. After removal of the expanders, reparative bone remodeling begins within 5 days and nearly complete healing of the cranial defects occurs within 2 months (p less than 0.02). No plagiocephaly results despite early coronal suture changes. On the basis of this study, we conclude that tissue expansion causes significant but reversible effects, readily monitored by high-resolution CT scans, on neonatal and infant cranial and long bones.  相似文献   

4.
To understand more fully the early bone changes in an experimental model of osteoarthrosis, we quantified periarticular bone mineral density and bone mechanical properties in anterior cruciate ligament transected (ACLX) knee joints (4, 10, 32, and 39 wk post-ACLX) compared with contralateral joints and unoperated normal joints of skeletally mature animals. Maximal stress and energy were significantly reduced in ACLX cancellous bone from the medial femoral condyles at 4 wk postinjury. All mechanical properties (e.g., yield stress and elastic modulus) declined after 4 wk and were significantly reduced at 10 wk. ACLX bone mineral density was significantly reduced at all measured time points. Ash content was significantly reduced at 10 and 32 wk. Changes in the lateral condyles were similar but less pronounced than in the medial condyles. These bony changes accompanied the earliest articular cartilage molecular changes and preceded changes in the articular cartilage gross morphology. We suggest that these early changes in bone mechanical behavior contribute to the progression of osteoarthrosis and pathogenic changes in the joint.  相似文献   

5.
Osteoporosis is a common disease characterised by reduced bone mass and an increased risk of fragility fractures. Low bone mineral density is known to significantly increase the risk of osteoporotic fractures, however, the majority of non-traumatic fractures occur in individuals with a bone mineral density too high to be classified as osteoporotic. Therefore, there is an urgent need to investigate aspects of bone health, other than bone mass, that can predict the risk of fracture. Here, we successfully predicted association between bone collagen and nail keratin in relation to bone loss due to oestrogen deficiency using Raman spectroscopy. Raman signal signature successfully discriminated between ovariectomised rats and their sham controls with a high degree of accuracy for the bone (sensitivity 89%, specificity 91%) and claw tissue (sensitivity 89%, specificity 82%). When tested in an independent set of claw samples the classifier gave 92% sensitivity and 85% specificity. Comparison of the spectral changes occurring in the bone tissue with the changes occurring in the keratin showed a number of common features that could be attributed to common changes in the structure of bone collagen and claw keratin. This study established that systemic oestrogen deficiency mediates parallel structural changes in both the claw (primarily keratin) and bone proteins (primarily collagen). This strengthens the hypothesis that nail keratin can act as a surrogate marker of bone protein status where systemic processes induce changes.  相似文献   

6.
We previously developed a load-adaptive bone modelling and remodelling simulation model that can predict changes in the bone micro-architecture as a result of changes in mechanical loading or cell activity. In combination with a novel algorithm to estimate loading conditions, this offers the possibility for patient-specific predictions of bone modelling and remodelling. Based on such models, the underlying mechanisms of bone diseases and/or the effects of certain drugs and their influence on the bone micro-architecture can be investigated. In the present study we test the ability of this approach to predict changes in bone micro-architecture during hypoparathyroidism (HypoPT), as an illustrative example. We hypothesize that, apart from reducing bone turnover, HypoPT must also lead to increased osteocyte mechanosensitivity in order to explain the changes in bone mass seen in patients. Healthy human iliac crest biopsies were used as the starting point for the simulations that mimic HypoPT conditions and the resultant micro-architectures were compared to age-matched clinical HypoPT biopsies. Simulation results were in good agreement with the clinical data when osteocyte mechanosensitivity was increased by 40%. In conclusion, the results confirm our hypothesis, and also demonstrate that patient-specific bone modelling and remodelling simulations are feasible.  相似文献   

7.
The mechanical properties of cancellous bone depend on its architecture and the tissue properties of the mineralized matrix. The architecture is continuously adapted to external loads. In this paper, it was assumed that changes in tissue properties leading to changes in tissue deformation can induce adaptation of the architecture. We asked whether changes in cancellous bone architecture with aging and in e.g. early osteoarthrosis can be explained from changes in tissue properties.This was investigated using computer models in which the cancellous architecture was adapted to external loads. Bone tissue with deformations below a certain threshold was resorbed, deformations above another threshold induced formation. Deformations between these two boundaries, in the 'lazy zone', did not induce bone adaptation. The effects of changes in bone tissue stiffness on bone mass, global stiffness and architecture were investigated. The bone gain (40-60%) resulting from a 50% decrease in tissue stiffness (simulating diseased tissue) was much larger than the bone loss (2-30%) resulting from a 50% increase in tissue stiffness (simulating highly mineralized, old tissue). The adaptation induced by a decrease in tissue stiffness resulted in an almost constant stiffness in the main load bearing direction, but the transversal stiffness decreased. An increased tissue stiffness resulted in a higher stiffness in the main direction and overcompensation in the transversal directions: the global stiffness could become even smaller than the stiffness of the original model. Concluding, we showed that changes in trabecular bone in aging and diseases can be partly explained from changes in tissue properties.  相似文献   

