首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genetic and Phenotypic Diversity among Botrytis cinerea Isolates in Iran   总被引:1,自引:0,他引:1  
Forty-four Botrytis cinerea isolates from different hosts and geographical regions were studied for colony morphology, mycelial growth rate at different temperatures, pathogenicity and molecular diversity. Botrytis cinerea isolates had temperature optima of 20–25°C and isolates showed variation in growth rate at different temperatures. Two morphological types were identified among tested isolates: mycelial and sclerotial. The pathogenicity of isolates was tested on grapevine leaves, and it was revealed that nine of 44 isolates were non-pathogenic and among them seven were of mycelial type. There was no correlation between mycelium growth rate and pathogenicity. Genetic diversity was investigated using nine arbitrary decaprimers. No relationship was found between molecular clusters and geographical region or sampling time; whereas isolates from the same plant host tended to cluster with each other. Seven of nine non-pathogenic isolates were separated from pathogenic ones.  相似文献   

3.
金城 《微生物学通报》2013,40(3):532-532
灰葡萄孢是一种重要的植物病原真菌,其寄主范围广泛,能危害世界上230多种双子叶植物,常给农业生产造成重大的经济损失[1-3].由灰葡萄孢引起的灰霉病是目前我国温室蔬菜生产中最主要的病害之一,一般造成全年减产20%-25%,严重时达到40%以上[4].因此,研究该病菌的致病机理对该病防治具有重要意义,并且随着灰葡萄孢基因组测序的完成,灰葡萄孢已成为发育生物学、分子植物病理学研究的模式生物之一.  相似文献   

4.
5.
Salicylic acid (SA) acts antagonistically to jasmonic acid (JA) in plant immunity. We previously reported that CATALASE2 (CAT2) promotes JA-biosynthetic acyl-CoA oxidase (ACX) activity to enhance plant resistance to necrotrophic Botrytis cinerea, and SA represses JA biosynthesis through inhibiting CAT2 activity, while the underlying mechanism remains to be further elucidated. Here, we report that the truncated CAT2 N-terminus (CAT2-N) interacts with and promotes ACX2/3, and CAT2-N-overexpressing plants have increased JA accumulation and enhanced resistance to Bcinerea B05.10, but compromised antagonism of SA on JA. Catalase inhibitor treatment or mutating CAT2 active amino acids abolished CAT2 H2O2-decomposing activity but did not affect its promotion of ACX2/3 activity via interaction. CAT2-N, a truncated protein with no catalase activity, interacted with and promoted ACX2/3. Overexpressing CAT2-N in Arabidopsis plants resulted in increased ACX activity, higher JA accumulation, and stronger resistance to Bcinerea B05.10 infection. Additionally, SA dramatically repressed JA biosynthesis and resistance to Bcinerea in the wild type but not in the CAT2-N-overexpressing plants. Together, our study reveals that CAT2-N can be utilized as an accelerator for JA biosynthesis during plant resistance to Bcinerea B05.10, and this truncated protein partly relieves SA repression of JA biosynthesis in plant defence responses.  相似文献   

6.
Here, we propose that organic hydroponics trigger induced systemic resistance (ISR) in lettuce against air-borne Botrytis cinerea, which causes gray mold. We compared effects of organic and chemical hydroponics, assessed presence of ISR elicitors in the hydroponic nutrient solution, and investigated molecular mechanism of ISR. Organic hydroponics significantly reduced gray mold lesions in lettuce (cultivated hydroponically) and cucumber (cultivated in soil and foliar sprayed with nutrient solution). The 1-aminocyclopropane-1-carboxylic acid synthase gene in lettuce and lipoxygenase and ethylene receptor-related gene in cucumber showed heightened expression, suggesting that the jasmonic acid/ethylene (JA/ET)-signaling pathway was involved in ISR for both crops. Low salicylic acid β-glucoside levels confirmed role of the ISR signaling pathway. ISR in both lettuce and cucumbers indicated that elicitors in organic hydroponics were nonhost-specific and that the JA/ET pathway was activated without microbe–root interaction. Thus, organic hydroponics can be an effective method for both soil-borne and air-borne disease control.  相似文献   

