首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ACTH-lipid interactions were investigated by: (1) lipid-monolayer studies using several zwitterionic and anionic phospholipids and gangliosides, (2) permeability experiments by following the swelling rate of liposomes in isotonic glycerol solutions by light scattering, using liposomes of synthetic lipids and liposomes made of lipids extracted from light synaptic plasma membranes, and (3) by steady-state fluorescence anisotropy measurements on liposomes derived from light synaptic plasma membranes employing 1,6-diphenyl-1,3,5-hexatriene as fluorescent probe. (1) The monolayer experiments demonstrated an interaction with gangliosides GT1, GM1, dioleoylphosphatidic acid and phosphatidylserine, but little or no interaction with phosphatidylcholine or sphingomyelin. The interaction with monolayers of GT1 or phosphatidic acid decreased for ACTH1-13-NH2 and ACTH1-10. (2) The liposome experiments showed that 2 X 10(-5) M ACTH1-24 increased the glycerol permeability by 20% and decreased the activation energy only when liposomes derived from light synaptic plasma membranes were used. Treatment of the liposomes with neuraminidase abolished the ACTH-induced permeability increase. (3) Steady-state fluorescence depolarization measurements revealed that ACTH1-24, ACTH1-16-NH2 and ACTH1-10 did not change the fluidity of liposomes derived from light synaptic plasma membranes as sensed by diphenylhexatriene. It is concluded that ACTH1-24 can bind to negatively charged lipids and can form an amphipathic helix aligned parallel to the membrane surface involving the N-terminal residues 1 to 12, possibly to 16. Polysialogangliosides will favorably meet the condition of a high local surface charge density under physiological circumstances. It is suggested that ACTH-ganglioside interactions will participate in ACTH-receptor interactions.  相似文献   

2.
The influence of dolichols on fluidity of mouse synaptic plasma membranes   总被引:1,自引:0,他引:1  
Dolichols are isoprenologues which constitute an important component of biological membranes. However, an understanding of the effects of dolichols on the organization and dynamics of biological membranes has not been forthcoming. The experiments reported here are aimed at understanding the effects of dolichols on the physical properties of mouse brain synaptic plasma membranes. The effect of dolichols incorporated into mouse brain synaptic plasma membranes on fluorescent and electron spin resonance probes sensing the hydrophobic core differed from that of probes reporting closer to the surface of membrane bilayers. Dolichols significantly (P less than 0.01) lowered the polarization, limiting anisotropy, and order parameter of diphenylhexatriene in synaptic plasma membranes and liposomes extracted from synaptic plasma membranes, without changing the rotational relaxation time. Similarly, dolichol increased the fluidity reported by 16-doxylstearic acid in synaptic plasma membranes or liposomes extracted from synaptic plasma membranes. In contrast, dolichols exerted no effect on those properties for trans-parinaric acid or 5-doxylstearic acid in synaptic plasma membranes or liposomes derived therefrom. Dolichols can dramatically alter the structure and dynamics of lipid motion in synaptic plasma membranes and these effects are dependent on the location of the probe in the membrane.  相似文献   

3.
This study examined the effects of different concentrations of centrophenoxine on physical properties of synaptic plasma membranes and liver microsomes using electron spin resonance procedures. Membranes of different age groups of mice were labeled with the 5-doxyl stearic acid spin-label and membrane fluidity determined in the presence and absence of different concentrations of centrophenoxine. Centrophenoxine had a direct effect on membranes as shown by a significant increase in membrane fluidity. This effect was greatest in liver microsomes as compared to synaptic plasma membranes. Age differences were not observed in centrophenoxine-induced fluidization. Effects of centrophenoxine in vivo may be due in part to the drug acting directly on the physical properties of the membrane lipid environment.  相似文献   

4.
Synaptic plasma membranes were prepared from cortices of rats varying in post-natal age between 4 and 30 days. Sialic acid associated with synaptic plasma membrane glycoproteins and gangliosides increased 75% and 50%, respectively, between 4 and 30 days. The amount of sialic acid released from these membrane constituents by intrinsic synaptic sialidase increased 2-4-fold over the same period. Incubation of synaptic plasma membranes with exogenous gangliosides or glycopeptides demonstrated a 2-3-fold increase in sialidase activity during development. The major gangliosides present in synaptic plasma membranes at all ages were GT1, GD1a, GD1b and GM1. Intrinsic sialidase hydrolyzed 50-70% of endogenous GT1 and GD1a gangliosides at all ages. Endogenous GD1b ganglioside was poorly hydrolyzed in young rats and its susceptibility to enzymic hydrolysis increased during development. When exogenous GD1a and GD1b were used as substrates a preferential increase in activity against GD1b occurred during development, the ratio of activity (GD1a/GD1b) decreasing from 3.6 to 1.6 between 7 and 30 days. 10- and 30-day-old synaptic plasma membranes contained complex mixtures of sialoglycoproteins, an increase in the relative concentrations of lower molecular weight sialoglycoproteins occurring during development. Intrinsic sialidase present in 10- and 30-day-old synaptic plasma membranes acted upon all molecular weight classes of sialoglycoproteins.  相似文献   

