首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Interleukin-23 (IL-23, IL-23p19) is a proinflammatory cytokine in the IL-12-related family. Although inflammatory cells in herniated discs have been shown to contain IL-23, little is known about the presence and role of IL-23 in human disc cells. We analyzed disc specimens for IL-23 localization using immunohistochemistry in control, herniated and non-herniated discs from which annulus fibrosus (annulus) cells were isolated and cultured to identify IL-23 gene expression and production. Microarray analysis was used to assess the expression of IL-23 in disc tissue and in cells exposed to two proinflammatory cytokines, IL-1ß and TNF-α. IL-23 was present in annulus cells at the protein level and its expression was up-regulated significantly in herniated compared to control disc tissue. Direct measurement of medium components confirmed production of IL-23 and its receptor, IL-23R, by annulus cells in vitro. Annulus cells in three-dimensional culture exposed to TNF-α, but not IL-1ß, resulted in significant up-regulation of IL-23 expression compared to control cells. Our findings are evidence for the constitutive presence of IL-23 in the human disc and that its expression in vitro is modified by exposure to TNF-α.  相似文献   

2.
Low back pain is a significant socioeconomic burden in the United States and lumbar intervertebral disc degeneration is frequently implicated as a cause. The discs play an important mechanical role in the spine, yet the relationship between disc function and back pain is poorly defined. The objective of this work was to develop a technique using magnetic resonance imaging (MRI) and three-dimensional modeling to measure in vivo disc deformations. Using this method, we found that disc geometry was measurable with precision less than the in-plane dimensions of a voxel (≈100 µm, 10% of the MRI pixel size). Furthermore, there was excellent agreement between mean disc height, disc perimeter, disc volume and regional disc height measurements for multiple trials from an individual rater (standard deviation <3.1% across all measurements) and between mean height, perimeter, and volume measurements made by two independent raters (error <1.5% across all measurements). We then used this measurement system to track diurnal deformations in the L5-S1 disc in a young, healthy population (n = 8; age 24.1 ± 3.3 yrs; 2 M/6F). We measured decreases in the mean disc height (−8%) and volume (−9%) with no changes in perimeter over an eight-hour workday. We found that the largest height losses occurred in the posterior (−13%) and posterior-lateral (−14%) regions adjacent to the outer annulus fibrosus. Diurnal annulus fibrosus (AF) strains induced by posterior and posterior-lateral height loss may increase the risk for posterior disc herniation or posterior AF tears. These preliminary findings lay a foundation for determining how deviations from normal deformations may contribute to back pain.  相似文献   

3.
Chemokines are an important group of soluble molecules with specialized functions in inflammation. The roles of many specialized chemokines and their receptors remain poorly understood in the human intervertebral disc. We investigated CXCL16 and its receptor, CXCR6, to determine their immunolocalization in disc tissue and their presence following exposure of cultured human annulus fibrosus cells to proinflammatory cytokines. CXCL16 is a marker for inflammation; it also can induce hypoxia-inducible factor 1α (HIF-1α), which is a phenotypic marker of heathy nucleus pulposus tissue. We found CXCL16 and CXCR6 immunostaining in many cells of the annulus portion of the disc. Molecular studies showed that annulus fibrosus cells exposed to IL-1ß, but not TNF-α, exhibited significant up-regulation of CXCL16 expression vs. control cells. There was no significant difference in the percentage of annulus cells that exhibited immunolocalization of CXCL16 in grade I/II, grade III or grade IV/V specimens. The presence of CXCL16 and its receptor, CXCR6, in the annulus in vivo suggests the need for future research concerning the role of this chemokine in proinflammatory functions, HIF-1α expression and disc vascularization.  相似文献   