7.
Abstract A transformation system has been developed for the pathogen fungus Botrytis cinerea , based on the utilization of the wide host plasmid pUT737 that contains the Sh ble gene, conferring resistance to phleomycin. Transformed protoplasts were regenerated at 10–25 μg ml−1 of phleomycin, at a frequency of 25–40 transformants per μg of DNA, and they were resistant up to 50 μg ml−1. Southern hybridization using undigested and digested total DNA showed the presence of circular autonomously replicating plasmid pUT737 in the transformants. Reisolated plasmid from transformed fungus transformed E. coli and rescued plasmid was identified as pUT737. Transformants were grown for four generations under non-selective conditions and replicative plasmids were still detected. Plasmids present in all transformants at this stage had been modified from native pUT737 and showed the same size and configuration indicating that selection through stabilizing plasmid forms has happened.  相似文献   

8.
灰葡萄孢分生孢子产生相关基因的克隆及功能分析   总被引:3,自引:0,他引:3  
[目的]克隆灰葡萄孢分生孢子产生相关基因,并研究其功能,为进一步研究灰葡萄孢分生孢子产生机理和灰葡萄孢侵染及致病机理奠定基础.[方法]通过筛选灰葡萄孢ATMT突变体库,获得一株不能产生分生孢子的突变菌株BCt78,采用PCR和Southern Blotting技术,对突变菌株BCt78进行分子鉴定.利用TAIL-PCR技术获得T-DNA插入位点的侧翼序列;将所获得侧翼序列与灰葡萄孢基因组数据库中的已知基因序列进行BLAST分析,推测出T-DNA的插入位点;通过PCR进一步验证T-DNA的插入位点,利用RT-PCR技术确定突变基因;最后对突变菌株的菌落形态、生长速度、胞壁降解酶活力、粗毒素的生物活性、对番茄叶片的致病能力及部分致病相关基因的表达情况进行研究.[结果]TAIL-PCR结果证实T-DNA插入到灰葡萄孢BCIG 12707.1基因的ATG起始密码子区;RT-PCR结果证实突变基因为BCIG_12707.1,该基因DNA全长为135 bp,编码一个44个氨基酸的假定蛋白(Hypothetical protein).突变菌株在PDA培养基上菌落呈灰白色,生长速度减慢,不能产生分生孢子及菌核;对番茄叶片的致病性增强,且胞壁降解酶(PG、PMG和Cx)活力增强;突变菌株中参与细胞壁降解的角质酶基因cutA和多聚半乳糖醛酸酶基因Bepg1,信号转导途径基因(PKA1、PKA2、Bac、Bmp3),产毒素基因BcBOT2(Sesquiterpene synthase),漆酶基因Lac1,跨膜蛋白基因Btp1表达都增强.[结论]BC1G_ 12707.1基因在灰葡萄孢分生孢子产生、菌核形成及致病力等方面起重要作用.  相似文献   

9.
The potential use of Bacillus thuringiensis UM96 as a biocontrol agent for the grey mould phytopathogen Botrytis cinerea was evaluated. In order to dissect the mode of action of this UM96 strain, we also examined the role of lytic activities in the antagonism. First, B. thuringiensis UM96 was characterised based on 16S rRNA and gyrA gene sequencing and phenotypic traits. Petri dish biocontrol assays demonstrated that when strain UM96 was inoculated 24 h previous to B. cinerea, the mycelial growth was inhibited by up to 70%. Test for lytic enzymes activities of cellulase and glucanase was negative. Chitinase was the only positive enzyme activity in two different culture media. PCR detection of the chiB gene was also positive. Chitinolytic supernatants, obtained from rich and minimal media supplemented with colloidal chitin as the sole carbon source, from B. thuringiensis UM96 showed a strong inhibitory effect of B. cinerea that was not observed with heat-treated supernatant. Interestingly, when the supernatant was supplemented with 100 µM allosamidin, a chitinase specific inhibitor, the antagonistic activity was suppressed significantly. A lack of chitinase activity was also observed in allosamidin-treated supernatants. Our pathogenic B. cinerea strain also exhibited susceptibility to pure Streptomyces griseus chitinase. Finally, the chitinolytic strain B. thuringiensis UM96 was able to protect Medicago truncatula plants in vitro from B. cinerea infection and significantly reduced the necrotic zones and root browning of the plants. Together, these results suggest a potential use of B. thuringiensis UM96 for the biological control of B. cinerea and a role for chitinases during the antagonism displayed.  相似文献   

