首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mature stage IVb Phycomyces sporangiophores show left-hand spiral growth; that is, viewed from above, the sporangium rotates clockwise. It has been shown that mechanical conditioning (strain-hardening) of the cell wall by the Instron technique increases the ratio of rotation to the elongation growth rate compared to nonmechanically conditioned controls. It is reported that the addition of a saturating light stimulus to these sporangiophores causes a decrease in the ratio of rotation to elongation growth rate. This result is in agreement with the fibril slippage model, i.e. the counterclockwise rotation of stage IVa is a result of parallel fibrils lying in a right-handed spiral configuration slipping by one another. It is suggested that a light stimulus added to a mechanically conditioned stage IVb sporangiophore activates one or more cell wall-loosening enzymes which act by decreasing the number of intermolecular bonds between parallel fibrils causing fibril slippage, resulting in counterclockwise rotation. It is precisely this counterclockwise contribution that decreases the rotation to elongation growth ratio of mechanically conditioned and then light-stimulated stage IVb sporangiophores.  相似文献   

2.
Ortega JK 《Plant physiology》1977,60(5):805-806
The sporangiophore of Phycomyces shows a transient response to a double barrier, the avoidance growth response. Tensile tests conducted on the stage IV sporangiophore demonstrate that an increase in mechanical extensibility occurs about a minute after a double barrier stimulus. This change in mechanical extensibility is similar to the one that occurs after a light stimulus. We have concluded that the avoidance stimulus occurs somewhere on the same pathway between the photoreceptor mechanism and the final growth response.  相似文献   

3.
An understanding of the relationship between the two components of helical growth (rotation rate and elongation rate) is fundamental to understanding the biophysical and molecular mechanism(s) of cell wall extension in algal cells, fungal cells, and plant stems and roots. Helical growth occurs throughout development of the sporangiophores of Phycomyces blakesleeanus. Previous studies within the growth zone of stage-IVb sporangiophores have reported conflicting conclusions. An implicit assumption in the previous studies [E.S. Castle (1937) J Cell Comp Physiol 9:477-489; R. Cohen and M. Delbruck (1958) J Cell Comp Physiol 52:361-388; J.K.E. Ortega et al. (1974) Plant Physiol 53:485-490] was that the relationship between rotation rate and elongation rate was independent of the magnitude of the elongation rate. In the present study, for stage-IVb sporangiophores growing at a steady rate, it is shown that the ratio of rotation rate and elongation rate decreases as the elongation rate increases. Previously proposed biophysical and molecular mechanisms cannot account for the observed behavior. The previously postulated fibril-reorientation mechanism [J.K.E. Ortega and R.I. Gamow (1974) J Theor Biol 47:317-332; J.K.E. Ortega et al. (1974) Plant Physiol 53:485-490] is modified to accommodate this new finding. Other experiments were conducted to determine how the ratio of rotation rate and elongation rate behaves during a pressure response (a transient decrease in elongation rate produced by a large step-up in turgor pressure using the pressure probe). Results of these experiments indicate that this ratio increases during the pressure response.  相似文献   

4.
The growth and circumnutation of the stem of three-week old Helianthus annuus in the 16:8 h light:dark photoperiod were monitored using an angular position-sensing transducer and a time lapse photography system. It was found that the rate of growth and circumnutation reached a high level in the dark stage; in the light stage, however, only the growth rate reached the same high level, whereas the circumnutations were weak. These results showed that in the light stage the stem circumnutation was downregulated more strongly than the growth. Short-term stem responses to darkening and illumination were a further display of the relation between growth and circumnutations. Switching off the light caused an increase in the growth and circumnutation rate. In some cases it was accompanied by changes in the rotation direction. On the other hand, switching the light on caused an immediate transient (several-minute long) decrease in the growth rate resulting in stem contraction, and this was accompanied by an almost complete pause of circumnutation. Additionally, under light, there occurred a subsequent decrease in the magnitude, disturbance of circumnutation trajectory and, in some cases, changes in the direction of rotation. The observed stem contraction and disturbance of circumnutation imply the occurrence of turgor changes in sunflower stem, which may be caused by a non-wounding, darkening or illumination stimulus. Our experiments indicate that the disturbances of the growth rate are accompanied by changes in circumnutation parameters but we have also seen that there is no simple quantitative relation between growth rate and circumnutation rate.Key words: Helianthus annuus, plant movement, circumnutation, elongation, growth, stem contraction  相似文献   

