首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agar-based magnetic affinity support for protein adsorption   总被引:1,自引:0,他引:1  
Magnetic colloidal particles were prepared by a coprecipitation method. The particles were composed of nanometer-sized superparamagnetic Fe(3)O(4) particles stabilized by lauric acid. Then, magnetic agar gel beads were produced by a water-in-oil emulsification method using a mixture of agar solution and the magnetic colloidal particles as the aqueous phase. A reactive triazine dye, Cibacron blue 3GA (CB), was coupled to the gel to prepare an agar-based magnetic affinity support (MAS) for protein adsorption. The support showed good magnetic responsiveness in a magnetic field. Bovine serum albumin (BSA) was used as a model protein to test adsorption equilibrium and kinetic behavior of the MAS. The adsorption equilibrium of BSA to the MAS was described by the Langmuir-type isotherm. Adsorption capacity of the MAS for BSA was up to 25 mg/mL at a CB coupling density of 1.6 micromol/mL. The effect of ionic strength on BSA adsorption was complex, exhibiting a maximum capacity at an ionic strength of 0.06 mol/L. The adsorption of BSA to the MAS was also influenced by pH. Uptake rate of BSA to the MAS was analyzed using a pore diffusion model. The pore diffusion coefficient was estimated to be 1.75 x 10(-11) m(2)/s. Finally, recycled use of the MAS demonstrated the stability of the MAS in protein adsorption and magnetic responsiveness.  相似文献   

2.
Summary The maximal concentration of ethanol produced during the fermentation of 320 g/l glucose bySaccharomyces bayanus was higher when the yeast cells were immobilized either by adsorption on celite or by entrapment in k-carrageenan beads (from 10.5% with free cells up to 14.5% and 13.1% (v/v) respectively). This increase was due to medium supplementation with the compounds present in the immobilization supports.  相似文献   

3.
The adsorption of Cu(II) ions from aqueous solution by chitosan and chitosan/PVA beads was studied in a batch adsorption system. Chitosan solution was blended with poly(vinyl alcohol) (PVA) in order to obtain sorbents that are insoluble in aqueous acidic and basic solution. The adsorption capacities and rates of Cu(II) ions onto chitosan and chitosan/PVA beads were evaluated. The Langmuir, Freundlich and BET adsorption models were applied to describe the isotherms and isotherm constants. Adsorption isothermal data could be well interpreted by the Langmuir model. The kinetic experimental data properly correlated with the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step. The Cu(II) ions can be removed from the chitosan and chitosan/PVA beads rapidly by treatment with an aqueous EDTA solution. Results also showed that chitosan and chitosan/PVA beads are favourable adsorbers.  相似文献   

4.
Vermiculite, an inert and cheap solid support material, was used in the immobilization of protease by adsorption. Adsorption of protease on vermiculite saturated with potassium, calcium and aluminium was studied. Aluminium saturated vermiculite adsorbed maximum amount of enzyme at pH 6.5. The maximum adsorption of enzyme on cationic vermiculite occurred within one hour at 30°C. When the temperature was increased there was a two fold increase in the adsorption of the enzyme. From the Freundlich isotherm data, the values of k and n were computed.  相似文献   

5.
alpha-Amylase adsorption on starch crystallites   总被引:1,自引:0,他引:1  
The goal of this work was to characterize the adsorption of Bacillus subtills alpha-amylase onto crystalline starchy materials of the B-type polymorph. Monodisperse spherulitic particles (R z6; 5.0 mum), essentially resistant to alpha-amylolysis at 25 degrees C were prepared from short amylose chains (DP(n) approximately 15). The alpha-amylase adsorbed specifically onto the spherulites, and adsorption was found to be a prerequisite step for hydrolysis. Adsorption was inhibited by the presence of maltose and maltotriose in the reaction mixture. Adsorption isotherm of the enzyme on the particles showed a well developed plateau of 1.62 mug/cm(2) at 25 degrees C corresponding to a monolayer adsorption process. The binding free energy calculated from the initial slope of the isotherm was DeltaG approximately -20.7 kJ/mol. This is smaller than published values for the binding of alpha-amylase to soluble amylosic chains (DeltaG < -30 kJ/mol).  相似文献   