10.
张国斌  张喜贤  王云月  杨红玉 《遗传》2013,35(8):971-982
病原菌的侵染激发植物大量防御响应基因的表达, 其中转录因子在协调庞大的抗病防御网络中发挥重要作用。灰葡萄孢菌(Botrytis cinerea)是最具破坏力的死体营养型病原真菌之一, 在农业生产上造成严重的经济损失。文章综述了ERF(Ethylene response factors)、WRKY、MYB等家族中参与灰霉病防御反应的转录因子的功能研究进展。转录因子通过复杂的mRNA或蛋白水平的互作方式构成了精细的调控网络, 以激活下游防卫基因的表达, 从而诱导抗病反应。一部分转录因子是协调不同激素信号通路交叉响应的重要节点和调节器, 将植物抵御不同类型病原菌的分子机制联系起来。对这类转录因子的研究将为研究植物其他病原菌防御机制提供线索, 另外深入理解抗病机制将有助于研究者在作物改良和保护中更高效地利用抗病基因。  相似文献   

11.
Botrytis cinerea is the causative agent of grey mould on over 1000 plant species and annually causes enormous economic losses worldwide. However, the fungal factors that mediate pathogenesis of the pathogen remain largely unknown. Here, we demonstrate that a novel B. cinerea-specific pathogenicity-associated factor BcHBF1 (h yphal b ranching-related f actor 1), identified from virulence-attenuated mutant M8008 from a B. cinerea T-DNA insertion mutant library, plays an important role in hyphal branching, infection structure formation, sclerotial formation and full virulence of the pathogen. Deletion of BcHBF1 in B. cinerea did not impair radial growth of mycelia, conidiation, conidial germination, osmotic- and oxidative-stress adaptation, as well as cell wall integrity of the ∆Bchbf1 mutant strains. However, loss of BcHBF1 impaired the capability of hyphal branching, appressorium and infection cushion formation, appressorium host penetration and virulence of the pathogen. Moreover, disruption of BcHBF1 altered conidial morphology and dramatically impaired sclerotial formation of the mutant strains. Complementation of BcHBF1 completely rescued all the phenotypic defects of the ∆Bchbf1 mutants. During young hyphal branching, host penetration and early invasive growth of the pathogen, BcHBF1 expression was up-regulated, suggesting that BcHBF1 is required for these processes. Our findings provide novel insights into the fungal factor mediating pathogenesis of the grey mould fungus via regulation of its infection structure formation, host penetration and invasive hyphal branching and growth.  相似文献   

12.
Pythium paroecandrum (B-30), an oomycete, was isolated from soil samples taken from a wheat field in Genlis in the Burgundy region of France and was found to check the growth and development of Botrytis cinerea, a serious grapevine pathogen. The oomycete is a fast-growing organism, living on vegetable debris, and can be recognised by its catenulate hyphal swellings, catenulate oogonia, and monoclinous antheridia. When grown together with B. cinerea, the causal agent of the grey mould disease of the grapevine, P. paroecandrum shows a pronounced antagonism and suppresses its growth and its aptitude to provoke the grey mould symptoms. Morphological features of this oomycete, its antagonism to B. cinerea, the sequences of the internal transcribed spacer region of its nuclear ribosomal DNA, and its comparison with related species are discussed in this article.  相似文献   