4.
The expression of CHOP (C/EBP homologous protein), an apoptosis regulated gene, increases during endoplasmic reticulum (ER) stress induced by cyclic stretch and leads to rat AF cells apoptosis. However, whether the suppression of CHOP can inhibit apoptosis and attenuates disc degeneration by cyclic stretch remains unclear. The aim of this study was to evaluate the suppressive effects of lentiviral CHOP shRNA on apoptosis induced by cyclic stretch in rat annulus fibrosus (AF) cells in vitro and disc degeneration of rat lumber spine in vivo. Lentiviral CHOP shRNA was constructed and introduced into AF cells. After stretched by the Flexcell Tension Plus system with 20% elongation for 36 h, silencing of the CHOP gene was identified by RT-PCR and Western blot. Inhibition of apoptosis was detected by flow cytometry, and nuclei morphologic changes were visualized by Hoechst 33258 staining. The effect of CHOP shRNA on disc degeneration was determined in vivo by using a rat model. At 7 weeks after intradiscal injection of the control or CHOP shRNA in the L4/L5 and L5/L6 discs, disc degeneration was assessed by X-ray examination, magnetic resonance imaging (MRI) assessment, and HE and TUNEL staining. A significant decrease in CHOP mRNA and protein expression was detected in AF cells with CHOP shRNA transfection after 36 h stretch. There was a significant decrease in apoptotic incidence in cells treated with CHOP shRNA, which was parallel to the expression of CHOP. Injection of CHOP shRNA in vivo resulted in the improvement in MRI and histologic score, and decrease in the apoptosis in the disc. No significant change in disc height was observed. In conclusion, a novel lentiviral vector expressing CHOP shRNA efficiently inhibits apoptosis in rat AF cells by silencing CHOP expression. In a rat model, intradiscal injection of CHOP shRNA induces the suppression of disc degeneration. The therapeutic effects of lentiviral CHOP shRNA should be further explored.  相似文献   

5.
The angled, lamellar structure of the annulus fibrosus is integral to its load-bearing function. Reorientation of this fiber structure with applied load may contribute to nonlinear mechanical behavior and to large increases in tensile modulus. Fiber reorientation has not yet been quantified for loaded non-degenerated and degenerated annulus fibrosus tissue. The objective of this study was to measure fiber reorientation and mechanical properties (toe- and linear-region modulus, transition strain, and Poisson's ratio) of loaded outer annulus fibrosus tissue using a new application of FFT image processing techniques. This method was validated for quantification of annulus fiber reorientation during loading in this study. We hypothesized that annulus fibrosus fibers would reorient under circumferential tensile load, and that fiber reorientation would be affine. Additionally, we hypothesized that degeneration would affect fiber reorientation, toe-region modulus and Poisson's ratio. Annulus fibrosus fibers were found to reorient toward the loading direction, and degeneration significantly decreased fiber reorientation (the fiber reorientation parameter, m(FFT)=-1.70 degrees /% strain for non-degenerated and -0.95 degrees /% strain for degenerated tissue). Toe-region modulus was significantly correlated with age (r=0.6). Paired t-tests showed no significant difference in the fiber reorientation parameter calculated experimentally with that calculated using an affine prediction. Thus, an affine prediction is a good approximation of fiber reorientation. The findings of this study add to the understanding of overall disc mechanical behavior and degeneration.  相似文献   

