首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Galls induced on Gypsophila paniculata by Pantoea agglomerans pv. gypsophilae (Pag) and Agrobacterium tumefaciens (At), bacteria with different mechanisms of pathogenicity, were compared morphologically and anatomically. The pathogenicity of Pag is dependent on the presence of an indigenous plasmid that harbors hrp gene cluster, genes encoding Hop virulence proteins and biosynthetic genes for auxin (IAA) and cytokinins (CKs), whereas that of At involves host transformation. The Pag-induced gall was rough, brittle and exhibited limited growth, in contrast to the smooth, firm appearance and continuous growth of the At-induced gall. Anatomical analysis revealed the presence of cells with enlarged nuclei and multiple nucleoli, giant cells and suberin deposition in Pag that were absent from At-induced galls. Although circular vessels were observed in both gall types, they were more numerous and the vascular system was more organized in At. An aerenchymal tissue was observed in the upper part of the galls. Ethylene emission from Pag galls, recorded 6 days after inoculation, was eight times as great as that from non-infected controls. In contrast, a significant decrease in ethylene production was observed in Gypsophila cuttings infected with Pag mutants deficient in IAA and CK production. The results presented are best accounted for by the two pathogens having distinct pathogenicity mechanisms that lead to their differential recognition by the host as non-self (Pag) and self (At).  相似文献   

5.
核桃黑斑病拮抗放线菌WMF106的筛选、鉴定及防效   总被引:3,自引:3,他引:0  
【背景】核桃黑斑病是由2种病原菌引起的细菌性病害,目前缺乏有效的生物防治方法。【目的】从核桃树根际土壤中筛选对核桃黑斑病病原菌具有拮抗效果的放线菌菌株,为该病害生防菌剂的开发提供基础。【方法】采用稀释涂布法分离放线菌,并以病原菌野油菜黄单胞菌(Xanthomonas campestris pv. campestris)和成团泛菌(Pantoea agglomerans)作为指示菌,利用平板对峙法和改良牛津杯法筛选具有高拮抗活性的菌株,通过形态学特征、生理生化特性和16SrRNA基因序列分析确定其分类地位,并测定其无菌发酵液的抗菌谱和室内防效。【结果】筛选到一株对野油菜黄单胞菌和成团泛菌均有较强拮抗作用的放线菌菌株WMF106,该菌株对2种病原菌的抑菌圈直径分别为2.38 cm和1.82 cm,无菌发酵液对2种病原菌的抑菌圈直径分别为1.75 cm和1.55 cm。根据菌株形态学、生理生化特性及16SrRNA基因序列分析,将菌株WMF106鉴定为暗蓝色链霉菌(Streptomyces caeruleatus)。该菌株对尖孢镰刀菌、腐皮镰孢菌、辣椒刺盘孢菌、灰葡萄孢菌、胶孢炭疽菌5种植物病原菌及大肠杆菌、金黄色葡萄球菌、铜绿假单胞菌、白色念珠菌、黑曲霉5种指示菌均有抑制作用,抗菌性能广谱高效,其无菌发酵液原液对离体叶片上由野油菜黄单胞菌和成团泛菌造成的核桃黑斑病防效分别为77.44%和58.33%。【结论】菌株WMF106可作为防治核桃黑斑病的生防材料,具有良好的开发价值和应用前景。  相似文献   

6.
The endophytic bacterium Pantoea agglomerans DAPP-PG 734 was previously isolated from olive knots caused by infection with Pseudomonas savastanoi pv. savastanoi DAPP-PG 722. Whole-genome analysis of this P. agglomerans strain revealed the presence of a Hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To assess the role of the P. agglomerans T3SS in the interaction with Psavastanoi pv. savastanoi, we generated independent knockout mutants in three Hrp genes of the P. agglomerans DAPP-PG 734 T3SS (hrpJ, hrpN, and hrpY). In contrast to the wildtype control, all three mutants failed to cause a hypersensitive response when infiltrated in tobacco leaves, suggesting that P. agglomerans T3SS is functional and injects effector proteins in plant cells. In contrast to P. savastanoi pv. savastanoi DAPP-PG 722, the wildtype strain Pagglomerans DAPP-PG 734 and its Hrp T3SS mutants did not cause olive knot disease in 1-year-old olive plants. Coinoculation of Psavastanoi pv. savastanoi with P. agglomerans wildtype strains did not significantly change the knot size, while the DAPP-PG 734 hrpY mutant induced a significant decrease in knot size, which could be complemented by providing hrpY on a plasmid. By epifluorescence microscopy and confocal laser scanning microscopy, we found that the localization patterns in knots were nonoverlapping for Psavastanoi pv. savastanoi and P. agglomerans when coinoculated. Our results suggest that suppression of olive plant defences mediated by the Hrp T3SS of P. agglomerans DAPP-PG 734 positively impacts the virulence of Psavastanoi pv. savastanoi DAPP-PG 722.  相似文献   