13.
14.
摘要:【目的】研究灰葡萄孢菌(Botrytis cinerea)基因组中T-DNA插入位点的整合模式特征。【方法】利用农杆菌(Agrobactirium tumfacience)介导法构建灰葡萄孢菌T-DNA插入突变体库。利用热不对称交错PCR(TAIL-PCR)技术对转化子中T-DNA的旁侧序列进行扩增和克隆,对获得的旁侧序列进行比对分析。【结果】T-DNA插入在灰葡萄孢菌基因组非编码区的占69%,插入在外显子的占30%。T-DNA在插入的过程中发生了碱基缺失、增加等重组现象,其中左边界(left border,LB)整合到基因组碱基缺失较少,有的保持完整,而右边界(right border,RB)及其近邻的T-DNA区域缺失碱基较多。T-DNA的插入位点还发现有额外的序列插入。【结论】对灰葡萄孢菌中插入T-DNA的整合模式的分析为开展该菌的功能基因组学奠定了基础。  相似文献   

15.
赵莉  苟萍  林慧珍  赵红霞 《微生物学通报》2016,43(11):2414-2420
【目的】探讨灰葡萄孢菌及其抗Ab A突变体AUR1基因序列与IPC合成酶活性的关系。【方法】通过分子生物学方法测定野生型及突变体的AUR1的基因序列,高效液相荧光色谱法测定IPC合成酶活力,苯甲酰化法测定神经酰胺含量。【结果】AUR1基因序列和IPC合成酶活性测定表明4株不同的突变体均产生了对IPC合成酶抑制剂Ab A的抗性,它们的突变类型为:(1)AUR1序列中缺失内含子;(2)AUR1序列中缺失内含子和P155S氨基酸突变;(3)AUR1序列中缺失内含子和V33A的氨基酸突变;(4)AUR1序列中缺失内含子和P155S、S177P、F237L的氨基酸突变。AUR1缺失内含子和既缺失内含子又伴随P155S氨基酸突变的突变体的Ab A抗性较强。神经酰胺含量测定表明野生型IPC合成酶被抑制,导致神经酰胺积累,而突变体则能抵抗Ab A对IPC合成酶的抑制作用。【结论】AUR1基因中的内含子对IPC合成酶的调控起重要的作用。Ab A通过抑制IPC合成酶引起神经酰胺积累,IPC合成酶是鞘脂代谢的关键酶。  相似文献   

16.
A rice chitinase cDNA (RCC2) driven by the CaMV 35S promoter was introduced into cucumber (Cucumis sativus L.) through Agrobacterium mediation. More than 200 putative transgenic shoots were regenerated and grown on MS medium supplemented with 100 mg/l kanamycin. Sixty elongated shoots were examined for the presence of the integrated RCC2 gene and subsequently confirmed to have it. Of these, 20 were tested for resistance against gray mold (Botrytis cinerea) by infection with the conidia: 15 strains out of the 20 independent shoots exhibited a higher resistance than the control (non-transgenic plants). Three transgenic cucumber strains (designated CR29, CR32 and CR33) showed the highest resistance against B. cinerea: the spread of disease was inhibited completely in these strains. Chitinase gene expression in highly resistant transgenic strains (CR32 and CR33) was compared to that of a susceptible transgenic strain (CR20) and a control. Different responses for disease resistance were observed among the highly resistant strains. CR33 inhibited appressoria formation and penetration of hyphae. Although CR32 permitted penetration of hyphae, invasion of the infection hyphae was restricted. Furthermore, progenies of CR32 showed a segregation ratio of 3:1 (resistant:susceptible). As the disease resistance against gray mold was confirmed to be inheritable, these highly resistant transgenic cucumber strains would serve as good breeding materials for disease resistance. Received: 31 March 1996 / Revision received: 2 July 1997 / Accepted: 18 July 1997  相似文献   

17.
番茄灰霉病害及其微生物防治的研究进展   总被引:1,自引:0,他引:1  
综述了番茄灰霉病的病害,并从国内外拮抗菌以及内生菌的筛选和利用等方面概述了番茄灰霉病微生物防治的研究进展,提出了目前番茄灰霉病微生物防治的问题及今后的应用前景。  相似文献   