5.
Since adrenocorticotropic hormone is found in the brain, and several of its fragments affect adaptive behavior, the formation of fragments of ACTH1-39 by a rat brain synaptic membrane fraction was investigated. Following the incubations at physiological pH conditions, the digests were fractionated by HPLC to quantitate the amounts of ACTH1-39 remaining and products formed. Time- and enzyme-dependent disappearance of ACTH1-39 was accompanied by the accumulation of a major peptide metabolite (product B). Amino acid analysis and NH2-terminal end-group determination revealed that product B was identical to ACTH1-38. These results indicate the predominance of carboxypeptidase activity in the degradation of ACTH1-39 by brain synaptic membranes.  相似文献   

6.
ACTH-lipid interactions were investigated by: (1) lipid-monolayer studies using several zwitterionic and anionic phospholipids and gangliosides, (2) permeability experiments by following the swelling rate of liposomes in isotonic glycerol solutions by light scattering, using liposomes of synthetic lipids and liposomes made of lipids extracted from light synaptic plasma membranes, and (3) by steady-state fluorescence anisotropy measurements on liposomes derived from light synaptic plasma membranes employing 1,6-diphenyl-1,3,5-hexatriene as fluorescent probe. (1) The monolayer experiments demonstrated an interaction with gangliosides GT1, GM1, dioleoylphosphatidic acid and phosphatidylserine, but little or no interaction with phosphatidylcholine or sphingomyelin. The interaction with monolayers of GT1 or phosphatidic acid decreased for ACTH1-13-NH2 and ACTH1-10. (2) The liposome experiments showed that 2·10?5 M ACTH1–24 increased the glycerol permeability by 20% and decreased the activation energy only when liposomes derived from light synaptic plasma membranes were used. Treatment of the liposomes with neuraminidase abolished the ACTH-induced permeability increase. (3) Steady-state fluorescence depolarization measurements revealed that ACTH1–24, ACTH1-16-NH2 and ACTH1–10 did not change the fluidity of liposomes derived from light synaptic plasma membranes as sensed by diphenylhexatriene. It is concluded that ACTH1–24 can bind to negatively charged lipids and can form an amphipathic helix aligned parallel to the membrane surface involving the N-terminal residues 1 to 12, possibly to 16. Polysialogangliosides will favorably meet the condition of a high local surface charge density under physiological circumstances. It is suggested that ACTH-ganglioside interactions will participate in ACTH-receptor interactions.  相似文献   

7.
The present experiment was designed to study the action of ACTH1-24 on insulin secretion during the circadian cycle in normal rabbits and to provide evidence that ACTH1-24 has an extra-adrenal effect on this secretion. In normal rabbits intravenous administration of three doses of ACTH1-24 (1, 10, 100 micrograms/kg) at 10 a. m. increased plasma insulin levels. Hyperglycemia only occurred with doses of 10 and 100 micrograms/kg. A maximum insulin response was already obtained at 1 micrograms/kg. The same experiment performed at 12 p. m. also induced hyperinsulinemia which was only noted at 10 and 100 micrograms/kg; hyperglycemia was only observed after stimulation by the highest dose (100 micrograms/kg). ACTH was therefore more effective during the day; however, at 12 p. m. plasma insulin levels were the highest, but only with the maximum dose of ACTH (100 micrograms/kg). The effect of ACTH1-24 was evaluated throughout the day on normal and adrenalectomized rabbits. In normal animals injection of ACTH1-24 increased plasma glucose and insulin levels both together. In the contrary, in rabbits deprived of adrenal glands, ACTH1-24 induced high insulinemia along with hypoglycemia. We could, therefore, reasonably conclude that ACTH stimulates directly the pancreatic secretion of insulin.  相似文献   

