首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rinderpest is an acute and highly contagious viral disease of ruminants, often resulting in greater than 90% mortality. We have constructed a recombinant vaccinia virus vaccine (v2RVFH) that expresses both the fusion (F) and hemagglutinin (H) genes of rinderpest virus (RPV) under strong synthetic vaccinia virus promoters. v2RVFH-infected cells express high levels of the F and H glycoproteins and show extensive syncytium formation. Cattle vaccinated intramuscularly with as little as 10(3) PFU of v2RVFH and challenged 1 month later with a lethal dose of RPV were completely protected from clinical disease; the 50% protective dose was determined to be 10(2) PFU. Animals vaccinated with v2RVFH did not develop pock lesions and did not transmit the recombinant vaccinia virus to contact animals. Intramuscular vaccination of cattle with 10(8) PFU of v2RVFH provided long-term sterilizing immunity against rinderpest. In addition to being highly safe and efficacious, v2RVFH is a heat-stable, inexpensive, and easily administered vaccine that allows the serological differentiation between vaccinated and naturally infected animals. Consequently, mass vaccination of cattle with v2RVFH could eradicate rinderpest.  相似文献   

2.
A competitive enzyme-linked immunosorbent assay (C-ELISA) has been developed and standardized for the detection of antibodies to the rinderpest virus (RPV) in sera from cattle, sheep, and goats. The test is specific for rinderpest because it does not detect antibodies to peste-des-petits-ruminants virus (PPRV). The test depends on the ability of the monoclonal antibody (MAb) directed against the hemagglutinin (H) protein of RPV to compete with the binding of RPV antibodies in the positive serum to the H protein of this virus. This MAb recognized a region from amino acids 575 to 583 on the H protein of RPV that is unique to the RPV H protein and is not present on the hemagglutinin-neuraminidase protein of PPRV. Another C-ELISA (peptide C-ELISA) was set up using this specific region as an antigen. A threshold value of 64.4% inhibition was established for the RPV C-ELISA, with 90 known RPV-negative and 30 RPV-positive serum samples. Using common serum samples, a cutoff value of 43.0% inhibition for the peptide C-ELISA was established. Based on statistical analysis, the overall sensitivity and specificity of the RPV C-ELISA, relative to those of a commercial kit, were found to be 90.00% and 103.33%, respectively. However, the sensitivity and specificity of the peptide C-ELISA were found to be 180.00% and 73.33%, respectively. Although a common MAb in 2 new C-ELISA systems was used, variation in their percent inhibition, due to the use of different antigens, was observed. Taking into consideration the difference in percent inhibition of the 2 described assays and the commercial kit (50%), it was found that the RPV C-ELISA and the peptide C-ELISA are more specific and sensitive tools than the commercial kit for assessing herd immune status and for epidemiologic surveillance.  相似文献   

3.
We previously demonstrated that the rinderpest virus (RPV) hemagglutinin (H) protein plays an important role in determining host range but that other viral proteins are clearly required for full RPV pathogenicity to be manifest in different species. To examine the effects of the RPV nucleocapsid (N) protein and phosphoprotein (P) genes on RPV cross-species pathogenicity, we constructed two new recombinant viruses in which the H and P or the H, N, and P genes of the cattle-derived RPV RBOK vaccine were replaced with those from the rabbit-adapted RPV-Lv strain, which is highly pathogenic in rabbits. The viruses rescued were designated recombinant RPV-lapPH (rRPV-lapPH) and rRPV-lapNPH, respectively. Rabbits inoculated with RPV-Lv become feverish and show leukopenia and a decrease in body weight gain, while clinical signs of infection are never observed in rabbits inoculated with RPV-RBOK or with rRPV-lapH. However, rabbits inoculated with either rRPV-lapPH or rRPV-lapNPH became pyrexic and showed leukopenia. Further, histopathological lesions and high virus titers were clearly observed in the lymphoid tissues from animals infected with rRPV-lapPH or rRPV-lapNPH, although they were not observed in rabbits infected with RPV-RBOK or rRPV-lapH. The clinical, virological, and histopathological signs in rabbits infected with the two new recombinant viruses did not differ significantly; therefore, the RPV P gene was considered to be a key determinant of cross-species pathogenicity.  相似文献   