18.
Grey mould, caused by the fungus Botrytis cinerea, is one of the most destructive diseases in greenhouses for which serious fungicide resistance has developed. Between 2003 and 2005, 213 isolates of B. cinerea from two geographical regions were characterised for baseline sensitivity to kresoxim‐methyl. In the absence of salicylhydroxamic acid (SHAM), the mean 50% effective concentration (EC50) values were 6.67 ± 0.61 (mean ± SD) and 0.37 ± 0.10 mg L?1 during growth and germination, respectively. In the presence of 100 mg L?1 SHAM, baseline sensitivities were distributed as unimodal curves with mean EC50 values of 2.38 ± 0.21 and 0.28 ± 0.09 mg L?1 for inhibiting growth and inhibiting germination, respectively. The mixture of kresoxim‐methyl and boscalid showed good control efficacy against strawberry grey mould disease. After the mixture was extensively used on strawberry for 2 years, 50 isolates were collected and determined for their sensitivity to kresoxim‐methyl and boscalid, respectively. The mean EC50 of germination inhibition by boscalid was 0.39 ± 0.08 mg L?1. The mean EC50 of germination inhibition by kresoxim‐methyl was 0.26 ± 0.07 mg L?1 in the presence of 100 mg L?1 SHAM. Sensitivities of B. cinerea to both kresoxim‐methyl and boscalid did not show any significant decrease. These results suggest that their mixture is a satisfactory alternative candidate for management of grey mould disease in greenhouses.  相似文献   

19.
【目的】从农杆菌介导获得的灰葡萄孢RoseBC-3的突变体库中筛选侵染垫缺失突变体菌株,并明确其相关生物学特性。【方法】将菌株接种于洋葱表皮,利用棉兰染色观察侵染垫形成情况,筛选得到一个侵染垫缺失突变体(AT19)。采用形态学方法、离体叶片接种法、钌红染色法、小麦种子幼芽生长抑制法分别对该菌株的菌落培养性状、侵染垫产生情况、致病力、产果胶酶能力以及产植物毒性代谢产物能力进行测定。【结果】筛选灰葡萄孢突变体168株,根据侵染垫形成可分为三类:快速形成侵染垫型(158株)、缓慢形成侵染垫型(9株)和侵染垫形成缺陷型(1株,AT19)。AT19在接种洋葱120 h后依然无法形成成熟侵染垫。该菌株生长较为缓慢,菌落扩展均匀,可以产生分生孢子,对烟草、草莓、蚕豆和豌豆叶片均不能致病,可以产生果胶酶和植物代谢毒性物质。【结论】突变体菌株AT19可以产生果胶酶和植物代谢毒性物质,其致病力缺失与侵染垫产生缺陷相关。研究结果为了解灰葡萄孢侵染垫形成分子机制提供基础材料。  相似文献   

20.
Rice sheath blight, caused by the soilborne fungus Rhizoctonia solani, causes severe yield losses worldwide. Elucidation of the pathogenic mechanism of R. solani is highly desired. However, the lack of a stable genetic transformation system has made it challenging to examine genes' functions in this fungus. Here, we present functional validation of pathogenicity genes in the rice sheath blight pathogen R. solani by a newly established tobacco rattle virus (TRV)–host-induced gene silencing (HIGS) system using the virulent R. solani AG-1 IA strain GD-118. RNA interference constructs of 33 candidate pathogenicity genes were infiltrated into Nicotiana benthamiana leaves with the TRV-HIGS system. Of these constructs, 29 resulted in a significant reduction in necrosis caused by GD-118 infection. For further validation of one of the positive genes, trehalose-6-phosphate phosphatase (Rstps2), stable rice transformants harbouring the double-stranded RNA (dsRNA) construct for Rstps2 were created. The transformants exhibited reduced gene expression of Rstps2, virulence, and trehalose accumulation in GD-118. We showed that the dsRNA for Rstps2 was taken up by GD-118 mycelia and sclerotial differentiation of GD-118 was inhibited. These findings offer gene identification opportunities for the rice sheath blight pathogen and a theoretical basis for controlling this disease by spray-induced gene silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号