8.
The risk of fracture increases with age due to the decline of bone mass and bone quality. One of the age-related changes in bone quality occurs through the formation and accumulation of advanced glycation end-products (AGEs) due to non-enzymatic glycation (NEG). However as a number of other changes including increased porosity occur with age and affect bone fragility, the relative contribution of AGEs on the fracture resistance of aging bone is unknown. Using a high-resolution nonlinear finite element model that incorporate cohesive elements and micro-computed tomography-based 3d meshes, we investigated the contribution of AGEs and cortical porosity on the fracture toughness of human bone. The results show that NEG caused a 52% reduction in propagation fracture toughness (R-curve slope). The combined effects of porosity and AGEs resulted in an 88% reduction in propagation toughness. These findings are consistent with previous experimental results. The model captured the age-related changes in the R-curve toughening by incorporating bone quantity and bone quality changes, and these simulations demonstrate the ability of the cohesive models to account for the irreversible dynamic crack growth processes affected by the changes in post-yield material behavior. By decoupling the matrix-level effects due to NEG and intracortical porosity, we are able to directly determine the effects of NEG on fracture toughness. The outcome of this study suggests that it may be important to include the age-related changes in the material level properties by using finite element analysis towards the prediction of fracture risk.  相似文献   

9.
The effects of oophorectomy on the biological indices of bone remodelling and the time-course of their changes are described. In the first few months following surgical menopause the measurement of the markers of bone remodelling indicates that the increase in osteogenesis is delayed compared with that of bone resorption; this prevalence of destruction over new bone deposition justifies the deficiency of skeletal balance, shortly after acute oestrogen deficiency. The changes in bone remodelling are accompanied by an increase in serum calcium while serum immunoreactive parathyroid hormone levels remain unchanged or even decrease, suggesting a shift to right of the parathyroid gland set-point. The reasons for the negative skeletal balance after oophorectomy might be sought therefore at bone tissue level, even if changes in responsiveness and/or of the parathyroid gland set-point could also be contributory.  相似文献   

10.
In the past few years there has been a considerable interest in the role of bone in osteoarthritis. Despite the increasing evidence of the involvement of bone in osteoarthritis, it remains very difficult to attribute the cause or effect of changes in subchondral bone to the process of osteoarthritis. Although osteoarthritis in mice provides a useful model to study changes in the subchondral bone, detailed quantification of these changes is lacking. Therefore, the goal of this study was to quantify subchondral bone changes in a murine osteoarthritis model by use of micro-computed tomography (micro-CT). We induced osteoarthritis-like characteristics in the knee joints of mice using collagenase injections, and after four weeks we calculated various 3D morphometric parameters in the epiphysis of the proximal tibia. The collagenase injections caused cartilage damage, visible in histological sections, particularly on the medial tibial plateau. Micro-CT analysis revealed that the thickness of the subchondral bone plate was decreased both at the lateral and the medial side. The trabecular compartment demonstrated a small but significant reduction in bone volume fraction compared to the contralateral control joints. Trabeculae in the collagenase-injected joints were thinner but their shape remained rod-like. Furthermore, the connectivity between trabeculae was reduced and the trabecular spacing was increased. In conclusion, four weeks after induction of osteoarthritis in the murine knee subtle but significant changes in subchondral bone architecture could be detected and quantified in 3D with micro-CT analysis.  相似文献   