4.
Outbreaks involving either H5N1 or H1N1 influenza viruses (IV) have recently become an increasing threat to cause potential pandemics. Pigs have an important role in this aspect. As reflected in the 2009 human H1N1 pandemia, they may act as a vehicle for mixing and generating new assortments of viruses potentially pathogenic to animals and humans. Lack of universal vaccines against the highly variable influenza virus forces scientists to continuously design vaccines à la carte, which is an expensive and risky practice overall when dealing with virulent strains. Therefore, we focused our efforts on developing a broadly protective influenza vaccine based on the Informational Spectrum Method (ISM). This theoretical prediction allows the selection of highly conserved peptide sequences from within the hemagglutinin subunit 1 protein (HA1) from either H5 or H1 viruses which are located in the flanking region of the HA binding site and with the potential to elicit broader immune responses than conventional vaccines. Confirming the theoretical predictions, immunization of conventional farm pigs with the synthetic peptides induced humoral responses in every single pig. The fact that the induced antibodies were able to recognize in vitro heterologous influenza viruses such as the pandemic H1N1 virus (pH1N1), two swine influenza field isolates (SwH1N1 and SwH3N2) and a H5N1 highly pathogenic avian virus, confirm the broad recognition of the antibodies induced. Unexpectedly, all pigs also showed T-cell responses that not only recognized the specific peptides, but also the pH1N1 virus. Finally, a partial effect on the kinetics of virus clearance was observed after the intranasal infection with the pH1N1 virus, setting forth the groundwork for the design of peptide-based vaccines against influenza viruses. Further insights into the understanding of the mechanisms involved in the protection afforded will be necessary to optimize future vaccine formulations.  相似文献   

5.
6.
Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines and the ability to induce protective immune responses in the absence of adjuvants. In this study, we evaluated the feasibility of an adenovirus (AdV)-based multivalent vaccine approach for pandemic preparedness against H5, H7 and H9 avian influenza viruses in a mouse model. Replication-defective AdV vectors expressing hemagglutinin (HA) from different subtypes and nucleoprotein (NP) from one subtype induced high levels of humoral and cellular immune responses and conferred protection against virus replication following challenge with H5, H7 and H9 avian influenza virus subtypes. Inclusion of HA from the 2009 H1N1 pandemic virus in the vaccine formulation further broadened the vaccine coverage. Significantly high levels of HA stalk-specific antibodies were observed following immunization with the multivalent vaccine. Inclusion of NP into the multivalent HA vaccine formulation resulted in the induction of CD8 T cell responses. These results suggest that a multivalent vaccine strategy may provide reasonable protection in the event of a pandemic caused by H5, H7, or H9 avian influenza virus before a strain-matched vaccine can be produced.  相似文献   

7.
Rinderpest is a highly contagious viral disease of ruminants and has greater than 95% morbidity and mortality. The etiological agent, rinderpest virus (RPV), is a member of the family Paramyxoviridae and the genus Morbillivirus. Immune responses to both the hemagglutinin (H) and the fusion (F) antigens of morbilliviruses play an important role in the prevention of infection, and only attenuated live vaccines have been shown to provide protective immunity against the group. The lack of protection with inactivated vaccines has been attributed to the denaturation of the F glycoprotein of the virus. Our previous study, however, demonstrated complete protection of cattle vaccinated with infectious vaccinia virus recombinants expressing the H (vRVH) or F (vRVF) protein alone, even in the presence of only 4 U of serum-neutralizing (SN) antibody to RPV (T. Yilma, D. Hsu, L. Jones, S. Owens, M. Grubman, C. Mebus, M. Yamanaka, and B. Dale, Science 242:1058-1061, 1988). We have constructed recombinant baculoviruses that express the F (Fb) and H (Hb) glycoproteins of RPV. Furthermore, we have analyzed the immune responses of mice and cattle to these antigens. Cattle vaccinated with Fb or Hb or a mixture of both antigens were not protected from challenge inoculation with RPV, even when the SN titer was greater than in cattle vaccinated with vRVF alone. This lack of protection, in the presence of SN antibody, would indicate that live attenuated and recombinant vaccines induce immune responses necessary for protection (e.g., cell-mediated immunity) that are not generated by subunit or inactivated whole-virus vaccines.  相似文献   