5.
M. J. Jaffe 《Planta》1973,114(2):143-157
Summary When young plants of Hordeum vulgare. Bryonia dioica. Cucumis sativus. Phaseolus vulgaris. Mimosa pudica. and Ricinus communis. were given a gentle mechanical stimulus by rubbing the internodes for about 10 s once or twice daily, elongation was significantly retarded. Plants of Cucurbita pepo Pisum sativum and Triticum aestivum did not exhibit any such response. The initial response to rubbing was very rapid, elongation stopping less than 3 min after application of the stimulus. When the stimulus was discontinued after 7 days, elongation accelerated, reaching a normal or supernormal rate within 3 or 4 days. Mechanical stimulation also affected aspects of growth and development other than stem elongation. In Mimosa pudica, flower bud production was retarded, as was the growth of the tendrils, leaves, and petioles in Bryonia dioica. It is suggested that this response be called thigmomorphogenesis, and that it represents an adaptation designed to protect plants from the stresses produced by high winds and moving animals. Some evidence indicates that thigmomorphogenesis may be mediated by ethylene.  相似文献   

6.
The sporangiophore of Phycomyces responds to a temporary increase in light intensity with a transient increase in growth rate that begins 2 to 3 minutes after the initiation of the stimulus and continues until approximately the 12th minute. Tensile tests conducted on the stage IVb sporangiophore demonstrate that an increase in mechanical extensibility of the cell wall occurs 2 minutes after the initiation of a light stimulus and continues until approximately the 15th minute. This finding supports the theory that light-stimulated plant cell expansion and rate of expansion is a function of the mechanical extensibility of the cell wall.  相似文献   

7.
The growth and rotation of the sporangiophore of Pilobolus crystallinus, which are important factors in its phototropic behavior, were analyzed throughout its development. The sporangiophore initial emerged from the trophocyst and elongated at the extreme tip without rotating. The elongation rate of the sporangiophore apex then gradually decreased and the apex expanded radially to produce the sporangium, but no rotation occurred. A transient cessation of elongation after sporangium development was followed by resumption of both elongation and radial expansion in the region beneath the sporangium developing the subsporangial vesicle. Rotation was not obvious at this stage. Radial expansion of the subsporangial vesicle continued at a decreasing rate until full size was reached. Elongation then recommenced in the newly established growth zone in the upper region of the sporangiophore just beneath the subsporangial vesicle. During this period of growth, the sporangiophore rotated in a clockwise direction as viewed from above. All growth and rotation ceased about 1 h before ejection of the sporangium into the air. Based on these results, a modified classification of the developmental stages has been proposed.This work was carried out under the Joint Research Program of the Institute of Genetic Ecology, Tohoku University, Japan (892006). The authors please to thank Kaori Koga and Hiroko Kikuchi for their helpful assistance.  相似文献   

8.
Roots grown in an applied electric field demonstrate a bidirectional curvature. To further understand the nature of this response and its implications for the regulation of differential growth, we applied an electric field to roots growing in microgravity. We found that growth rates of roots in microgravity were higher than growth rates of ground controls. Immediately upon application of the electric field, root elongation was inhibited. We interpret this result as an indication that, in the absence of a gravity stimulus, the sensitivity of the root to an applied electric stimulus is increased. Further space experiments are required to determine the extent to which this sensitivity is shifted. The implications of this result are discussed in relation to gravitropic signaling and the regulation of differential cell elongation in the root.  相似文献   

9.
Roots grown in an applied electric field demonstrate a bidirectional curvature. To further understand the nature of this response and its implications for the regulation of differential growth, we applied an electric field to roots growing in microgravity. We found that growth rates of roots in microgravity were higher than growth rates of ground controls. Immediately upon application of the electric field, root elongation was inhibited. We interpret this result as an indication that, in the absence of a gravity stimulus, the sensitivity of the root to an applied electric stimulus is increased. Further space experiments are required to determine the extent to which this sensitivity is shifted. The implications of this result are discussed in relation to gravitropic signaling and the regulation of differential cell elongation in the root.  相似文献   