7.
The host range of the gall-forming bacterium Erwinia herbicola pv. gypsophilae (Ehg) is restricted to gypsophila whereas Erwinia herbicola pv. betae (Ehb) attacks beet as well as gypsophila. Both pathovars contain an indigenous plasmid (pPATH(Ehg or pPATH(Ehb)) that harbors pathogenicity genes, including the hrp gene cluster. A cosmid library of Ehg824-1 plasmid DNA was mobilized into Ehb4188 and the transconjugants were screened for pathogenicity on beet. One Ehb transconjugant harboring the cosmid pLA173 of pPATHEb induced a hypersensitive-like response and abolished pathogenicity on beet. Transposon mutagenesis of an open reading frame (ORF) located on this cosmid eliminated its affect on pathogenicity. Marker exchange of this mutation into Ehg824-1 caused a substantial reduction in gall size on gypsophila and caused Ehg824-1 to extend its host range and incite galls on beet. The ORF (1.5 kb) was designated as pthG (pathogenicity gene on gypsophila). DNA sequence analysis of pthG revealed no significant homology to known genes in the data bank. Only remnants of the pthG sequences were identified on the pPATH of Ehb4188. The deduced protein lacked an N-terminal signal peptide but contained a short trans-membrane helix in its C terminus. The gene product, as determined by expression in Escherichia coli and Western blots (immunoblots), was a 56-kDa protein.  相似文献   

8.
Indoor studies were conducted to determine the potential use of Pantoea agglomerans isolate LRC 8311 as a biocontrol agent for control of bacterial wilt of bean caused by Curtobacterium flaccumfaciens pv. flaccumfaciens. Soaking seeds of great northern bean cv. US1140 in a suspension of 3 × 108 cfu/ml P. agglomerans resulted in thorough endophytic colonization of the entire bean seedling from root to apical stem after 7 days, regardless of whether the inoculated seeds were hilum injured or not. Colonization of seedlings by P. agglomerans increased seedling height after 10 days, and had no negative effect on seedling emergence. Treatment of hilum‐injured bean seeds of great northern bean cv. US1140 or navy bean cv. Morden003 with a mixture of P. agglomerans + C. flaccumfaciens pv. flaccumfaciens resulted in a high rate of colonization of seedlings by P. agglomerans, reduced frequency of infection by C. flaccumfaciens pv. flaccumfaciens, improved seedling emergence and height, and reduced disease severity, compared with seeds treated with the wilt pathogen alone. Application of P. agglomerans as a soil drench 24 h after planting was also effective in suppressing bacterial wilt in some instances, but was generally not as effective as seed treatment. The study suggests that seed treatment with P. agglomerans may be an effective and practical method for control of bacterial wilt of bean.  相似文献   

9.
Plant pathogenic organisms are known to infect host cell using various range of secretory proteins. Amongst all other secretion systems, type III secretion system (T3SS) is a key mechanism for bacterial pathogenesis for establishing and maintaining infection into the host. Expression levels of seven genes viz. avrXacE1, avrXacE2, hpaA and hrpG along with bacterial endogenous control lrp (leucine-responsive protein) were studied. The pathogenic organisms selected for the present study includes Enterobacter cloacae, Enterobacter spp., Pantoea ananatis, Xanthomonas campestris pv. Citri, Pantoea agglomerans, Ochrobactrum anthropi and Erwinia chrysanthemi. P. agglomerans and Enterobacter spp. gave high expression of above-mentioned virulence genes compared to Xanthomonas, while E. cloacae and P. ananatis showed similar expression with that of Xanthomonas. The detailed relationship of the expression profiles with respect to the selected organisms is discussed.  相似文献   