8.
利用反向遗传技术获得表达H5亚型禽流感病毒(AIV)血凝素(HA)的新城疫病毒(NDV)。克隆NDV clone 30的全长基因,通过在NDV的融合蛋白基因和血凝素-神经氨酸酶(HN)基因之间插入编码高致病性AIV分离株A/chicken/italy/8/98(H5N2)的血凝素基因开放阅读框从而获得两株重组新城疫病毒NDVH5和NDVH5m。NDVH5感染的细胞可以检测到两种HA转录产物。对于重组病毒NDVH5m,NDV位于HA ORF的转录终止信号序列被沉默突变消除,产生2.7个全长HA转录产物的折叠,从而使修饰过的HA得到稳定地高表达。1日龄小鸡的脑内接种证实了两种重组病毒均无致病性。鸡群在NDVH5m诱导产生的NDV和H5亚型AIV HA特异性抗体的免疫力下能够免于致死剂量的NDV与高致病性AIV的感染。血清学研究结果表明NDVH5m免疫鸡群产生的抗体可结合NP蛋白抗体的检测从而用于区分免疫和感染AIV的动物。因此,NDVH5m重组病毒可作为抗NDV和AIV的"二联疫苗",也可成为控制AJ的标记疫苗。  相似文献   

9.
Transmission of pathogenic avian influenza viruses (AIV) from wild birds to domestic poultry and humans is continuing in multiple countries around the world. In preparation for a potential AIV pandemic, multiple vaccine candidates are under development. In the case of H5N1 AIV, a clear shift in transmission from clade 1 to clade 2 viruses occurred in recent years. The virus-like particle (VLP) represents an economical approach to pandemic vaccine development. In the current study, we evaluated the humoral immune response in humans vaccinated with H5N1 A/Indonesia/05/2005 (clade 2.1) VLP vaccine manufactured in Sf9 insect cells. The VLPs were comprised of the influenza virus hemagglutinin (HA), neuraminidase (NA), and matrix 1 (M1) proteins. In an FDA-approved phase I/II human clinical study, two doses of H5N1 VLPs at 15, 45, or 90 μg HA/dose resulted in seroconversion and production of functional antibodies. Moreover, cross-reactivity against other clade 2 subtypes was demonstrated using virus neutralization assays. H5N1 whole-genome fragment phage display libraries (GFPDL) were used to elucidate the antibody epitope repertoire in postvaccination human sera. Diverse epitopes in HA1/HA2 and NA were recognized by postvaccination sera from the two high-dose groups, including large segments spanning the HA1 receptor binding domain. Importantly, the vaccine elicited sera that preferentially bound to an oligomeric form of recombinant HA1 compared with monomeric HA1. The oligomeric/monomeric HA1 binding ratios of the sera correlated with the virus neutralizing titers. Additionally, the two high-dose VLP vaccine groups generated NA-inhibiting antibodies that were associated with binding to a C-terminal epitope close to the sialic acid binding site. These findings represent the first report describing the quality of the antibody responses in humans following AIV VLP immunization and support further development of such vaccines against emerging influenza virus strains.  相似文献   