10.
Photoreception and photoresponses in the radish hypocotyl   总被引:1,自引:1,他引:0  
Ann M. Jose 《Planta》1977,136(2):125-129
In etiolated hypocotyls of Raphanus sativus L. the growth responses to continuous red, far-red and blue light have been distinguished on the bases of photoreceptive sites and regions of physiological response. Blue light appeared to retard a fairly mature stage of elongation, acting immediately and directly on the cells irradiated. Far-red light caused a marked inhibition of all stages of elongation after a lag period, and the stimulus could be transmitted from the hook region. The effect of red light was complex and consisted of one promotive and two inhibitory responses.Abbreviations B blue - FR far-red - R red  相似文献   

11.
Autonomic Straightening after Gravitropic Curvature of Cress Roots   总被引:2,自引:0,他引:2       下载免费PDF全文
Few studies have documented the response of gravitropically curved organs to a withdrawal of a constant gravitational stimulus. The effects of stimulus withdrawal on gravitropic curvature were studied by following individual roots of cress (Lepidium sativum L.) through reorientation and clinostat rotation. Roots turned to the horizontal curved down 62° and 88° after 1 and 5 h, respectively. Subsequent rotation on a clinostat for 6 h resulted in root straightening through a loss of gravitropic curvature in older regions and through new growth becoming aligned closer to the prestimulus vertical. However, these roots did not return completely to the prestimulus vertical, indicating the retention of some gravitropic response. Clinostat rotation shifted the mean root angle −36° closer to the prestimulus vertical, regardless of the duration of prior horizontal stimulation. Control roots (no horizontal stimulation) were slanted at various angles after clinostat rotation. These findings indicate that gravitropic curvature is not necessarily permanent, and that the root retains some commitment to its equilibrium orientation prior to gravitropic stimulation.  相似文献   

12.
Larson , Philip R. (Lake States Forest Experiment Station, Rhinelander, Wis.) The indirect effect of photoperiod on tracheid diameter in Pinus resinosa. Amer. Jour. Bot. 49 (2) : 132–137. Illus. 1962.—The influence of photoperiod on tracheid diameter was studied by independently exposing the buds and needles to different photoperiods. Long days promoted needle elongation and large-diameter tracheid production, whereas short days brought about cessation of needle elongation and the transition to narrow-diameter tracheids. The response to photoperiod varied with the stage of plant development. During active extension growth of the shoot, the bud exerted a decisive regulatory influence on tracheid diameter, but the needles became the principal source of the stimulus contributing to tracheid diameter when extension growth terminated. It is suggested that the effect of photoperiod on tracheid diameter is indirect and associated with auxin production and distribution of the terminal meristems.  相似文献   

13.
In a previous paper it has been demonstrated that tomato stems, submitted to a controlled basal bending, had a reduced terminal primary elongation, indicating mechanosensing and intra plant signalling. The 'intensity' of the growth response, as measured by the time to recover an elongation rate similar to the control, varied hugely between plants. However, no relation was found between the intensity of this response and the mechanical variables characterizing the global mechanical state of the stem. In this paper, a local analysis of mechanical state of each bent stem is performed in the context of beam theory. The spatial distributions of local variables all along the stem (curvature, bending moment, strains and stresses) are established. The validity of hypotheses underlying the mechanical analysis is demonstrated. To investigate the relationships between the mechanical stimulus and the growth response, a novel biomechanical analysis based on spatial integration of the mechanical stimulus is presented. It revealed that the mechanosensing is local and scattered through the stem and that the variability of the growth response is only explained by the integrals of the longitudinal strain field.  相似文献   