8.
This study was performed to evaluate the protective effects of pyrroline and pyrrolidine nitroxides Pirolin, PL, and Pirolid, PD, on the plasma membranes of rat cardiomyocytes treated in vitro with anthracycline drugs aclarubicin (ACL) and doxorubicin (DOX). The influence of two concentrations of drugs (10 and 20 microM) and nitroxides (0.1 and 1 mM) as well as their combinations (a drug and a nitroxide) on membrane fluidity was investigated. The plasma membranes of cardiomyocytes were labelled with a hydrophobic fluorescence probe 12-AS and membrane fluidity was estimated on the basis of the fluorescence anisotropy of the probe. We found that aclarubicin and doxorubicin induced a significant dose-dependent decrease in membrane fluidity, whereas the nitroxides (PL and PD) caused its increase. Preincubation of cardiomyocytes with Pirolin entirely protected plasma membranes of these cells against damage caused by DOX. In the same conditions no protective effect of Pirolid was observed. What is more, Pirolid in combination with DOX caused fluidisation of the plasma membranes of cardiomyocytes. Both nitroxides at low concentration (0.1 mM) protected plasma membranes against rigidification induced by aclarubicin, while high concentration (1 mM) was ineffective and caused fluidisation of the plasma membranes of cardiomyocytes.  相似文献   

9.
Adenylate cyclase activation by corticotropin (ACTH), fluoride and forskolin was studied as a function of membrane structure in plasma membranes from bovine adrenal cortex. The composition of these membranes was characterized by a very low cholesterol and sphingomyelin content and a high protein content. The fluorescent probes 1,6-diphenylhexa-1,3,5-triene (DPH) and a cationic analogue 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) were, respectively, used to probe the hydrophobic and polar head regions of the bilayer. When both probes were embedded either in the plasma membranes or in liposomes obtained from their lipid extracts, they exhibited lifetime heterogeneity, and in terms of the order parameter S, hindered motion. Under all the experimental conditions tested, S was higher for TMA-DPH than for DPH but both S values decreased linearly with temperature within the range of 10 to 40 degrees C, in the plasma membranes and the liposomes. This indicated the absence of lipid phase transition and phase separation. Addition to the membranes of up to 100 mM benzyl alcohol at 20 degrees C also resulted in a linear decrease in S values. Membrane perturbations by temperature changes or benzyl alcohol treatment made it possible to distinguish between the characteristics of adenylate cyclase activation with each of the three effectors used. Linear Arrhenius plots showed that when adenylate cyclase activity was stimulated by forskolin or NaF, the activation energy was similar (70 kJ.mol-1). Fluidification of the membrane with benzyl alcohol concentrations of up to 100 mM at 12 or 24 degrees C produced a linear decrease in the forskolin-stimulated activity, that led to its inhibition by 50%. By contrast, NaF stabilized adenylate cyclase activity against the perturbations induced by benzyl alcohol at both temperatures. In the presence of ACTH, biphasic Arrhenius plots were characterized by a well-defined break at 18 degrees C, which shifted at 12.5 degrees C in the presence of 40 mM benzyl alcohol. These plots suggested that ACTH-sensitive adenylate cyclase exists in two different states. This hypothesis was supported by the striking difference in the effects of benzyl alcohol perturbation when experiments were performed below and above the break temperature. The present results are consistent with the possibility that clusters of ACTH receptors form in the membrane as a function of temperature and/or lipid phase fluidity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Head plasma membranes were isolated from the sperm-rich fraction of boar semen and from sperm-rich semen that had been subjected to three commercial preservation processes: Ex tended for fresh insemination (extended), prepared for freezing but not frozen (cooled), and stored frozen for 3-5 weeks (frozen-thawed). Fluorescence polarization was used to determine fluidity of the membranes of all samples for 160 min at 25°C and also for membranes from the sperm-rich and extended semen during cooling and reheating (25 to 5 to 40°C, 0.4°C/min). Head plasma membranes from extended semen were initially more fluid than from other sources (P < 0.05). Fluidity of head membranes from all sources decreased at 25°C, but the rate of decrease was significantly lower for membranes from cooled and lower again for membranes from frozen-thawed semen. Cooling to 5°C reduced the rate of fluidity change for plasma membranes from the spernvrich fraction, while heating over 30°C caused a signifi cantly greater decrease. The presence of Ca++ (10 mM) lowered the fluidity of the head plasma membranes from sperm-rich and extended semen over time at 25°C but did not affect the membranes from the cooled or frozen-thawed semen. The change in head plasma membrane fluidity at 25°C may reflect the dynamic nature of spermatozoa membranes prior to fertilization. Extenders, preservation processes and temperature changes have a strong influence on head plasma membrane fluidity and therefore the molecular organization of this membrane.  相似文献   