11.
Osteoarthritis (OA) is a major cause of disability in the adult population. As a progressive degenerative joint disorder, OA is characterized by cartilage damage, changes in the subchondral bone, osteophyte formation, muscle weakness, and inflammation of the synovium tissue and tendon. Although OA has long been viewed as a primary disorder of articular cartilage, subchondral bone is attracting increasing attention. It is commonly reported to play a vital role in the pathogenesis of OA. Subchondral bone sclerosis, together with progressive cartilage degradation, is widely considered as a hallmark of OA. Despite the increase in bone volume fraction, subchondral bone is hypomineralized, due to abnormal bone remodeling. Some histopathological changes in the subchondral bone have also been detected, including microdamage, bone marrow edema-like lesions and bone cysts. This review summarizes basic features of the osteochondral junction, which comprises subchondral bone and articular cartilage. Importantly, we discuss risk factors influencing subchondral bone integrity. We also focus on the microarchitectural and histopathological changes of subchondral bone in OA, and provide an overview of their potential contribution to the progression of OA. A hypothetical model for the pathogenesis of OA is proposed.  相似文献   

12.
As posttraumatic osteoarthritis (OA) progresses, the mechanical and morphometrical properties of the subchondral bone change and may be linked to damage of the articular cartilage. Potentially to slow that progression, doxycycline was administered orally twice daily (4 mg.kg(-1).day(-1)) in skeletally mature canines after anterior cruciate ligament transection (ACLX). To test if doxycycline significantly altered the structure and function of OA bone, we tested cancellous bone mechanical properties, measured bone mineral content, and analyzed bone structure by microcomputed tomography. Our investigation focused on subchondral trabecular bone changes in the medial femoral condyle at 36 and 72 wk after ACLX. Significant mechanical changes discovered at 36 wk post-ACLX were less obvious at 72 wk in both treated and ACLX groups. Doxycycline treatment conserved bone strain energy density at 72 wk. Doxycycline had little effect on the degradation of superficial osseous tissue at 36 wk post-ACLX; by 72 wk, doxycycline in an ACLX model limited subchondral bone loss within the first 3 mm of periarticular bone with established OA. Significant bone loss occurred in the deeper trabecular bone for all groups. Substantial architectural adaptation within deeper trabecular bone accompanied changes in mechanics in early and established OA.  相似文献   

13.
Stiffness of compact bone: effects of porosity and density   总被引:9,自引:0,他引:9  
Stiffness of compact bone is found to be highly and nonlinearly dependent on its porosity, its complement, bone volume fraction and apparent density. Elastic modulus decreases as a power (0.55) of increasing porosity and increases both as a power of increasing bone tissue volume (10.92) and increasing apparent density (7.4). These data indicate that small changes in the amount or density of compact bone tissue exert a more pronounced influence on its stiffness than would similar changes in trabecular bone.  相似文献   

14.
Patients with primary hyperparathyroidism (pHPT) have reduced bone mineral density (BMD). Although pHPT causes high bone turnover, the exact metabolic bone markers useful for predicting changes in BMD after parathyroidectomy (PTX) remain elusive. The present study was performed to examine the relationship between bone metabolic indices and BMD changes after PTX in 29 pHPT Japanese patients, which received PTX successfully. BMD values were measured by dual-energy X-ray absorptiometry in the lumbar spine and distal one third of radius. As for bone metabolic indices, serum bone-type alkaline phosphates (BAP), serum osteocalcin (OCN), urinary deoxypiridinoline (Dpd), and urinary type I collagen cross-linked N-telopeptides (NTX) were measured. The study included 10 male and 19 female patients (17 postmenopausal). Urinary Dpd, but not NTX was significantly correlated with serum BAP and OCN. Either bone formation or bone resorption indices were significantly and highly correlated with Z-score of BMD in the radius, but not at lumbar spine. Urinary Dpd was significantly correlated with BMD changes at both lumbar spine and radius and at all time points over the two years after PTX. These correlations were most potent among bone metabolic indices in this study. The measurement of urinary Dpd would be useful for predicting long-term changes in BMD at radial and lumbar spine after PTX than other bone metabolic indices.  相似文献   

15.
Because changes in the mechanical properties of bone are closely related to trabecular bone remodeling, methods that consider the temporal morphological changes induced by adaptive remodeling of trabecular bone are needed to estimate long-term fracture risk and bone quality in osteoporosis. We simulated bone remodeling using simplified and pig trabecular bone models and estimated the morphology of healthy and osteoporotic cases. We then displayed the fracture risk of the remodeled models based on a cumulative histogram from high stress. The histogram showed more elements had higher stresses in the osteoporosis model, indicating that the osteoporosis model had a greater risk.  相似文献   