14.
Plants that are adapted to environments where light is abundant are especially sensitive to competition for light from neighboring vegetation. As a result, these plants initiate a series of changes known as the shade avoidance syndrome, during which plants elongate their stems and petioles at the expense of leaf development. Although the developmental outcomes of exposure to prolonged shade are known, the signaling dynamics during the initial exposure of seedlings to shade is less well studied. Here, we report the development of a new software-based tool, called HyDE (Hypocotyl Determining Engine) to measure hypocotyl lengths of time-resolved image stacks of Arabidopsis wild-type and mutant seedlings. We show that Arabidopsis grows rapidly in response to the shade stimulus, with measurable growth after just 45 min shade exposure. Similar to other mustard species, this growth response occurs in multiple distinct phases, including two phases of rapid growth and one phase of slower growth. Using mutants affected in shade avoidance phenotypes, we demonstrate that most of this early growth requires new auxin biosynthesis via the indole-3-pyruvate pathway. When activity of this pathway is reduced, the first phase of elongation growth is absent, and this is correlated with reduced activity of auxin-regulated genes. Finally, we show that varying shade intensity and duration can affect the shape and magnitude of the growth response, indicating a broad range of the elongation response to shade.  相似文献   

15.
We investigated the time-related changes of Chromosome Regions that Affect Traits (CRATs) for elongation rate in rice (Oryza sativa L.) using chromosome segment substitution lines (CSSLs) carrying a single chromosome segment of the cultivar Kasalath (indica) in a Koshihikari (japonica) genetic background. The growth period of rice was partitioned into eight stages (each lasting 5-7days) from 18days after transplanting, and the elongation rate was determined as the increase of total plant height per time at each growth stage. CRATs for plant elongation rate were determined based on graphical genotype data of CSSLs that showed a significantly higher or lower elongation rate than Koshihikari. In total, 23 CRATs for plant elongation rate were detected, and different CRATs acted at different growth stages. Fifteen CRATs increased the elongation rate through Kasalath alleles, and eight increased it through Koshihikari alleles. These results suggest that plant height in rice is regulated in a stage-specific manner by a variety of genetic mechanisms that control plant elongation rate. Kasalath alleles of PE1-9 increased the elongation rate at an early growth stage (18-25days after transplanting), while Koshihikari alleles of PE8-3 decreased the elongation rate at a late growth stage (68-74days after transplanting). In a line that contained both of these CRATs, the elongation rate at the early growth stage was increased without affecting plant height at harvesting. We conclude that stage-specific optimization of plant height in rice may be achieved by combining CRATs that control plant elongation at specific stages.  相似文献   

16.
Studies were made on morphological changes of Mycobacterium lepraemurium grown in cultures of mouse peritoneal macrophages. Two types of nonsolid or irregularly stained M. lepraemurium were observed. One type occurred in the growth phase of the organisms during the stage of preparation for bacillary multiplication. The nonsolid bacilli appeared as elongated organisms having pointed ends, isolated acid-fast dots, or faintly stained areas at the ends of the bacilli. It is possible that this irregularity in staining is due to a very gradual, versus an instantaneous, acquisition of acid-fast material during bacillary multiplication and maturation. Solid forms were again observed upon maturation. Nonsolid bacilli were also observed in macrophage cultures infected with autoclave-killed M. lepraemurium. Under these conditions there was an emergence of organisms which showed irregularly stained areas and various forms of deformity unaccompanied by elongation or multiplication. These irregularities were most probably due to the destructive process of digestion of bacillary protoplasm. The present study does not support the current hypothesis that all nonsolid acid-fast organisms are nonviable.  相似文献   

17.
Petiole curvature and elongation growth in Helianthus annuus L. have been recorded for plants rotating with their stems parallel to the horizontal axis of a clinostat at 8 revolutions per hour over 72 hours. When rotation was continuous, dorso-convex curvature (epinasty) developed in the first 12 hours and was followed by recovery (straightening) in the next 36 hours. Thereafter the petioles remained straight. These changes in shape are due to brief consecutive increases in the elongation growth of the upper and lower halves of the petiole. Plants exposed to 10 μl per liter ethylene after 200 hours on the clinostat, developed similar petiole epinasty, followed by straightening when the exposure to ethylene ceased. Interrupting rotation of the plant for 1 hour in 4, did not change the petiole response, whereas the alternation of 4 hour stationary and rotation periods, delayed the straightening process. The axillary angle between the stem and petiole increased from about 40° to 63° during either continuous rotation or rotation with 1 or 4 hour stationary periods. When detached leaves were inverted, the rate of ethylene release approximately doubled after 4 hours and continued to increase thereafter. The results indicate that the development of transient petiole epinasty on the clinostat, is due to ethylene production caused primarily by the disorientation of the plant, rather than to the rotation process.  相似文献   