10.
It has been demonstrated that for a nonpathogenic, leaf-associated bacterium, effectiveness in the control of bacterial speck of tomato is correlated with the similarity in the nutritional needs of the nonpathogenic bacterium and the pathogen Pseudomonas syringae pv. tomato. This relationship was investigated further in this study by using the pathogen Xanthomonas campestris pv. vesicatoria, the causal agent of bacterial spot of tomato, and a collection of nonpathogenic bacteria isolated from tomato foliage. The effects of inoculation of tomato plants with one of 34 nonpathogenic bacteria prior to inoculation with the pathogen X. campestris pv. vesicatoria were quantified by determining (i) the reduction in disease severity (number of lesions per square centimeter) in greenhouse assays and (ii) the reduction in leaf surface pathogen population size (log10 of the number of CFU per leaflet) in growth chamber assays. Nutritional similarity between the nonpathogenic bacteria and X. campestris pv. vesicatoria was quantified by using either niche overlap indices (NOI) or relatedness in cluster analyses based upon in vitro utilization of carbon or nitrogen sources reported to be present in tomato tissues or in Biolog GN plates. In contrast to studies with P. syringae pv. tomato, nutritional similarity between the nonpathogenic bacteria and the pathogen X. campestris pv. vesicatoria was not correlated with reductions in disease severity. Nutritional similarity was also not correlated with reductions in pathogen population size. Further, the percentage of reduction in leaf surface pathogen population size was not correlated with the percentage of reduction in disease severity, suggesting that the epiphytic population size of X. campestris pv. vesicatoria is not related to disease severity and that X. campestris pv. vesicatoria exhibits behavior in the phyllosphere prior to lesion formation that is different from that of P. syringae pv. tomato.  相似文献   

11.
Bacterial streak disease of maize is currently causing some concern among breeders in South Africa. The causal organism of this previously undescribed disease was successfully isolated and its pathogenicity established using KoCH's postulates. Standard physiological and biochemical tests used to identify phytopathogenic bacteria indicated that the bacterium is a Xanthomonas campestris pathovar. Comparisons between this organism and other recognized X. campestris pathovars of the Poaceae indicated that apart from some minor differences the maize streak pathogen is physiologically similar to X. campestris pv. holcicola. However, in repeated reciprocal inoculation experiments all attempts to induce disease symptoms in sorghum with the maize streak pathogen were unsuccessful. Conversely, X. campestris pv. holcicola did produce symptoms in maize leaves. In all the maize cultivars tested the symptoms produced by the maize streak pathogen were, however, always considerably more severe than those caused by X. campestris pv. holcicola. Notwithstanding its physiological similarity to X. campestris pv. holicola it would appear that on the grounds of host specificity the maize streak pathogen warrants new pathovar status. The name X. campestris pv. zeae is proposed.  相似文献   

12.
Two recombinant plasmids, expressing ice nucleation activity, were constructed and named pCPP30inaZ and pCPP38inaZ. They were transferred to the ice-negative, xanthan-producing Xanthomonas campestris pv. campestris by electroporation. The transformants were used for co-production of xanthan gum and ice nuclei from sugar beet molasses. The highest values obtained were 20 g l–1 and 1018 ice nuclei ml–1, respectively. The above values fulfil the criteria for industrial manipulation. This is the first report on co-formation of two products by a transformed X. campestris strain.  相似文献   

13.
Abstract 1. Immature stages of the gall midge, Asphondylia borrichiae, are attacked by four species of parasitoids, which vary in size and relative abundance within patches of the gall midge’s primary host plant, sea oxeye daisy (Borrichia frutescens). 2. In the current study, a bagging experiment found that the smallest wasp, Galeopsomyia haemon, was most abundant in galls exposed to natural enemies early in the experiment, when gall diameter is smallest, while the wasp with the longest ovipositor, Torymus umbilicatus, dominated the parasitoid community in galls that were not exposed until the 5th and 6th weeks when gall diameter is maximal. 3. Moreover, the mean number of parasitoids captured using large artificial galls were 70% and 150% higher compared with medium and small galls respectively, while stem height of artificial galls significantly affected parasitoid distribution. Galls that were level with the top of the sea oxeye canopy captured 60% more parasitoids compared with those below the canopy and 50% more than galls higher than the plant canopy. 4. These non‐random patterns were driven primarily by the differential distribution of the largest parasitoid, T. umbilicatus, which was found significantly more often than expected on large galls and the smallest parasitoid of the guild, G. haemon, which tended to be more common on stems level with the top of the plant canopy. 5. Large Asphondylia galls, especially those located near the top of the Borrichia canopy, were more likely to be discovered by searching parasitoids. Results using artificial galls were consistent with rates of parasitism of Asphondylia galls in native patches of sea oxeye daisy. Gall diameter was 19% greater and the rate of parasitism was reduced by almost 50% on short stems; as a result, gall abundance was 24% higher on short stems compared with ones located near the top of the plant canopy. 6. These results suggest that parasitoid community composition within galls is regulated by both interspecific differences in ovipositor length and preferences for specific gall size and/or stem length classes.  相似文献   