16.
Bone tissue engineering: the role of interstitial fluid flow   总被引:18,自引:0,他引:18  
It is well established that vascularization is required for effective bone healing. This implies that blood flow and interstitial fluid (ISF) flow are required for healing and maintenance of bone. The fact that changes in bone blood flow and ISF flow are associated with changes in bone remodeling and formation support this theory. ISF flow in bone results from transcortical pressure gradients produced by vascular and hydrostatic pressure, and mechanical loading. Conditions observed to alter flow rates include increases in venous pressure in hypertension, fluid shifts occurring in bedrest and microgravity, increases in vascularization during the injury-healing response, and mechanical compression and bending of bone during exercise. These conditions also induce changes in bone remodeling. Previously, we hypothesized that interstitial fluid flow in bone, and in particular fluid shear stress, serves to mediate signal transduction in mechanical loading- and injury-induced remodeling. In addition, we proposed that a lack or decrease of ISF flow results in the bone loss observed in disuse and microgravity. The purpose of this article is to review ISF flow in bone and its role in osteogenesis.  相似文献   

17.
《Bone and mineral》1988,5(1):77-87
Changes in tetracycline-labelled iliac crest biopsies taken before and after 1 year of treatment with nandrolone decanoate + calcium, 17β-estradiol + norethisterone acetate + calcium or placebo were compared with changes in plasma bone Gla protein (pBGP), serum alkaline phosphatase (sAP), whole body retention (WBR) of Technetium-99m-diphosphonate ([99mTc]DP) and bone mineral content (BMC) of the forearm. Based on a comparison between biopsy and noninvasive results, as well as on evaluation of the variation in the groups, certain guidelines for the use of bone histomorphometry in longitudinal therapeutic trials are suggested. It is proposed that bone biopsy is not used to monitor changes in amount of bone and that evaluation of changes in biopsy evaluated bone turnover is only attempted when the groups are large.  相似文献   

18.
In this study, osseous tissue was examined in normal adult population that has inhabited areas by the Croatian Adriatic Sea. The most of such studies have shown that women are prone to lose bone connectedness, while men are predisposed to be a stronger constitution and they start with greater bone mass, though. Bone samples from two different anatomic sites were analyzed. The crista iliaca and the lumbar vertebra represent functionally different organs too. We wanted to consider weather the same age- and gender-related changes affect these two organs due to normal aging. Static histomorphometry was used to quantify involution changes in the trabecular bone. Results showed that involution process more severely affects women than men. Age-related structural changes were more prominent in lumbar vertebra than in iliac crest bone. Severe structural changes in lumbar vertebra could subsequently lead to a dysfunctional and deformed vertebral column. Therefore, iliac crest bone biopsies could hardly explain involution process that affects lumbar spine.  相似文献   

19.
The skeleton accommodates changes in mechanical environments by increasing bone mass under increased loads and decreasing bone mass under disuse. However, little is known about the adaptive changes in micromechanical behavior of cancellous and cortical tissues resulting from loading or disuse. To address this issue, in vivo tibial loading and hindlimb unloading experiments were conducted on 16-week-old female C57BL/6J mice. Changes in bone mass and tissue-level strains in the metaphyseal cancellous and midshaft cortical bone of the tibiae, resulting from loading or unloading, were determined using microCT and finite element (FE) analysis, respectively. We found that loading- and unloading-induced changes in bone mass were more pronounced in the cancellous than cortical bone. Simulated FE-loading showed that a greater proportion of elements experienced relatively lower longitudinal strains following load-induced bone adaptation, while the opposite was true in the disuse model. While the magnitudes of maximum or minimum principal strains in the metaphyseal cancellous and midshaft cortical bone were not affected by loading, strains oriented with the long axis were reduced in the load-adapted tibia suggesting that loading-induced micromechanical benefits were aligned primarily in the loading direction. Regression analyses demonstrated that bone mass was a good predictor of bone tissue strains for the cortical bone but not for the cancellous bone, which has complex microarchitecture and spatially-variant strain environments. In summary, loading-induced micromechanical benefits for cancellous and cortical tissues are received primarily in the direction of force application and cancellous bone mass may not be related to the micromechanics of cancellous bone.  相似文献   

20.
A pilot study was carried out in order to verify the pattern of changes in mineralization of bone in the maxillas and mandibles of dogs which had a tooth extraction or luxation. Bone mineral content was determined using computerized microdensitometry. Significant changes in patterns of mineralization were found for alveolar bone, cortical bone and trabecular bone at the sites adjacent to the area of operation. These findings suggest that the three envelopes of jaw bones of the dogs are influenced by Regional activation phenomenon (RAP). These results have important implications for the design of clinical studies of periodontium. A more detailed study should elucidate the cellular mechanisms by which these changes occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号