首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence of 2-aminopurine (2AP)-substituted A-site and acrylamide quenching were used to study the interactions of paromomycin and neamine with the decoding region of 16S rRNA. The results reveal that paromomycin binding to the A-site RNA leads to increased exposure of residue A1492. In contrast, neamine has little effect on the solvent accessibility of A1492. Electrospray ionization mass spectrometry was used to compare the affinity of paromomycin with the A-site and 2-AP-substituted A-site RNAs.  相似文献   

2.
Vaiana AC  Westhof E  Auffinger P 《Biochimie》2006,88(8):1061-1073
Aminoglycoside antibiotics interfere with the translation mechanism by binding to the tRNA decoding site of the 16S ribosomal RNA. Crystallographic structures of aminoglycosides bound to A-site systems clarified many static aspects of RNA-ligand interactions. To gain some insight on the dynamic aspects of recognition phenomena, we conducted molecular dynamics simulations of the aminoglycoside paromomycin bound to a eubacterial ribosomal decoding A-site oligonucleotide. Results from 25 ns of simulation time revealed that: (i) the neamine part of the antibiotic represents the main anchor for binding, (ii) additional sugar rings provide limited and fragile contacts, (iii) long-resident water molecules present at the drug/RNA interface are involved in the recognition phenomena. The combination of MD simulations together with systematic structural information offers striking insights into the molecular recognition processes underlying RNA/aminoglycoside binding. Important methodological considerations related to the use of medium resolution starting structures and associated sampling problems are thoroughly discussed.  相似文献   

3.
Natural aminoglycoside antibiotics, such as neomycin, target bacterial ribosomal RNA. Neomycin also binds strongly to HIV TAR and RRE RNA through the predominant interactions of its neamine core. In the search for antiviral agents targeting multiple binding sites for aminoglycosides in RNA, we report here the synthesis of new neamine dimers and a trimer in which the neamine cores are connected by different linking chains attached at the 4'- and/or 5-positions. Inhibition of TAR-Tat complexation by these oligomers was studied via fluorimetric binding assays performed under two ionic strengths. All dimers strongly inhibit TAR-Tat association, with IC50 values 17-85 times better than the value obtained with neomycin. These results demonstrate that modifying neamine at the 4'- or the 5-position is a promising strategy in the search for antiviral agents.  相似文献   

4.
Two types of neamine derivatives, neamine-dinucleotide conjugates 8a-g and neamine-PNA conjugates 12a-c and 14a-d, were synthesized. Compound 8a-g were synthesized by the condensation of azido-neamine with dinucleotide-5'-carboxylic acids, followed by reduction and deprotection. Compound 12a-c and 14a-d were synthesized by the similar strategy. The binding affinities of conjugates 8a-g, 12a-c, and 14a-d towards 16S RNA, 18S RNA, and TAR RNA were evaluated by SPR. It indicates that conjugates 12a-c and 14a-d interact with 16S, 18S RNA at the same level as that of neamine, 14a and 14d show about twofold binding affinities to TAR RNA compared to that of neamine. However, the neamine-dinucleotide conjugates 8a-g exhibit very weak binding affinities to 16S, 18S, and TAR RNA, computer modelling results that negative-negative electrostatic repulsion of phosphate group in compound 8a-g and RNA leads to a sharp decrease of the binding affinities compared with that of neamine, neamine-nucleoside and neamine-PNA conjugates.  相似文献   

5.
Three new derivatives of neamine, 3 (NE), 6 (NEA) and 9 (NEL), were synthesized by connecting arginine or lysine to 5-hydroxyl group of neamine using ethylenediamine as a linker. The binding affinities of these derivatives to A site of 16S RNA and TAR RNA indicate that the modification on 5-hydroxyl of neamine by amino acid can enhance the binding affinity of neamine. Compound 9 (NEL) shows some antibacterial activities. These results demonstrate that modification on 5-hydroxyl group of neamine may provide a promising way for the development of potential candidates effectively targeting to RNAs.  相似文献   

6.
Aminoglycoside-antibiotics represent important tools for studying the biological functions of RNA. An orthogonal protection strategy applied on 2-deoxystreptamine (2-DOS) revealed a series of key intermediates that enable its regioselective functionalization. Our approach allowed the construction of selected representatives of triazole-containing analogues with diverse molecular frameworks for biological evaluation regarding their binding and antibacterial potencies.  相似文献   

7.
RNA recognition by natural aminoglycoside antibiotics depends on the 2-deoxystreptamine (2-DOS) scaffold which participates in specific hydrogen bonds with the ribosomal decoding-site target. Three-dimensional structure information has been used for the design of azepane-monoglycosides, building blocks for novel antibiotics in which 2-DOS is replaced by a heterocyclic scaffold. Azepane-glycosides showed target binding and translation inhibition in the low micromolar range and inhibited growth of Staphylococcus aureus, including aminoglycoside-resistant strains.  相似文献   