10.
Hepatitis C virus (HCV) infection remains a serious public health problem worldwide. Treatments are limited, and no preventive vaccine is available. Toward developing an HCV vaccine, we engineered two recombinant measles viruses (MVs) expressing structural proteins from the prototypic HCV subtype 1a strain H77. One virus directs the synthesis of the HCV capsid (C) protein and envelope glycoproteins (E1 and E2), which fold properly and form a heterodimer. The other virus expresses the E1 and E2 glycoproteins separately, with each one fused to the cytoplasmic tail of the MV fusion protein. Although these hybrid glycoproteins were transported to the plasma membrane, they were not incorporated into MV particles. Immunization of MV-susceptible, genetically modified mice with either vector induced neutralizing antibodies to MV and HCV. A boost with soluble E2 protein enhanced titers of neutralizing antibody against the homologous HCV envelope. In animals primed with MV expressing properly folded HCV C-E1-E2, boosting also induced cross-neutralizating antibodies against two heterologous HCV strains. These results show that recombinant MVs retain the ability to induce MV-specific humoral immunity while also eliciting HCV neutralizing antibodies, and that anti-HCV immunity can be boosted with a single dose of purified E2 protein. The use of MV vectors could have advantages for pediatric HCV vaccination.  相似文献   

11.
Morbillivirus Downregulation of CD46   总被引:2,自引:2,他引:0       下载免费PDF全文
There is evidence that CD46 (membrane cofactor protein) is a cellular receptor for vaccine and laboratory-passaged strains of measles virus (MV). Following infection with these MV strains, CD46 is downregulated from the cell surface, and consequent complement-mediated lysis has been shown to occur upon infection of a human monocytic cell line. The MV hemagglutinin (H) protein alone is capable of inducing this downregulation. Some wild-type strains of MV fail to downregulate CD46, despite infection being prevented by anti-CD46 antibodies. In this study we show that CD46 is also downregulated to the same extent by wild-type, vaccine, and laboratory-passaged strains of rinderpest virus (RPV), although CD46 did not appear to be the receptor for RPV. Expression of the RPV H protein by a nonreplicating adenovirus vector was also found to cause this downregulation. A vaccine strain of peste des petits ruminants virus caused slight downregulation of CD46 in infected Vero cells, while wild-type and vaccine strains of canine distemper virus and a wild-type strain of dolphin morbillivirus failed to downregulate CD46. Downregulation of CD46 can, therefore, be a function independent of the use of this protein as a virus receptor.  相似文献   

12.
Using plasmid-based reverse genetics, we generated a molecularly altered virus, H5N1/PR8-5B19, containing modified HA and NA genes from A/Goose/Guangdong/1/96 (GS/GD/1/96). In the H5N1/PR8-5B19 virus, the HA cleavage site was modified to resemble that of low-pathogenic avian strains and a portion of the NA stalk region was replaced by the immunodominant 5B19 epitope of the S2 glycoprotein of murine hepatitis virus (MHV). H5N1/PR8-5B19 is not lethal to embryonated eggs or chickens. Chickens immunized with the H5N1/PR8-5B19 inactivated vaccine produced high levels of HI antibody and a measurable antibody response against the MHV 5B19 epitope, and were fully protected against subsequent challenge with different highly pathogenic H5N1 avian influenza viruses. H5N1/PR8-5B19 is therefore an attractive marker vaccine candidate, eliciting a strong, protective antibody response and enabling serological discrimination between vaccinated and wild-type virus-infected chickens.  相似文献   

13.
Highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV) vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA) was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×108 infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA) by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade). Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.  相似文献   