6.
We evaluated the immunohistochemical distribution of three major proteoglycans of cartilage, i.e., aggrecan, versican and perlecan vis-a-vis collagens I and II in the developing human spine of first-trimester foetuses. Aggrecan and perlecan were prominently immunolocalised in the cartilaginous vertebral body rudiments and to a lesser extent within the foetal intervertebral disc. In contrast, versican was only expressed in the developing intervertebral disc interspace. Using domain-specific monoclonal antibodies against the various modules of versican, we discovered the V0 isoform as the predominant form present. Versican immunolocalisations conducted with antibodies directed to epitopes in its N and C termini and GAG-α and GAG-β core protein domains provided evidence that versican in the nucleus pulposus was either synthesised devoid of a G3 domain or this domain was proteolytically removed in situ. The V0 versican isoform was localised with prominent fibrillar components in the annular lamellae of the outer annulus fibrosus. Perlecan was a notable pericellular proteoglycan in the annulus fibrosus and nucleus pulposus but poorly immunolocalised in the marginal tissues of the developing intervertebral disc, apparently delineating the intervertebral disc–vertebral body interface region destined to become the cartilaginous endplate in the mature intervertebral disc. The distribution of collagens I and II in the foetal spine was mutually exclusive with type I present in the outer annulus fibrosus, marginal tissues around the vertebral body rudiment and throughout the developing intervertebral disc, and type II prominent in the vertebral rudiment, absent in the outer annulus fibrosus and diffusely distributed in the inner annulus fibrosus and nucleus pulposus. Collectively, our findings suggest the existence of an intricate and finely balanced interplay between various proteoglycans and collagens and the spinal cell populations which synthesise and assemble these components during spinal development.  相似文献   

7.
Intervertebral disc degeneration results in disorganization of the laminate structure of the annulus that may arise from mechanical microfailure. Failure mechanisms in the annulus were investigated using composite lamination theory and other analyses to calculate stresses in annulus layers, interlaminar shear stress, and the region of stress concentration around a fiber break. Scanning electron microscopy (SEM) was used to evaluate failure patterns in the annulus and evaluate novel structural features of the disc tissue. Stress concentrations in the annulus due to an isolated fiber break were localized to approximately 5 microm away from the break, and only considered a likely cause of annulus fibrosus failure (i.e., radial tears in the annulus) under extreme loading conditions or when collagen damage occurs over a relatively large region. Interlaminar shear stresses were calculated to be relatively large, to increase with layer thickness (as reported with degeneration), and were considered to be associated with propagation of circumferential tears in the annulus. SEM analysis of intervertebral disc annulus fibrosus tissue demonstrated a clear laminate structure, delamination, matrix cracking, and fiber failure. Novel structural features noted with SEM also included the presence of small tubules that appear to run along the length of collagen fibers in the annulus and a distinct collagenous structure representative of a pericellular matrix in the nucleus region.  相似文献   

8.
The sand rat, a member of the gerbil family, is a valuable small animal model in which intervertebral disc degeneration occurs spontaneously as the animal ages. Radiographic features of cervical and lumbar degeneration resemble those in human spines. We conducted a retrospective analysis of spines of 140 animals 3?41 months old focusing specifically on the presence of annular tears that are not visible by radiography and have not been described previously in the sand rat disc. During degeneration of the nucleus pulposus, notochordal cell death occurs and granular material, which stains with Alcian blue for proteoglycans, accumulates. Lamellar architecture also deteriorates and annular tears occur that are morphologically similar to the concentric, radiating and transdiscal annular tears in human discs. These tears contain granular material that provides a “marker” that can be used to distinguish the annular tears from artefactual separations during sectioning. We observed lamellar degeneration and separation in the annulus fibrosus at 4 months with associated tears that contained granular material in the nucleus. Tears that contained granular material and displacement of the degenerating nucleus were common in cervical and lumbar discs of animals older than 9 months; some specimens showed tears at 4 and 5 months. With advanced degeneration, granular globules were displaced dorsally adjacent to and into the spinal cord area and also ventrally into regions where osteophytes formed. We present morphologic data that expand the utility of this rodent model of spontaneous age-related disc degeneration and provide novel information on annular tears and disc degeneration.  相似文献   