8.
2-Deoxystreptamine (2-DOS) aminoglycoside antibiotics bind specifically to the central region of the 16S rRNA A site and interfere with protein synthesis. Recently, we have shown that the binding of 2-DOS aminoglycosides to an A site model RNA oligonucleotide is linked to the protonation of drug amino groups. Here, we extend these studies to define the number of amino groups involved as well as their identities. Specifically, we use pH-dependent 15N NMR spectroscopy to determine the pK(a) values of the amino groups in neomycin B, paromomycin I, and lividomycin A sulfate, with the resulting pK(a) values ranging from 6.92 to 9.51. For each drug, the 3-amino group was associated with the lowest pK(a), with this value being 6.92 in neomycin B, 7.07 in paromomycin I, and 7.24 in lividomycin A. In addition, we use buffer-dependent isothermal titration calorimetry (ITC) to determine the number of protons linked to the complexation of the three drugs with the A site model RNA oligomer at pH 5.5, 8.8, or 9.0. At pH 5.5, the binding of the three drugs to the host RNA is independent of drug protonation effects. By contrast, at pH 9.0, the RNA binding of paromomycin I and neomycin B is coupled to the uptake of 3.25 and 3.80 protons, respectively, with the RNA binding of lividomycin A at pH 8.8 being coupled to the uptake of 3.25 protons. A comparison of these values with the protonation states of the drugs predicted by our NMR-derived pK(a) values allows us to identify the specific drug amino groups whose protonation is linked to complexation with the host RNA. These determinations reveal that the binding of lividomycin A to the host RNA is coupled to the protonation of all five of its amino groups, with the RNA binding of paromomycin I and neomycin B being linked to the protonation of four and at least five amino groups, respectively. For paromomycin I, the protonation reactions involve the 1-, 3-, 2'-, and 2"'-amino groups, while, for neomycin B, the binding-linked protonation reactions involve at least the 1-, 3-, 2', 6'-, and 2"'-amino groups. Our results clearly identify drug protonation reactions as important thermodynamic participants in the specific binding of 2-DOS aminoglycosides to the A site of 16S rRNA.  相似文献   

9.
Owing to a striking, and most likely fortuitous, structural and sequence similarity with the bacterial 16 S ribosomal A site, the RNA kissing-loop complex formed by the HIV-1 genomic RNA dimerization initiation site (DIS) specifically binds 4,5-disubstituted 2-deoxystreptamine (2-DOS) aminoglycoside antibiotics. We used chemical probing, molecular modeling, isothermal titration calorimetry (ITC) and UV melting to investigate aminoglycoside binding to the DIS loop–loop complex. We showed that apramycin, an aminoglycoside containing a bicyclic moiety, also binds the DIS, but in a different way than 4,5-disubstituted 2-DOS aminoglycosides. The determination of thermodynamic parameters for various aminoglycosides revealed the role of the different rings in the drug–RNA interaction. Surprisingly, we found that the affinity of lividomycin and neomycin for the DIS (Kd ~ 30 nM) is significantly higher than that obtained in the same experimental conditions for their natural target, the bacterial A site (Kd ~ 1.6 µM). In good agreement with their respective affinity, aminoglycoside increase the melting temperature of the loop–loop interaction and also block the conversion from kissing-loop complex to extended duplex. Taken together, our data might be useful for selecting new molecules with improved specificity and affinity toward the HIV-1 DIS RNA.  相似文献   

10.
The dependence of the solution structure of neamine on pH was determined by NMR and AMBER molecular dynamics methods at pD 3.3, pD 6.5, and pD 7.4 in D2O at 25 °C. Unlike neamine structures at pD 3.3 and 6.5, which essentially showed only one conformer, slowly exchanging primary, P-state, and secondary, S-state, neamine conformers populated on the NMR time scale at ∼80% and ∼20%, respectively, were detected at pD 7.4 with kinetic constants kon(P→S) = 1.9771 s−1 and koff(S→P) = 1.1319 s−1. A tertiary, T-state, neamine species populated at ∼3% was also detected by NMR at pD 7.4. The pKa values determined by NMR titration experiments are pKa1 6.44 ± 0.13 for N3 of ring-II, pKa2 7.23 ± 0.09 for N2′ of ring-I, pKa3 7.77 ± 0.19 for N1 of ring-II, and pKa4 8.08 ± 0.15 for N6′ of ring-I. Ring-I and ring-II of the P-state neamine and ring-I of the S and T-states of neamine possess the 4C1 chair conformation between pD 3.3 and pD = 7.4. In contrast, ring-II of the S and T-states of neamine most likely adopt the 6rH1 half-chair conformation. The P and S-states of neamine exhibit a negative syn-ψ glycosidic geometry. The exocyclic aminomethyl group of ring-I adopts the gt exocyclic rotamer conformation around physiological pHs while the gg exocyclic rotamer conformation predominates in acidic solutions near and below pH 4.5. Neamine exists in the P-state as a mixture of tetra-/tri-/di-protonated species between pD 4.5 and pD 7.4, while the S-state neamine exist only in a di-protonated species around physiological pDs. The existence of the S-state neamine may facilitate binding of neamine-like aminoglycosides by favorable entropy of binding to the A-site of 16S ribosomal RNA, suggesting that novel aminoglycoside compounds carrying a S-state neamine pharmacophore can be developed.  相似文献   

