首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
微生物胞外呼吸电子传递机制研究进展   总被引:8,自引:2,他引:8  
马晨  周顺桂  庄莉  武春媛 《生态学报》2011,31(7):2008-2018
胞外呼吸是近年来发现的新型微生物厌氧能量代谢方式,主要包括铁呼吸、腐殖质呼吸与产电呼吸3种形式。微生物胞外呼吸与传统的有氧呼吸、胞内厌氧呼吸存在显著差异。其电子受体多以固态形式存在于胞外;氧化产生的电子必须通过电子传递链从胞内转移到细胞周质和外膜,并通过外膜上的细胞色素c、纳米导线或自身产生的电子穿梭体等方式,最终将电子传递至胞外的末端受体。胞外呼吸的本质问题是微生物与胞外电子受体(铁/锰氧化物、固态电极或腐殖质等)的相互作用,即微生物如何将胞内电子传递至胞外受体。胞外呼吸的研究丰富了人们对微生物呼吸多样性的认识,同时在污染物原位修复及清洁生物能源提取方面具有重要应用前景,是当前研究的热点问题。总结了胞外呼吸类型和胞外呼吸菌的多样性,重点阐述了胞外呼吸的电子传递过程,并提出了其应用前景及今后的研究方向。  相似文献   

2.
矿物是无机自然界吸收与转化能量的重要载体,其与微生物的胞外电子传递过程体现出矿物电子能量对微生物生长代谢与能量获取方式的影响。根据电子来源与产生途径,以往研究表明矿物中变价元素原子最外层或次外层价电子与半导体矿物导带上的光电子是微生物可以利用的两种不同胞外电子能量形式,其产生及传递方式与微生物胞外电子传递的电子载体密切相关。在协同微生物胞外电子传递过程中,矿物不同电子能量形式之间既有相似性亦存在着差异。反过来,微生物胞内-胞外电子传递途径也影响对矿物电子能量的吸收与获取,进而对微生物生长代谢等生命活动产生影响。本文在阐述矿物不同电子能量形式产生机制及其参与生物化学反应的共性和差异性特征基础上,综述了微生物获取矿物电子能量所需的不同电子载体类型与传递途径,探讨了矿物不同电子能量形式对微生物生长代谢等生命活动的影响,展望了自然条件下微生物利用矿物电子能量调节其生命活动、调控元素与能量循环的新方式。  相似文献   

3.
电活性微生物具有独特的胞外电子传递功能,在地球化学循环和环境污染修复中起着重要作用。细胞色素c在电活性微生物胞外电子传递过程中扮演了重要角色,不仅参与直接电子传递途径,还参与电子媒介介导的间接电子传递。其电子传递功能不仅对地球环境中铁、锰、碳等元素的循环具有重要作用,还应用于能源生产、废水处理、生物修复等众多领域,具有良好的应用潜力。本文以电活性微生物的2个模式菌属(希瓦氏菌属和地杆菌属)为例,综述了电活性微生物将电子由胞内转移至胞外的方式和途径,详细阐述了细胞色素c在该胞外电子传递过程中的重要作用,总结了细胞色素c介导的胞外电子传递过程所涉及的分析方法,并对微生物胞外电子传递未来的研究方向提出了展望。  相似文献   

4.
胞际电子转移是指细胞内电子以间接或直接的方式传递到细胞外,最终到达细胞周围电子受体的过程.胞际电子转移普遍存在于自然界,尤其存在于电子受体相对匮乏的环境中.胞际电子转移可分为间接和直接胞际电子转移.间接胞际电子转移(胞际基质转移)是主要借助氢、甲酸以及其他代谢产物的电子传递;而直接胞际电子转移则由胞内电子转移偶联胞外电子传递实现.胞际电子转移促进了细胞的基质代谢活性,拓展了细胞的作用空间,具有重要的生理意义.胞际电子转移产生了电流,实现了菌间能源共享,驱动了胞外物质(如重金属、腐殖质)转化,具体重大的生态意义.本文总结相关文献,对细菌胞际电子转移的过程、特点、机理及其生态生理学意义作了系统的分析和探讨.  相似文献   

5.
微生物的电子传递过程在生命进化和生物地球化学循环中发挥着关键作用。近年来,随着微生物电子传递研究的深入开展,微生物纳米导线、导电生物被膜及种间电子传递等多种新型的微生物胞外电子传递机制不断被发现,微生物电子传递的距离也从纳米级拓展至厘米级。这些微生物的长距离电子传递过程环环相扣、相互协同,从而构成长距离电子传递网络,并在物质循环和能量转化中共同发挥作用。微生物长距离电子传递网络的结构功能及其调控机制已成为多个学科共同关注的焦点。本文以电子传递的距离为主线,对不同尺度的微生物长距离电子传递过程及网络研究的新进展进行综述,包括纳米尺度的电子传递网络(周质空间和外膜表层)、微米至毫米尺度的电子传递网络(纳米导线、细胞间电子和导电生物被膜)、厘米尺度的电子传递网络(电缆细菌)等,并分析了该研究现存的主要问题和下一步的发展方向,以期为进一步推进微生物长距离电子传递网络理论和应用研究提供科学参考。  相似文献   