18.
In an earlier study (Evans, Ishikawa & Estelle 1994, Planta 194, 215-222) we used a video digitizer system to compare the kinetics of auxin action on root elongation in wild-type seedlings and seedlings of auxin response mutants of Arabidopsis thaliana (L.) Heynh. We have since modified the system software to allow determination of elongation on opposite sides of vertical or gravistimulated roots and to allow continuous measurement of the angle of orientation of sequential subsections of the root during the response. We used this technology to compare the patterns of differential growth that generate curvature in roots of the Columbia ecotype and in the mutants axr1-3, axr1-12 and axr2, which show reduced gravitropic responsiveness and reduced sensitivity to inhibition by auxin. The pattern of differential growth during gravitropism differed in roots of wild-type and axr1 seedlings. In wild-type roots, initial curvature resulted from differential inhibition of elongation in the distal elongation zone (DEZ). This was followed by an acceleration of elongation along the top side of the DEZ. In roots of axr1-3, curvature resulted from differential stimulation of elongation whereas in roots of axr1-12 the response was variable. Roots of axr2 did not exhibit gravitropic curvature. The observation that the pattern of differential growth causing curvature is dramatically altered by a change in sensitivity to auxin is consistent with the classical Cholodny-Went theory of gravitropism which maintains that differential growth patterns induced by gravistimulation are mediated primarily by gravi-induced shifts in auxin distribution. The new technology introduced with this report allows automated determination of stimulus response patterns in the small but experimentally popular roots of Arabidopsis.  相似文献   

19.
An experiment was designed to apply a controlled bending to a tomato stem and simultaneously to measure its effect on stem elongation. Stem elongation was measured over 2 d until steady and equal rates were obtained for the control and the treated plants. Thereafter, the basal part of the stem was submitted to a transient controlled bending at constant displacement rate using a motorized dynamometer. After load removal, stem elongation was again measured for 2 d. The tested plants were mature (height visible internodes) and only the basal part of the stem, which had already finished elongation, was loaded (hypocotyl and the first three internodes). A few minutes after the application of bending, elongation stopped completely for 60 min. Thereafter it took 120-1000 min to recover a rate of elongation similar to the control. The growth response was exclusively due to the bending of the basal part of the stem. It was shown that the side mechanical perturbations on the roots and on the stem tissues interacting directly with the clamp were not significantly involved on the elongation response. These results give evidence for mechanical perception and plant signalling from the basal stem to the upper elongating zone. However, none of the variables characterizing the global mechanical state of the bent part of the stem (i.e. the maximal force, bending moment, inclination, mean curvature of the stem, stored mechanical energy) could quantitatively explain the variability of the growth response. A more local mechanical analysis is therefore needed to elucidate how the mechanical stimulus is perceived.  相似文献   

20.
Submergence stimulates elongation of the leaves of Rumex palustris and under laboratory conditions the maximum final leaf length (of plants up to 7 weeks old) was obtained within a 9 day period. This elongation response, mainly determined by petiole elongation, depends on the availability of storage compounds and developmental stage of a leaf. A starch accumulating tap root and mature leaves and petioles were found to supply elongating leaves with substrates for polysaccharide synthesis in expanding cell walls. Changes in the composition of cell wall polysaccharides of elongated petioles suggest a substantial cell wall metabolism during cell extension. Reduced starch levels or removal of mature leaves caused a substantial limitation of submerged leaf growth. From the 5th leaf onward enough reserves were available to perform submerged leaf growth from early developmental stages. Very young petioles had a limited capacity to elongate. In slightly older petioles submergence resulted in the longest final leaf lengths and these values gradually decreased when submergence was started at more mature developmental stages. Submerged leaf growth is mainly a matter of petiole elongation in which cell elongation has a concurrent synthesis of xylem elements in the vascular tissue. Mature petioles still elongated (when submerged) by cell and tissue elongation only: the annular tracheary elements stretched enabling up to 70% petiole elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号