11.
Synthetic neamine mimetics have been evaluated for binding to the HIV-1 Rev response element. Modified neamine derivatives, obtained from reductive amination of neamine, led to identification of new 6-amino modified neamine-type ligands with HIV-1 RRE binding affinity up to 20× that of neamine and up to 6× that of the more complex neomycin itself. This provides a noteworthy structure-activity increase and a useful lead to simplified, chemically accessible mimetics.  相似文献   

12.
13.
Tok JB  Cho J  Rando RR 《Nucleic acids research》2000,28(15):2902-2910
RNA–RNA recognition is a critical process in controlling many key biological events, such as translation and ribozyme functions. The recognition process governing RNA–RNA interactions can involve complementary Watson–Crick (WC) base pair binding, or can involve binding through tertiary structural interaction. Hence, it is of interest to determine which of the RNA–RNA binding events might emerge through an in vitro selection process. The A-site of the 16S rRNA decoding region was chosen as the target, both because it possesses several different RNA structural motifs, and because it is the rRNA site where codon/anticodon recognition occurs requiring recognition of both mRNA and tRNA. It is shown here that a single family of RNA molecules can be readily selected from two different sizes of RNA library. The tightest binding aptamer to the A-site 16S rRNA construct, 109.2-3, has its consensus sequences confined to a stem–loop region, which contains three nucleotides complementary to three of the four nucleotides in the stem–loop region of the A-site 16S rRNA. Point mutations on each of the three nucleotides on the stem–loop of the aptamer abolish its binding capacity. These studies suggest that the RNA aptamer 109.2-3 interacts with the simple 27 nt A-site decoding region of 16S rRNA through their respective stem–loops. The most probable mode of interaction is through complementary WC base pairing, commonly referred to as a loop–loop ‘kissing’ motif. High affinity binding to the other structural motifs in the decoding region were not observed.  相似文献   

14.
Tor Y 《Biochimie》2006,88(8):1045-1051
The specific binding of aminoglycoside antibiotics to the bacterial ribosomal decoding site (A-site) has inspired the study of RNA-small molecules interactions and the search for novel RNA binders. Among the numerous RNA targets studied so far, the A-site holds a unique place. It is among the few truly validated RNA targets for which naturally occurring ligands have been discovered as "cognate" binders. In addition, due to its encapsulating architecture, the A-site is a more discriminating RNA target when compared to other RNA sequences. Previous observations and current challenges for the designers of potent and specific RNA binders are discussed.  相似文献   

15.
BACKGROUND: Aminoglycoside antibiotics can target RNA folds with micromolar affinity and inhibit biological processes ranging from protein biosynthesis to ribozyme action and viral replication. Specific features of aminoglycoside antibiotic-RNA recognition have been probed using chemical, biochemical, spectroscopic and computational approaches on both natural RNA targets and RNA aptamers identified through in vitro selection. Our previous studies on tobramycin-RNA aptamer complexes are extended to neomycin B bound to its selected RNA aptamer with 100 nM affinity. RESULTS: The neamine moiety (rings I and II) of neomycin B is sandwiched between the major groove floor of a 'zippered-up' G.U mismatch aligned segment and a looped-out purine base that flaps over the bound antibiotic. Specific intermolecular hydrogen bonds are observed between the charged amines of neomycin B and base mismatch edges and backbone phosphates. These interactions anchor 2-deoxystreptamine ring I and pyranose ring II within the RNA-binding pocket. CONCLUSIONS: The RNA aptamer complexes with tobramycin and neomycin B utilize common architectural principles to generate RNA-binding pockets for the bound aminoglycoside antibiotics. In each case, the 2-deoxystreptamine ring I and an attached pyranose ring are encapsulated within the major groove binding pocket, which is lined with mismatch pairs. The bound antibiotic within the pocket is capped over by a looped-out base and anchored in place through intermolecular hydrogen bonds involving charged amine groups of the antibiotic.  相似文献   