11.
Abstract: Affinity-purified anti-B-50 protein antibodies were used to study the previously proposed relationship of the phosphorylation state of B-50 protein and polyphosphoinositide metabolism in synaptic plasma membranes. Antibodies were raised against a membrane extract enriched in the B-50 protein and its adrenocorticotropin-sensitive protein kinase, obtained from rat brain. Anti-B-50 protein immunoglobulins were purified by affinity chromatography on a solid immunosorbent prepared from B-50 protein isolated by an improved procedure. The purified antibodies reacted only with the B-50 and B-60 protein, a proteolysis derivative (of B-50), as assessed by the sodium dodecyl sulfate-gel immunoperoxidase method. These antibodies inhibited specifically the endogenous phosphorylation of B-50 protein in synaptic plasma membranes, without affecting notably the phosphorylation of other membrane proteins. This inhibition was accompanied by changes of the formation of phosphatidylinositol 4,5-diphosphate and phosphatidic acid in synaptic plasma membranes, whereas formation of phosphatidylinositol 4-phosphate was not altered. Inhibition by ACTH 1–24 of the endogenous phosphorylation of B-50 protein in membranes was associated only with an enhancement of the phosphorylation of phosphatidylinositol 4-phosphate to phosphatidylinositol 4,5-diphosphate. These data support our hypothesis on the functional interaction of B-50 protein and phosphatidylinositol 4-phosphate kinase in rat brain membranes. The evidence shows that purified anti-B-50 protein antibodies can be used to probe specifically the function of B-50 protein in membranes.  相似文献   

12.
K W Gasser  A Goldsmith  U Hopfer 《Biochemistry》1990,29(31):7282-7288
Zymogen granule membranes contain Cl- conductance and Cl/anion exchange activities that become important for primary fluid production after fusion with the apical plasma membrane of the acinar cell. We have used steady-state fluorescence anisotropy of diphenylhexatriene derivatives and measurements of Cl- transport in isolated secretory granules to determine the contribution of membrane fluidity to the regulation of transport across the granule membrane. Secretory granules from several unstimulated glands (rat pancreas and parotid, rabbit gastric glands) were shown to have low membrane fluidity compared to plasma membranes. In addition, Cl- transport activity in different granule preparations showed a strong correlation to the membrane fluidity when measured with 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene p-toluenesulfonate (TMA-DPH), but not with 3-[p-(6-phenyl)-1,3,5-hexatrienyl)-phenyl]propionic acid (PA-DPH). These data suggest that TMA-DPH preferentially partitions into a specific lipid environment associated with, or which exerts an influence on, the Cl- transport proteins and that increases in the fluidity of this environment are associated with higher transport rates. Data from other types of plasma membranes indicate that TMA-DPH partitions much more than PA-DPH into the cytoplasmic leaflet, suggesting that this part of the granule membrane is involved in the observed fluidity changes. Furthermore, increasing the bulk membrane fluidity with the local anesthetics benzyl alcohol and n-alkanols increased the Cl- transport rates up to 10-fold. This increase was apparently through specific transporters as anion selectivity was maintained in spite of the higher absolute rates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Infrared attenuated total reflection spectroscopy (IR-ATR) revealed that the hydrophilic adrenocorticotropin-(11-24)-tetradecapeptide ( ACTH11 -24, net charge 6+) assumed an irregular secondary structure when incorporated into the aqueous layers between equilibrated multibilayers of planar membranes prepared from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine ( POPC ). This structure was characterized by a perpendicular orientation of the peptide bonds on the bilayer surfaces, as observed earlier for the corresponding segment of adrenocorticotropin-(1-24)-tetracosapeptide (ACTH1-24, 6+). Once incorporated, ACTH11 -24 was not removed by washing, in agreement with its strong positive charge. In contrast to ACTH1-24, ACTH11 -24 was not measurably adsorbed to the neutral membranes from 0.1 mM aqueous solutions. The more hydrophobic adrenocorticotropin-(1-10)-decapeptide is also not adsorbed. We therefore concluded that adsorption of ACTH1-24 to neutral membranes was dependent on its amphiphilic primary (amphipathic primary) structure that resulted from the covalent combination of the hydrophobic ACTH1-10 segment with the hydrophilic ACTH11 -24 segment. This conclusion was consistent with the results obtained by vesicle-mediated hydrophobic photolabeling and equilibrium dialysis.  相似文献   