9.
A biotinylated complex of aggrecan G1-domain and link protein was used to characterize the distribution of hyaluronan in paraffin-embedded sections of adult human and canine intervertebral disc and cartilage endplate. Limited chondroitinase ABC and trypsin digestions of the sections before staining was utilized to expose hyaluronan potentially masked by aggrecan. Hyaluronan concentration and hyaluronan to uronic acid ratio in different parts of the discs were measured as a background for the histological analysis.Hyaluronan staining was strong in the nucleus pulposus and inner parts of annulus fibrosus of both species, corroborated by biochemical assays of the same compartments. Particularly in human samples, hyaluronan in the interterritorial matrix of nucleus pulposus and annulus fibrosus was readily accessible to the probe without enzyme treatments. In contrast, the cell-associated hyaluronan signal was enhanced after trypsin or limited chondroitinase ABC-treatment of the sections, suggesting that pericellular hyaluronan was more masked by aggrecan than in the distant matrix. A puzzling feature of canine cartilage endplate cells was their intensive cell-associated hyaluronan signal, part of which appeared intracellular. Hyaluronan was abundant between the collagenous lamellae in annulus fibrosus, perhaps important in the plasticity of this tissue.  相似文献   

10.
We investigated whether the multifunctional intercellular proteoglycan, serglycin, is expressed in human intervertebral disc cells and assessed its localization. We also investigated expression levels of serglycin in human annulus fibrosus (annulus) cells exposed to IL-1ß and TNF-α, which are two proinflammatory cytokines that are expressed during disc degeneration. Immunolocalization of serglycin was common in many cells of the human annulus, but less common in the nucleus pulposus (nucleus). Both intracellular and cell membrane localization were observed. Annulus cells from Thompson grades III, IV and V degenerated discs exhibited a 4.69 fold up-regulation in serglycin expression vs. cells from healthier grades I and II discs. In monolayer annulus cell culture, cells from more degenerated discs exhibited a 9.4 fold up-regulation of serglycin expression compared to cells from healthier discs. Exposure of cultured cells to IL-1ß or TNF-α caused significant up-regulation of serglycin expression. We found that serglycin expression increased with increasing disc degeneration both in vivo and in vitro, and also increased with exposure in vitro to IL-1ß and TNF-α.  相似文献   

11.
Intervertebral disc degeneration is the main cause of low back pain. In the past 20 years, the injection of mesenchymal stromal cells (MSCs) into the nucleus pulposus of the degenerative disc has become the main approach for the treatment of low back pain. Despite the progress made in this field, there are still many barriers to overcome. First, intervertebral disc is a highly complex load-bearing composite tissue composed of annulus fibrosus, nucleus pulposus and cartilaginous endplates. Any structural damage will change its overall biomechanical function, thereby causing progressive degeneration of the entire intervertebral disc. Therefore, MSC-based treatment strategies should not only target the degenerated nucleus pulposus but also include degenerated annulus fibrosus or cartilaginous endplates. Second, to date, there has been relatively little research on the basic biology of annulus fibrosus and cartilaginous endplates, although their pathological changes such as annular tears or fissures, Modic changes, or Schmorl's nodes are more commonly associated with low back pain. Given the high complexity of the structure and composition of the annulus fibrosus and cartilaginous endplates, it remains an open question whether any regeneration techniques are available to achieve their restorative regeneration. Finally, due to the harsh microenvironment of the degenerated intervertebral disc, the delivered MSCs die quickly. Taken together, current MSC-based regenerative medicine therapies to regenerate the entire disc complex by targeting the degenerated nucleus pulposus alone are unlikely to be successful.  相似文献   