6.
Summary The cells of Lactobacillus casei were adsorbed to Poraver, foam glass particles pretreated with polyethylenimine (PEI). Exposure of cells for a relatively short period to Poraver beads coated with a high concentration of PEI resulted in maximal adsorption with good retention of metabolic activity. The immobilized cells were tested in packed-bed and stirred-tank reactors for lactic acid production. Stirred-tank operations were more effective in terms of productivity but the support was sensitive to attrition. The beads exhibited good mechanical stability to withstand pressure in the packed-bed reactor. Correspondence to: Bo Mattiasson  相似文献   

7.
A new method for covering magnetic particles with a stable non-porous layer of a material like zeolite or activated carbon was used for the preparation of support materials with good properties for the immobilization of yeast Saccharomyces cerevisiae cells. The immobilized cells can be used in batch and continuous alcoholic fermentation. A productivity of 35.6 g ethanol/l · h was reached. The adsorption isotherms of the immobilized yeast cells were determined. Yeast cell immobilization on non-porous magnetic supports obeyed the Langmuir isotherm equation. Satisfactory results were obtained also from repeated batch fermentations with fixed cells on supports additionally treated with glutaraldehyde or by simple adsorption.  相似文献   

8.
Batch ethanol fermentation by cells of Zymomomas mobilis ATCC 29191, ionically adsorbed on a DEAE-cellulose ion exchanger, was investigated in a stirred fermentor. Adsorption isotherms in different media were determined and used to interpret the effects of the environment on cell immobilization. Other factors affecting cell immobilization during an actual fermentation were studied. Mechanical agitation was found to cause detachment of cells from the ion exchange particles. The results suggest that the amount of cells adsorbed during a fermentation process is different from that found from adsorption isotherm data. Consequently, application of equilibrium adsorption data to actual fermentations should be done with caution.  相似文献   

9.
Summary Sulfolobus acidocaldarius attachment to coal particles was observed in 20% coal slurry at 72°C and pH 2.0. The rate and extent of attachment were determined and the data fit the Langmuir adsorption model. The results compared qualitatively with selected adsorption data from other investigators forThiobacillus ferrooxidans.  相似文献   

10.
In the present study, the interactions between chitosan-coated magnetic nanoparticles (C-MNP) and Trichoderma sp. spores as well as Kluyveromyces marxianus cells were studied. By Plackett–Burman design, it was demonstrated that factors which directly influenced on yeast cell immobilization and magnetic separation were inoculum and C-MNP quantity, stirring speed, interaction time, and volume of medium, while in the case of fungal spores, the temperature also was disclosed as an influencing factor. Langmuir and Freundlich models were applied for the mathematical analysis of adsorption isotherms at 30°C. For Trichoderma sp. spore adsorption isotherm, the highest correlation coefficient was observed for lineal function of Langmuir model with a maximum adsorption capacity at 5.00E?+?09 spores (C-MNP g?1). Adsorption isotherm of K. marxianus cells was better adjusted to Freundlich model with a constant (Kf) estimated as 2.05E?+?08 cells (C-MNP g?1). Both systems may have a novel application in fermentation processes assisted with magnetic separation of biomass.  相似文献   

11.
Potato tuber disks were submerged in suspensions containing 101 to 109 cells of Agrobacterium tumefaciens B6 per ml. After 60 min, the disks were rinsed and homogenized, and portions of the homogenates were plated to measure the number of adsorbed bacteria. At low initial bacterial concentrations (105/ml), 5 to 23% of the bacteria adsorbed. At higher bacterial concentrations, the corresponding value was approximately 1.2%. Adsorption was a reversible equilibrium process. Binding saturation was not achieved, and adsorbed bacteria were confined to monolayers on the surfaces of tissue prepared for scanning electron microscopy. Adsorption of strain B6 to potato tuber tissues is described accurately by the Freundlich adsorption isotherm and may be a nonspecific phenomenon.  相似文献   