14.
A total of 294 sera collected between 1999 and 2001 from eight captive and one free-ranging herds of Arabian oryx (Oryx leucoryx) distributed in Saudi Arabia (SA) and the United Arab Emirates (UAE) were assayed for antibodies against 13 selected viral agents. Arabian oryx have been exposed to bluetongue virus (BTV), epizootic hemorrhagic disease virus (EHDV), rinderpest virus (RPV), bovine respiratory syncytial virus (BRSV), bovine adenovirus 3 (BAV-3), cervid herpesvirus-1, foot-and-mouth disease virus, equine herpesvirus 9, and bovine viral diarrhea virus. The high seroprevalence to BTV and EHDV in the UAE and SA indicates that Arabian oryx are likely to be susceptible to infection by these viruses and therefore could act as a source of virus to vectors during the infective stage of infection. Moreover, antibodies were detected against RPV and BRSV in sera from SA and against BAV-3 in sera from the UAE. No antibodies were found against bovine herpesvirus-1, caprine herpesvirus-1, enzootic bovine leucosis virus, and peste des petits ruminants virus. On the basis of these results, caution should be applied when considering translocation of Arabian oryx, and only those proven to be free of infectious agents that might present a risk to other species should be moved.  相似文献   

15.
HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.  相似文献   

16.
The protective capacities of a native double-domain activation-associated secreted protein (ndd-ASP)-based vaccine against the cattle intestinal nematode Cooperia oncophora has previously been demonstrated. However, protection analysis upon vaccination with a recombinantly produced antigen has never been performed. Therefore, the aim of the current study was to test the protective potential of a Pichia-produced double-domain ASP (pdd-ASP)-based vaccine against C. oncophora. Additionally, we aimed to compare the cellular and humoral mechanisms underlying the vaccine-induced responses by the native (ndd-ASP) and recombinant vaccines. Immunisation of cattle with the native C. oncophora vaccine conferred significant levels of protection after an experimental challenge infection, whereas the recombinant vaccine did not. Moreover, vaccination with ndd-ASP resulted in a higher proliferation of CD4-T cells both systemically and in the small intestinal mucosa when compared with animals vaccinated with the recombinant antigen. In terms of humoral response, although both native and recombinant vaccines induced similar levels of antibodies, animals vaccinated with the native vaccine were able to raise antibodies with greater specificity towards ndd-ASP in comparison with antibodies raised by vaccination with the recombinant vaccine, suggesting a differential immune recognition towards the ndd-ASP and pdd-ASP. Finally, the observation that animals displaying antibodies with higher percentages of recognition towards ndd-ASP also exhibited the lowest egg counts suggests a potential relationship between antibody specificity and protection.  相似文献   

17.
Nanda SK  Baron MD 《Journal of virology》2006,80(15):7555-7568
Rinderpest virus (RPV) is a paramyxovirus closely related to the human pathogen Measles virus. It causes severe disease in cattle, buffalo, and some wild animals; although it can infect humans, it does not cause disease. Here, we demonstrate that RPV blocks the action of both type I (alpha) and type II (gamma) interferons (IFNs) by blocking the phosphorylation and nuclear translocation of STAT1 and STAT2 and that this block is not related to species specificity. In addition, both wild-type virulent and vaccine strains of the virus blocked IFN action. Unlike the case with some other paramyxoviruses, neither STAT1 nor STAT2 is degraded upon virus infection. STAT1 is bound by both the viral structural protein P, and thereby recruited to concentrations of viral protein in the cell, and the nonstructural protein V. Although both P and V proteins bind to STAT1 and can block IFN action when expressed in transfected cells, the IFN antagonist activity of the P protein is weaker than that of the V protein. The viral C protein also seems to weakly block IFN-induced activation of STAT1 in transfection experiments. However, studies with knockout viruses showed that the viral V protein appears to be the dominant inhibitor of IFN signaling in the context of virus infection, since prevention of viral V expression restored the IFN sensitivity of infected cells. Although a change in the distribution pattern of STAT2 was observed in virus-infected cells, STAT2 was not bound by any viral protein.  相似文献   

18.
Lin SC  Huang MH  Tsou PC  Huang LM  Chong P  Wu SC 《PloS one》2011,6(5):e20052

Background

The highly pathogenic avian influenza (HPAI) H5N1 virus continues to cause disease in poultry and humans. The hemagglutinin (HA) envelope protein is the primary target for subunit vaccine development.