12.
Yang BL  Yang BB  Erwin M  Ang LC  Finkelstein J  Yee AJ 《Life sciences》2003,73(26):3399-3413
The functional role of versican in influencing intervertebral disc cell adhesion and proliferation was analyzed in bovine intervertebral disc. We have previously demonstrated the C-terminal globular G3 (or selectin-like) domain of versican to influence mesenchymal chondrogenesis and fibroblast proliferation in vitro. For this study, a versican G3 expression construct was generated to examine the role of the G3 domain of versican. Nucleus pulposus and annulus fibrosus cells were isolated from adult bovine caudal discs using sequential enzymatic digestion and versican expression characterized by RT-PCR. In cell proliferation assays, we observed that there was greater cellular proliferation in the presence of versican G3 for both disc cell types. The higher proliferation rate of annulus fibrosus cells when compared to nucleus pulposus cells seeded in monolayer supports heterogeneity of intervertebral disc cell populations. The presence of versican G3 construct enhanced the adhesion of isolated nucleus pulposus and annulus fibrosus cells approximately 4 to 6 fold, respectively. Cellular adhesion was greater in the presence of versican G3 in a dose dependent manner. G3 product was purified using affinity columns, and the purified G3 also enhanced cell adhesion.  相似文献   

13.
14.
The two main load bearing tissues of the intervertebral disc are the nucleus pulposus and the annulus fibrosus. Both tissues are composed of the same basic components, but differ in their organization and relative amounts. With degeneration, the clear distinction between the two tissues disappears. The changes in biochemical content lead to changes in mechanical behaviour of the intervertebral disc. The aim of the current study was to investigate if well-documented moderate degeneration at the biochemical and fibre structure level leads to instability of the lumbar spine. By taking into account biochemical and ultrastructural changes to the extracellular matrix of degenerating discs, a set of constitutive material parameters were determined that described the individual tissue behaviour. These tissue biomechanical models were then used to simulate dynamic behaviour of the degenerated spinal motion segment, which showed instability in axial rotation, while a stabilizing effect in the other two principle bending directions. When a shear load was applied to the degenerated spinal motion segment, no sign of instability was found. This study found that reported changes to the nucleus pulposus and annulus fibrosus matrix during moderate degeneration lead to a more stable spinal motion segment and that such biomechanical considerations should be incorporated into the general pathophysiological understanding of disc degeneration and how its progress could affect low back pain and its treatments thereof.  相似文献   

15.
The nucleus pulposus of the intervertebral disc exerts a pressure which enables it to support axial compression when contained by the annulus fibrosus. The disc was modelled as a thick-walled cylindrical pressure vessel in which the nucleus was contained radially by the annulus. As a result, the stress in the annulus had radial (compressive) as well as tangential (tensile) components. The radial stress at a given point in the annulus was considered to be balanced by the internal pressure which is expected to arise from the attraction of water by proteoglycans. There was a reasonable agreement between the calculated radial stress distribution and published results on the distribution of water within the annulus. As the internal pressure is expected to be isotropic, the annulus was expected to contribute to the axial resistance to compression of the disc; this contribution would be equal, in magnitude, to the radial stress. Predictions of the pressure distribution within the annulus were similar to published experimental measurements made in the radial and axial directions. The tangential stress within the annulus was considered to arise from the restoring stress in its strained collagen fibrils.  相似文献   

16.
Mechanical function of the annulus fibrosus of the intervertebral disc is dictated by the composition and microstructure of its highly ordered extracellular matrix. Recent work on engineered angle-ply laminates formed from mesenchymal stem cell (MSC)-seeded nanofibrous scaffolds indicates that the organization of collagen fibers into planes of alternating alignment may play an important role in annulus fibrosus tissue function. Specifically, these engineered tissues can resist tensile deformation through shearing of the interlamellar matrix as layers of collagen differentially reorient under load. In the present work, a hyperelastic constitutive model was developed to describe the role of interlamellar shearing in reinforcing the tensile response of biologic laminates, and was applied to experimental results from engineered annulus constructs formed from MSC-seeded nanofibrous scaffolds. By applying the constitutive model to uniaxial tensile stress–strain data for bilayers with three different fiber orientations, material parameters were generated that characterize the contributions of extrafibrillar matrix, fibers, and interlamellar shearing interactions. By 10 weeks of in vitro culture, interlamellar shearing accounted for nearly 50% of the total stress associated with uniaxial extension in the anatomic range of ply angle. The model successfully captured changes in function with extracellular matrix deposition through variations in the magnitude of model parameters with culture duration. This work illustrates the value of engineered tissues as tools to further our understanding of structure–function relations in native tissues and as a test-bed for the development of constitutive models to describe them.  相似文献   