14.
The growth conditions ofPantoea agglomerans, a phosphate solubilizing organism, were studied in our laboratory to determine the optimal conditions.Pantoea agglomerans showed the highest growth rate at 30°C, pH 7.0 and 2 vvm, after 50 h cultivation. A certain relationship between pH and phosphate concentration, was evident when the glucose concentration in the medium was changed. Increasing glucose concentration increased the pH buffer action of the broth. At glucose concentrations higher than the optimum concentration of 0.2 M, the cell growth was retarded.P. agglomerans consumed glucose as a substrate to produce organic acids which caused the pH decrease in the culture medium. The phosphate concentration in the medium was increased by the presence of the organic acids, which solubilized insoluble phosphates such as hydroxyapatite.  相似文献   

15.
Pantoea agglomerans has been transformed from a commensal bacterium into two related gall-forming pathovars by acquisition of pPATH plasmids containing a pathogenicity island (PAI). This PAI harbors an hrp/hrc gene cluster, type III effectors, and phytohormone biosynthetic genes. DNA typing by pulsed-field gel electrophoresis revealed two major groups of P. agglomerans pv. gypsophilae and one group of P. agglomerans pv. betae. The pPATH plasmids of the different groups had nearly identical replicons (98% identity), and the RepA protein showed the highest level of similarity with IncN plasmid proteins. A series of plasmids, designated pRAs, in which the whole replicon region (2,170 bp) or deleted derivatives of it were ligated with nptI were generated for replicon analysis. A basic 929-bp replicon (pRA6) was sufficient for replication in Escherichia coli and in nonpathogenic P. agglomerans. However, the whole replicon region (pRA1) was necessary for expulsion of the pPATH plasmid, which resulted in the loss of pathogenicity. The presence of direct repeats in the replicon region suggests that the pPATH plasmid is an iteron plasmid and that the repeats may regulate its replication. The pPATH plasmids are nonconjugative but exhibit a broad host range, as shown by replication of pRA1 in Erwinia, Pseudomonas, and Xanthomonas. Restriction fragment length polymorphism analyses indicated that the PAIs in the two groups of P. agglomerans pv. gypsophilae are similar but different from those in P. agglomerans pv. betae. The results could indicate that the pPATH plasmids evolved from a common ancestral mobilizable plasmid that was transferred into different strains of P. agglomerans.  相似文献   

16.
Some aphid species induce leaf galls, in which the fundatrix parthenogenetically produces many nymphs. In order to ensure high performance, galls have to provide the aphids with sufficient nutrients, in particular, amino acids as a nitrogen source. We tested this hypothesis using six Tetraneura aphid species that induce closed galls. We extracted free amino acids from the whole gall tissues of unit weight and quantified the concentration of each amino acid. There were large differences in the total amino acid concentrations among galls of the Tetraneura species. Tetraneura species in which higher concentrations of total amino acids were found in the gall tended to produce larger numbers of offspring. Of the amino acids found, asparagine was predominant in the gall. The asparagine concentration in T. yezoensis galls was several hundred times as high as in control leaves. We discussed why such a high level of asparagine accumulates in aphid galls.  相似文献   