14.
There is increasing evidence of an interaction between cholesterol dynamics and Alzheimer's disease (AD), and amyloid beta-peptide may play an important role in this interaction. Abeta destabilizes brain membranes and this action of Abeta may be dependent on the amount of membrane cholesterol. We tested this hypothesis by examining effects of Abeta1-40 on the annular fluidity (i.e., lipid environment adjacent to proteins) and bulk fluidity of rat synaptic plasma membranes (SPM) of the cerebral cortex, cerebellum, and hippocampus using the fluorescent probe pyrene and energy transfer. Amounts of cholesterol and phospholipid of SPM from each brain region were determined. SPM of the cerebellum were significantly more fluid as compared with SPM of the cerebral cortex and hippocampus. Abeta significantly increased (P < or = 0.01) annular and bulk fluidity in SPM of cerebral cortex and hippocampus. In contrast, Abeta had no effect on annular fluidity and bulk fluidity of SPM of cerebellum. The amounts of cholesterol in SPM of cerebral cortex and hippocampus were significantly higher (P < or = 0.05) than amount of cholesterol in SPM of cerebellum. There was significantly less (P < or = 0.05) total phospholipid in cerebellar SPM as compared with SPM of cerebral cortex. Neuronal membranes enriched in cholesterol may promote accumulation of Abeta by hydrophobic interaction, and such an interpretation is consistent with recent studies showing that soluble Abeta can act as a seed for fibrillogenesis in the presence of cholesterol.  相似文献   

15.
Effect of temperature on the fluidity of boar sperm membranes   总被引:2,自引:0,他引:2  
Fluidity was used to assess changes in molecular organization of boar spermatozoa plasma membranes from (1) the head and (2) the rest of the sperm body and acrosome as a consequence of temperature. The initial fluidity of the head membranes at 25 degrees C was less than that of the sperm body membranes (P less than 0.05). When held at 25 degrees C, the fluidity of the head membranes decreased for 105 +/- 8 min and then stabilized for the remainder of the 160-min incubation. Calcium (10 mM) caused a significantly greater decrease in fluidity. The fluidity of the sperm body membranes increased slightly over time in the absence of Ca2+, but decreased significantly with Ca2+. Cooling from 25 to 5 degrees C and subsequent heating to 40 degrees C (0.4 degrees C/min) caused marked alterations in the fluidity of each membrane. Cooling the head membranes prevented the fluidity increase seen at 25 degrees C, while reheating caused a dramatic decrease in fluidity. Fluidity of the head membranes was now unaffected by Ca2+. Lipid phase transitions, indicated by sharp break points in data curves, were detected at the onset of reheating (7 +/- 3 C) and at 23 +/- 4 degrees C during reheating. Fluidity of the sperm body membranes decreased slightly and in a linear fashion with Ca2+. Without Ca2+, the sperm body membranes showed an additional lipid phase shift at 31 +/- 5 degrees C, which led to a rapid fall in fluidity. These results suggest that the fluidity, and therefore the molecular structure, of sperm head and body membranes differ.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Inhibition of the phosphorylation of the synaptic plasma membrane (SPM) protein B50 by [D-Trp8]-somatostatin in vitro is time-dependent. Increasing the time of incubation of hippocampal synaptic plasma membranes with the peptide from 15 sec to 30 min prior to addition of 7.5 μM [γ-32Ps]ATP results in a complete reduction of B50 phosphorylation. Incubation of synaptic plasma membranes for 30 min in the absence of peptide does not alter basal B50 phosphorylation. Neither ACTH nor β-endorphin produces similar effects—inhibition of B50 phosphorylation by ACTH is maximal at 15 sec and β-endorphin produces only a small inhibition, even after 30 min. [D-Trp8]-somatostatin is not activating a membrane-bound protease, since maximal inhibition of B50 phosphorylation by the peptide is seen in the presence of leupeptin or bacitracin. Hippocampal synaptic plasma membranes contain protein phosphatase activity. Assays of B50 phosphorylation in synaptic plasma membranes done under conditions that favor either net phosphorylation or dephosphorylation are consistent with inhibition of protein phosphatase activity by [D-Trp8]-somatostatin. This evidence suggests that [D-Trp8]-somatostatin interacts with SPM binding sites in the hippocampus, which may alter the activity of an endogenous protein phosphatase to determine the degree of B50 phosphorylation.  相似文献   