17.
18.
Lipopolysaccharide (LPS) induces matrix degradation and markedly stimulates the production of several cytokines, i.e., interleukin-1β, −6, and −10, by disc cells and chondrocytes. We performed a series of experiments to compare cellular responses of cells from the bovine intervertebral disc (nucleus pulposus and annulus fibrosus) and from bovine articular cartilage to LPS. Alginate beads containing cells isolated from bovine intervertebral discs and articular cartilage were cultured with or without LPS in the presence of 10% fetal bovine serum. The DNA content and the rate of proteoglycan synthesis and degradation were determined. In articular chondrocytes, LPS strongly suppressed cell proliferation and proteoglycan synthesis in a dose-dependent manner and stimulated proteoglycan degradation. Compared with articular chondrocytes, nucleus pulposus cells responded in a similar, although less pronounced manner. However, treatment of annulus fibrosus cells with LPS showed no significant effects on proteoglycan synthesis or degradation. A slight, but statistically significant, inhibition of cell proliferation was observed at high concentrations of LPS in annulus fibrosus cells. Thus, LPS suppressed proteoglycan synthesis and stimulated proteoglycan degradation by articular chondrocytes and nucleus pulposus cells. The effects of LPS on annulus fibrosus cells were minor compared with those on the other two cell types. The dissimilar effects of LPS on the various cell types suggest metabolic differences between these cells and may further indicate a divergence in pathways of LPS signaling and a differential sensitivity to exogenous stimuli such as LPS.This work was supported in part by NIH grants 2-P50-AR39239 and 1-P01-AR48152.  相似文献   

19.
X-ray diffraction has been used to measure the orientation of the collagen fibres in the ventral annulus fibrosus of intact L1/2 rabbit intervertebral disc during in vitro bending and torsion. Fibres are tilted with respect to the axis of the spine. As predicted by theory, fibre tilt decreases in those regions of the annulus which are stretched by bending but increases in the slackened regions. Good agreement with the quantitative predictions of bending theory was obtained in three of the six series of experiments, the predicted trend being found in all six. Tilt direction alternates in successive lamellae of the annulus. When discs were subjected to both clockwise and anticlockwise torsion of 5°, the two families of titled fibres reoriented in the expected directions.  相似文献   

20.
An axisymmetric finite element model of a body-disc-body unit has been developed and used to study the relative effects of two distinct direction-dependent material representations of the disc annulus on the predicted state of stresses in the disc. The annulus fibrosus is modelled either as nonhomogeneous fibre reinforced composite or alternatively as homogeneous orthotropic with transverse isotropy. In order to have identical states of displacements and hence strains, the unknown properties of the latter model are chosen to be equivalent with those of the former. The fibre slopes of 20 degrees, 30 degrees, and 40 degrees are considered in this study. The stresses in the annulus matrix in the circumferential planes parallel to the fibre layers are predicted to be significantly different depending on the annulus model used. In the nonhomogeneous model, the fibre membranes while under tensile forces, in turn, apply compression to the annulus matrix and, hence, decrease the annulus normal stresses in the above planes. Had the membranes carried compressive forces, a reverse trend would have resulted. The foregoing relative differences are dependent on the fibre orientation, and the magnitude of the tensile forces carried by the fibre layers. The latter also depends, amongst others, on the orientation of the fibres, decreasing as the fibre slope increases from 20 degrees to 30 degrees and 40 degrees. On the basis of the annulus micro-structure and the relative mechanical functions of its components, namely the annulus bulk and the collagenous fibre layers, it appears that nonhomogeneous fibre reinforced composite model of the disc annulus is more realistic resulting in a more accurate computation of stresses in the annulus fibrosus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号