6.
厌氧条件下,微生物可以通过厌氧代谢产生甲烷(CH_4),由此衍生的厌氧消化技术可实现能源的回收利用。产CH_4的关键步骤是刺激发酵细菌和产甲烷古菌之间的有效电子转移,电活性微生物可以取代传统的氢/甲酸盐实现直接种间电子传递,其电子传递效率更高。添加导电材料可以促进直接种间电子传递并提高CH_4产率,是一种更有效的强化电子传递方式。本文在梳理直接种间电子传递发展和机理的基础上,综述了常见的促进直接种间电子传递的碳基和铁基导电材料,对其结构特征、电子传递机理、强化产CH_4和中间产物消耗等方面进行了系统总结。旨在为导电材料促进直接种间电子传递的研究提供参考,并探讨了未来可能的研究方向。  相似文献   

7.
微生物电合成(Microbial electrosynthesis,MES)可直接利用电能驱动微生物还原固定CO_2合成多碳化合物,为可再生新能源转化、精细化学品制备和生态环境保护提供新机遇。但是,微生物吸收胞外电极电子速率慢、产物合成效率低和产品品位不高,限制了MES实现工业化应用。在概述阴极电活性微生物吸收胞外电子的分子机制的基础上,重点综述近5年应用生物工程的理论和技术强化MES用于CO_2转化的策略与研究进展,包括改造和调控胞外电子传递通路和胞内代谢途径以及定向构建有限微生物混合培养菌群三方面,阐明了生物工程可有效突破MES中电子传递慢和可用代谢途径相对单一等瓶颈。针对目前生物工程在改进MES所面临的主要问题,从胞外电子传递机理研究、基因工具箱开发、组学技术与现代分析技术联用等角度展望了今后的研究方向。  相似文献   

8.
种间电子传递可促进微生物发生共代谢,因而在地球生物化学循环和环境污染修复中具有重要意义。根据电子传递方式的不同可将种间电子传递分为直接种间电子传递(direct interspecies electron transfer,DIET)和间接种间电子传递(mediated interspecies electron transfer,MIET),其中,直接种间电子传递由于易发生、效率高而受到更加广泛的关注。本文总结了近年来关于种间电子传递的研究进展,阐述了种间电子传递的途径,比较了DIET和MIET的优缺点,并对开发更多具有种间电子传递功能的微生物提出了建议,以期加深人们对于种间电子传递的理解,并对未来该领域的研究提供参考。  相似文献   

9.
微生物纳米导线的导电机制及功能   总被引:1,自引:0,他引:1  
刘星  周顺桂 《微生物学报》2020,60(9):2039-2061
微生物种间直接电子传递是指在厌氧条件下,一种微生物将电子直接传递给另外一种微生物,将两种不同微生物的代谢途径耦合在一起,以达到互养共生的目的。细菌-古菌之间的直接电子传递是其物质转换与能量代谢的新途径和新调控机制,直接参与甲烷的合成以及与硫酸盐还原耦合的厌氧甲烷氧化,在驱动碳和硫的地球化学转化与循环中起着十分重要的作用。目前研究结果认为细菌-古菌之间的直接电子传递主要是由含多个血红素的C型细胞色素介导的,这些细胞色素能形成不间断的胞外电子传递途径,以电子多步跃迁机制在细菌和古菌的细胞质膜之间传递电子。  相似文献   

10.
甲烷作为全球第二大温室气体,是典型的可再生清洁能源,也是碳循环中的重要物质组成。大气中约74%的甲烷由产甲烷古菌和其他微生物的互营产生,种间电子传递(interspecies electron transfer, IET)是微生物菌群降低热力学能垒、实现互营产甲烷的核心过程。IET可分为间接种间电子传递(mediated interspecies electron transfer,MIET)和直接种间电子传递(direct interspecies electron transfer, DIET)两种类型,其中MIET依赖氢气、甲酸等载体完成电子的远距离传输,而DIET则依赖导电菌毛、细胞色素c等膜蛋白,通过微生物的直接接触实现电子传递。本文将从IET的研究历程出发,从电子传递机制、微生物种类、生态多样性等方面对微生物互营产甲烷过程中的两种IET类型进行比较,最后对未来待探索的方向进行展望。本综述有助于加深对微生物互营产甲烷过程中IET的理解,为解决由甲烷引发的全球气候变暖等生态问题提供理论支撑。  相似文献   