17.
The effect of nedocromil sodium on the plasma membrane fluidity of polymorphonuclear leukocytes (PMNs) was investigated by measuring steady-state fluorescence anisotropy of 1-[4-trimethylammonium-phenyl]-6-phenyl- 1,3,5-hexatriene (TMA-DPH) incorporated in the membrane. Our results show that nedocromil sodium 300 muM significantly decreased membrane fluidity of PMNs. The decrease in membrane fluidity of PMNs induced by fMLP was abolished in the presence of nedocromil sodium. These data suggest that nedocromil sodium interferes with the plasma membranes of PMNs and modulates their activities.  相似文献   

18.
In view of the importance of membrane fluidity on cell functions, the influence of phospholipid acyl groups on membrane fluidity, and the changes in lipid metabolism induced by copper (Cu) deficiency, this study was designed to examine the influence of dietary Cu on the lipid composition and fluidity of liver plasma membranes. Male Sprague-Dawley rats were divided into two dietary treatments, namely Cu deficient and Cu adequate. After 8 weeks of treatment, liver plasma membranes were isolated by sucrose density gradient centrifugation. The lipid fluidity of plasma membranes, as assessed by the intramolecular eximer fluorescence of 1,3-di(1-pyrenyl) propane, was significantly depressed by Cu deficiency. In addition, Cu deficiency significantly reduced the content of arachidonic and palmitoleic acids but increased the docosatetraenoic and docosahexaenoic acids of membrane phospholipids. This alteration in unsaturated phospholipid fatty acid composition, especially the large reduction in arachidonic acid, may have contributed to the depressed membrane fluidity. Furthermore, Cu deficiency also markedly altered the fatty acid composition of the triacylglycerols associated with the plasma membranes. Thus, the lipid composition and fluidity of liver plasma membranes are responsive to the animal's Cu status.  相似文献   

19.
Our aim was to investigate the response of selected yeasts and yeast-like fungi from extreme?environments to various temperatures at the level of their plasma membranes, in order to elucidate the connections between their plasma-membrane fluidity (measured by electron paramagnetic resonance spectroscopy - EPR), growth temperature range, stress tolerance, and ecological distribution. Although all studied fungi can be considered mesophilic according to their growth temperature profiles, their plasma-membrane fluidity indicated otherwise. Arctic yeast Rhodosporidium diobovatum could be classified as psychrotolerant?due to its higher average membrane fluidity. Extremely halotolerant black yeast-like fungus Hortaea werneckii isolated from solar salterns, on the other hand, is not adapted to low temperature, which is reflected in the higher average rigidity of its plasma membrane and as a consequence its inability to grow at temperatures lower than 10°C. The plasma membrane of Aureobasidium sp. isolated so far exclusively from an Arctic glacier with its intermediate fluidity and high fluidity variation at different temperatures may indicate the specialization of this yeast-like fungus to the specific glacial environment. Similar behaviour of plasma membrane was detected in the reference yeast, non-extremophilic Saccharomyces cerevisiae. Its membranes of intermediate fluidity and with high fluidity?fluctuation at different temperatures may reflect the specialization of this yeast to mesophilic environments and prevent its colonization of extreme environments. Halotolerant Aureobasidium pullulans from salterns, and Arctic Cryptococcus liquefaciens and Rhodotorula?mucilaginosa with moderately fluctuating plasma membranes of intermediate fluidity are representatives of globally distributed generalistic and stress-tolerant species that can thrive in a variety of environments. Keeping the membranes stable and flexible is one of the necessities for the microorganisms to survive changes in extreme habitats. Our data suggest that plasma-membrane fluidity can be used as an indicator of fitness for survival in the extreme environments. In addition to the average fluidity of plasma membrane, the fluctuation of fluidity is an important determinant of stress tolerance: high absolute fluidity fluctuation is tied to decreased survival. The fluidity and its variation therefore reflect survival strategy and fitness in extreme environments and are good indicators?of the adaptability of microorganisms.  相似文献   

20.
The spin probing technique was used to study the interaction of preparations of rat cerebral cortex synaptic membranes with specific antisera. It was found that the fluidity of membrane matrix largely depended on the nature of physiological processes involving synaptic membranes in vivo. The supramolecular structure of synaptic membranes isolated from the brain of trained animals differed from that of controls. Differences in the properties of synaptic membranes were also revealed during their incubation with specific antisera. The data obtained are interpreted in terms of immunochemical theory of memory and training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号