16.
RNA is an extremely important target for the development of chemical probes of function or small molecule therapeutics. Aminoglycosides are the most well studied class of small molecules to target RNA. However, the RNA motifs outside of the bacterial rRNA A-site that are likely to be bound by these compounds in biological systems is largely unknown. If such information were known, it could allow for aminoglycosides to be exploited to target other RNAs and, in addition, could provide invaluable insights into potential bystander targets of these clinically used drugs. We utilized two-dimensional combinatorial screening (2DCS), a library-versus-library screening approach, to select the motifs displayed in a 3 × 3 nucleotide internal loop library and in a 6-nucleotide hairpin library that bind with high affinity and selectivity to six aminoglycoside derivatives. The selected RNA motifs were then analyzed using structure–activity relationships through sequencing (StARTS), a statistical approach that defines the privileged RNA motif space that binds a small molecule. StARTS allowed for the facile annotation of the selected RNA motif–aminoglycoside interactions in terms of affinity and selectivity. The interactions selected by 2DCS generally have nanomolar affinities, which is higher affinity than the binding of aminoglycosides to a mimic of their therapeutic target, the bacterial rRNA A-site.  相似文献   

17.
Paromomycin is an aminoglycosidic antibiotic that targets the RNA of the bacterial small ribosomal subunit. It binds in the A-site, which is one of the three tRNA binding sites, and affects translational fidelity by stabilizing two adenines (A1492 and A1493) in the flipped-out state. Experiments have shown that various mutations in the A-site result in bacterial resistance to aminoglycosides. In this study, we performed multiple molecular dynamics simulations of the mutated A-site RNA fragment in explicit solvent to analyze changes in the physicochemical features of the A-site that were introduced by substitutions of specific bases. The simulations were conducted for free RNA and in complex with paromomycin. We found that the specific mutations affect the shape and dynamics of the binding cleft as well as significantly alter its electrostatic properties. The most pronounced changes were observed in the U1406C∶U1495A mutant, where important hydrogen bonds between the RNA and paromomycin were disrupted. The present study aims to clarify the underlying physicochemical mechanisms of bacterial resistance to aminoglycosides due to target mutations.  相似文献   

18.
The first carbohydrate-free aminoglycoside analogs bearing the 2-deoxystreptamine moiety were synthesized from asymmetrically protected 2-deoxystrepamine and subsequently demonstrated to have significant binding to the 16S A-site rRNA target and moderate functional activity.  相似文献   

19.
Protein L23 from the ribosome of Escherichia coli is the primary ribosomal product cross-linked to affinity-labelled puromycin; it lies, therefore, within the A-site domain of the peptidyl transferase centre on the 50 S subunit. We have characterized this functional domain by isolating and sequencing the RNA binding site of protein L23; it consists of two main fragments of 25 and 105 nucleotides that strongly interact and are separated by 172 nucleotides in the primary sequence. The higher-order structure of the RNA moiety was probed by chemical reagents, and by single-strand and double-strand-specific ribonucleases; a secondary structural model and a tertiary structural interaction are proposed on the basis of these data that are compatible with phylogenetic sequence comparisons.Several nucleotides exhibited altered chemical reactivity, both lower and higher, in the presence of protein L23, thereby implicating a large proportion of the RNA structure in the protein binding. The sites were located mainly at the extremities of the helices and at nucleotides that were putatively bulged out from the helices.The RNA moiety and an adjacent excised fragment contain several highly conserved sequences and a modified adenosine. Such sequences constitute important functional domains of the RNA and may contribute to the putative role of this RNA region in the peptidyl transferase centre.  相似文献   

20.
氨基糖苷类抗生素是一类广谱型抗细菌感染药物,其不断增加的细菌耐药性很大程度上限制了它的临床应用,研究和开发新型氨基糖苷类抗生素具有重要意义。将氨基糖苷类抗生素固定到玻璃片基上,制成糖芯片,再分别与荧光标记的RNAs和蛋白质杂交,通过分析杂交后的荧光信号强度检测它们之间的相互作用。结果显示,氨基糖苷类抗生素芯片可以特异性地与r RNA的A位点模拟物、I型核酶和蛋白酶结合。因此糖芯片技术不仅可以检测氨基糖苷类抗生素与r RNAs的特异性结合,而且可以应用于寻找新型RNA结合配体的研究,为快速鉴定和筛选可紧密结合RNA靶标且毒性较低的新型氨基糖苷类抗生素奠定了一定的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号