11.
Geobacter species can secrete free redox-active flavins, but the role of these flavins in the interspecies electron transfer (IET) of Geobacter direct interspecies electron transfer (DIET) co-culture is unknown. Here, we report the presence of a new riboflavin-mediated interspecies electron transfer (RMIET) process in a traditional Geobacter DIET co-culture; in this process, riboflavin contributes to IET by acting as a free-form electron shuttle between free Geobacter species and serving as a bound cofactor of some cytochromes in Geobacter co-culture aggregates. Multiple lines of evidence indicate that RMIET facilitates the primary initiation of syntrophic growth between Geobacter species before establishing the DIET co-culture and provides additional ways alongside the DIET to transfer electrons to achieve electric syntrophy between Geobacter species. Redox kinetic analysis of riboflavin on either Geobacter species demonstrated that the Gmet_2896 cytochrome acts as the key riboflavin reduction site, while riboflavin oxidation by Geobacter sulfurreducens is the rate-limiting step in RMIET, and the RMIET makes only a minor contribution to IET in Geobacter DIET co-culture. The discovery of a new RMIET process in Geobacter DIET co-culture suggests the complexity of IET in syntrophic bacterial communities and provides suggestions for the careful examination of the IET of other syntrophic co-cultures.  相似文献   

12.
Interspecies electron transfer (IET) is important for many anaerobic processes, but is critically dependent on mode of transfer. In particular, direct IET (DIET) has been recently proposed as a metabolically advantageous mode compared with mediated IET (MIET) via hydrogen or formate. We analyse relative feasibility of these IET modes by modelling external limitations using a reaction-diffusion-electrochemical approach in a three-dimensional domain. For otherwise identical conditions, external electron transfer rates per cell pair (cp) are considerably higher for formate-MIET (317 × 103 e cp−1 s−1) compared with DIET (44.9 × 103 e cp−1 s−1) or hydrogen-MIET (5.24 × 103 e cp−1 s−1). MIET is limited by the mediator concentration gradient at which reactions are still thermodynamically feasible, whereas DIET is limited through redox cofactor (for example, cytochromes) activation losses. Model outcomes are sensitive to key parameters for external electron transfer including cofactor electron transfer rate constant and redox cofactor area, concentration or count per cell, but formate-MIET is generally more favourable for reasonable parameter ranges. Extending the analysis to multiple cells shows that the size of the network does not strongly influence relative or absolute favourability of IET modes. Similar electron transfer rates for formate-MIET and DIET can be achieved in our case with a slight (0.7 kJ mol−1) thermodynamic advantage for DIET. This indicates that close to thermodynamic feasibility, external limitations can be compensated for by improved metabolic efficiency when using direct electron transfer.  相似文献   

13.
一直以来氢气和甲酸被认为是微生物间电子传递的中间电子传递体.近年来的研究发现,微生物之间可以通过种间直接电子传递(DIET)来替代氢气/甲酸传递.DIET作为一种新发现的微生物间电子传递途径,其电子传递效率要高于传统的种间氢气/甲酸传递.DIET这一新发现改变了微生物互营生长代谢必须依赖氢气或甲酸等电子载体的传统认识,...  相似文献   

14.
互营氧化产甲烷微生物种间电子传递研究进展   总被引:4,自引:1,他引:3  
甲烷是重要的温室气体,也是典型的可再生性生物质能源。目前约70%的大气甲烷排放来源于产甲烷微生物过程。在产甲烷环境中,产甲烷菌与互营细菌形成互营关系,从而克服有机质厌氧分解反应的热力学能垒,实现短链脂肪酸和醇类物质的互营氧化产甲烷过程。该过程中,种间电子传递是关键步骤。本文首先概述了甲烷的研究意义及微生物互营降解有机质产甲烷的过程,然后分别综述了种间H2转移、种间甲酸转移和种间直接电子传递这3种种间电子传递机制的起源、发展、研究现状和未来所需要解决的研究问题。  相似文献   

15.
Direct interspecies electron transfer (DIET) via electrically conductive pili (e-pili) and c-type cytochrome between acetogens and methanogens has been proposed as an essential pathway for methane production. Supplements of conductive materials have been extensively found to promote methane production in microbial anaerobic treatment systems. This review comprehensively presents recent findings of DIET and the addition of conductive materials for methanogenesis and summarizes important results through aspects of electron flux, organic degradation, and microbial interaction. Conductive materials improve DIET and methanogenesis by acting as either substitute of e-pili or electron conduit between e-pili and electron acceptors. Other effects of conductive materials such as the change of redox potential may also be important factors for the stimulation. The type and organic loading rate of substrates affect the occurrence of DIET and stimulating effects of conductive materials. Geobacter, which can participate in DIET, were less enriched in anaerobic systems cultivated with non-ethanol substrates, suggesting the existence of other syntrophs with the capability of DIET. The coupling of communication systems such as quorum sensing may be a good strategy to achieve the formation of biofilm or granule enriched with syntrophic partners capable of DIET.  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号