Methodology/Principal Findings

We used baculovirus-insect cell expression to obtain trimeric recombinant HA (rHA) proteins from two HPAI H5N1 viruses. We investigated trimeric rHA protein immunogenicity in mice via immunizations, and found that the highest levels of neutralizing antibodies resulted from coupling with a PELC/CpG adjuvant. We also found that the combined use of trimeric rHA proteins with (a) an inactivated H5N1 vaccine virus, or (b) a recombinant adenovirus encoding full-length HA sequences for prime-boost immunization, further improved antibody responses against homologous and heterologous H5N1 virus strains. Data from cross-clade prime-boost immunization regimens indicate that sequential immunization with different clade HA antigens increased antibody responses in terms of total IgG level and neutralizing antibody titers.

Conclusion/Significance

Our findings suggest that the use of trimeric rHA in prime-boost vaccine regimens represents an alternative strategy for recombinant H5N1 vaccine development.  相似文献   

19.
流感病毒表面抗原血凝素( hemagglutinin,HA)是流感核酸疫苗重要的靶抗原,针对HA的保护性中和抗体主要由HA上的五个抗原表位诱导产生.在本文中,我们构建了一种以新甲型H1N1流感病毒HA1为骨架的含2个A/PR/8( H1N1)流感病毒HA抗原表位和3个新甲型H1N1流感病毒HA抗原表位的核酸疫苗,并在B...  相似文献   

20.
Persistent infection by human immunodeficiency virus (HIV-1) in the chimpanzee may be valuable for immunopathologic and potential vaccine evaluation. Two HIV strains, the tissue culture-derived human T-cell lymphotropic virus type IIIB (HTLV-IIIB) and in vivo serially passaged lymphadenopathy-associated virus type 1 (LAV-1), were injected intravenously into chimpanzees. Two animals received HTLV-IIIB as either virus-infected H9 cells or cell-free virus. A third animal received chimpanzee-passaged LAV-1. Evaluation of their sera for virus-specific serologic changes, including neutralizations, was done during a 2-year period. During this period all animals had persistently high titers of antibodies to viral core and envelope antigens. All three animals developed a progressively increasing type-specific neutralizing LAV-1 versus HTLV-IIIB antibody titer during the 2-year observation period which broadened in specificity to include HTLV-HIRF, HTLV-IIIMN, and HTLV-IIICC after 6 to 12 months. The antibody titers against both viruses were still increasing by 2 years after experimental virus inoculation. Sera from all animals were capable of neutralizing both homologously and heterologously reisolated virus from chimpanzees. A slightly more rapid type-specific neutralizing response was noted for the animal receiving HTLV-IIIB-infected cells compared with that for cell-free HTLV-IIIB. Sera from all persistently infected chimpanzees were capable of mediating group-specific antibody-mediated complement-dependent cytolysis of HIV-infected cells derived from all isolates tested. Viruses reisolated from all three animals at 20 months after inoculation revealed very similar peptide maps of their respective envelope gp120s, as determined by two-dimensional chymotrypsin oligopeptide analysis. One peptide, however, from the original HTLV-IIIB-inoculated virus was deleted in viruses from all three animals, and in addition, we noted the appearance of a new or modified peptide which was common to LAV-1 as well as to HTLV-IIIB reisolated from infected chimpanzees. It thus appears that a group-specific neutralizing antibody response as well as a group-specific cytotoxic response can develop in chimpanzees after an inoculation of a single HIV variant. This finding suggests that a common, less immunodominant determinant(s) is present on a single HIV strain which could induce group-specific antibodies during viral infection and replication. The identification of this group-specific epitope and the induction of analogous immunity may be relevant to vaccine development against human acquired immunodeficiency syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号