17.
The aim of this work was to optimize acid stress conditions for induction of acid tolerance response (ATR) in the biocontrol agent Pantoea agglomerans and study the effect of ATR induced on the ability to survive under acidic conditions. Initially, Pantoea agglomerans was grown in mild acidic conditions (pH 6.0, 5.5, 5.0 and 4.0) in order to induce ATR. The highest ATR was induced at initial pH of 5 using malic or citric acid. A first in vitro experiment was carried out. Thus, basal liquid medium at different pHs (3.0, 3.5, 4.0 and non-acidified) were then inoculated with acid-adapted and non-adapted inocula of P. agglomerans and survivals were examined during incubation at 25 or 4 °C. It was found that acid adaptation enhanced the survivals of Pantoea agglomerans CPA-2 cells at pH levels at which the cells were unable to grow (<3.5 and 4.0, at 25 and 4 °C, respectively). In contrast, in pH levels at which the cells were able to grow (pH 4.0 at 25 °C and non-acidified medium at 25 and 4 °C) no-differences were found between adapted and non-adapted cells. In in vivo tests, adapted and non-adapted cells were inoculated in wounds on mandarins and pome fruits. No differences were found between adapted and non-adapted cells and biocontrol efficacy was maintained. The present study demonstrated that exposure of Pantoea agglomerans to mild acidic conditions could induce acid resistance in this biocontrol agent.  相似文献   

18.
Acylcyclohexanediones and antagonistic bacteria sprayed alone or in combination have been shown to suppress fire blight of apple and pear. Acylcyclohexanediones, such as prohexadione-calcium and trinexapac-ethyl, increase plant resistance and are effective against the shoot blight phase of the disease. Antagonistic bacteria, such as Pantoea agglomerans, compete with the pathogen (Erwinia amylovora) for space and nutrients on stigmas, which prevents blossom blight. Potential synergistic effects of acylcyclohexanediones with P. agglomerans for fire blight suppression were investigated on leaves and flowers of apple and pear. Acylcyclohexanediones modified the composition of apple nectar and stigmatic secretions, which resulted in moderately higher epiphytic populations of P. agglomerans strain P10c. In experiments in apple orchards, the combination of acylcyclohexanediones and P. agglomerans gave the greatest protection against blossom blight and shoot blight. In pear orchards, under natural infection conditions, a similar result was obtained for the 3 of the 4 years of the experiment.  相似文献   

19.
Black rot of cabbage caused by Xanthomonas campestris pv. campestris is one of the most important diseases of crucifers worldwide. Expression of defence-related enzymes in cabbage in response to X. campestris pv. campestris was investigated in the current experiment. Among the defence-related enzymes (phynylalanine ammonia lyase, peroxidase, polyphenol oxidase, superoxide dismutase [SOD] and chitinase) and quantity of phenolic compounds studied in the present investigation, phenylalanine ammonia lyase (PAL), the key enzyme in the phenylpropanoid pathway was the first enzyme suppressed at three days after inoculation in X. campestris pv. campestris-cabbage system. Correlation analysis indicated that PAL and phenolic compounds are the two most important compounds determining the susceptibility of cabbage to X. campestris pv. campestris. Induction of peroxidase isoform-1 (Rf value: 0.059) and SOD isoform-1 (Rf value: 0.179) three days after pathogen inoculation implicated the role of these isozymes in susceptible cabbage – X. campestris pv. campestris interaction. This study demonstrates the susceptibility of cabbage to X. campestris pv. campestris is a result of declination of PAL and phenolic contents at biochemical level as a manifestation of increase in bacterial population at the cellular level within the host tissues.  相似文献   

20.
Xanthomonas campestris pv. campestris (Xcc) is a phytopathogenic bacteria, and it is the causative agent of black rot in crucifers. Recent studies have shown that Bacillus species have strong biological control on Xanthomonas. One of the mechanisms of this control is secondary metabolites production. A collection of 257 bacteria isolated from a suppressive soil was evaluated for in vitro antagonistic activity against X. campestris, and 92 isolates (44.6%) were able to inhibit its growth. Among the 92 isolates evaluated in the double‐layer technique, 51 (55.43%) inhibited Xcc growth on the inhibition tests with cell‐free filtrates (CFF) in liquid medium. Thirteen of these isolates presented 50% or more growth inhibition, and five isolates presented 100% growth inhibition of Xcc. The CFF of the isolate TCDT‐08, which belongs to the Paenibacillus genus, was used for in vivo tests with kale crops. The artificial inoculation of kale with Xcc‐629IBSBF pretreated with CFF from the isolate TCDT‐08 demonstrated that the bacterium loses the ability of colonizing kale and of causing black rot. A Paenibacillus sp. isolate has strong inhibitory activity against X. campestris pv. campestris, and further studies can result in the use of this isolate to protect kale from Xcc infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号