12.
Summary Diacetyl production by (Citr*)Lactococcus lactis subsp.lactis 3022 was found to be an oxygen-dependent reaction. The diacetyl production by the cells immobilized in conventional Ca-alginate gel beads (Diameter: 3 mm) was lower than that of the cells immobilized in Ca-alginate gel fibers (Diameter: 0.2 mm), probably because oxygen transfer to the immobilized cells is better in gel fibers than in gel beads.  相似文献   

13.
Summary The morphology of two strains of Penicillium chrysogenum immobilized in calcium alginate and used in penicillin fermentation was examined. The degree and distribution of mycelial growth inside and on the surface of the beads depended on the strain, the cultivation media and the fermentation time. P. chrysogenum ATCC 12690 developed as a mycelial network inside the beads. The growth tendency of P. chrysogenum S1 in micropellets was directed to the outer surface of the beads. At the end of the production phase only a trace of mycelia and no micropellets in the center of alginate beads were observed, while the outer surface and the subsurface were completely covered with mycelia.  相似文献   

14.
Novel adsorbents that are composed of ligand, spacer and support were chemically synthesized and the two consecutive screenings of them made it possible to determine the adsorbents that were most recommendable for α- and β-cyclodextrin (CD) production. First, ligands of high adsorption selectivity for each CD were screened from among the candidates (carboxylic acids) that are tied in ionic bonds to two types of strongly basic anion exchange resins as support. Secondly, ligand derivatives (as ligand and spacer) were bound in covalent bonds onto chilosan beads as support and then, the most suitable spacer length for the CDs' adsorption selectivity and capacity were investigated. An optimal mol ratio of ligand to amino group of the beads was also examined. Stearic acid was the most effective ligand for α-CD, whereas cyclohexanepropanamide-n-caproic acid was the best for β-CD. Adsorption selectivity of adsorbents derived from carboxylic acids (stearic and/or palmitic) and chitosan beads was almost 100%, while their adsorption capacities were large enough to meet the demand for economic production and purification of CDs on an industrial scale.  相似文献   

15.
Summary Catharanthus roseus cells producing indole alkaloids were grown on surfaces of Ca-alginate beads within the interspacial volume of a packed column. Production media was circulated through the packed column in an upflow mode. Growth and indole alkaloid formation were quantified and compared with suspension culture of cells. Final alkaloid concentration and alkaloid yield obtained in the packed bed was superior to those obtained in suspension culture. This is thought to be due to improved cell-cell contact and interaction in the packed column.  相似文献   

16.
Thalictrum minus cells immobilized in calcium-alginate beads were cultured in a newly devised bioreactor for the purpose of producing berberine. This system could prevent cells from leaking out of the beads, allowing them to release most of the berberine synthesized into the liquid medium. Furthermore, the biosynthetic capability of the immobilized cells was found to be comparable to that of freely suspended cells.  相似文献   

17.
BACKGROUND: Aluminum has recently been recognized as a causative agent in dialysis encephalopathy, osteodystrophy, and microcytic anemia occurring in patients with chronic renal failure who undergo long-term hemodialysis. Only a small amount of Al(III) in dialysis solutions may give rise to these disorders. METHODS: Magnetic poly(2-hydroxyethyl methacrylate) (mPHEMA) beads in the size range of 80-120 microm were produced by free radical co-polymerization of HEMA and ethylene dimethacrylate (EDMA) in the presence of magnetite particles (Fe3O4). Then, metal complexing ligand alizarin yellow was covalently attached onto mPHEMA beads. Alizarin yellow loading was 208 micromol/g. These beads were used for the removal of Al(III) ions from tap and dialysis water in a magnetically stabilized fluidized bed. RESULTS: Al(III) adsorption capacity of the beads decreased with an increase in the flow-rate. The maximum Al(III) adsorption was observed at pH 5.0. Comparison of batch and magnetically stabilized fluidized bed (MSFB) maximum capacities determined using Langmuir isotherms showed that dynamic capacity (17.5 mg/g) was somewhat higher than the batch capacity (11.8 mg/g). The dissociation constants for Al(III) were determined using the Langmuir isotherm equation to be 27.3 mM (MSFB) and 6.7 mM (batch system), indicating medium affinity, which was typical for pseudospecific affinity ligands. Al(III) ions could be repeatedly adsorbed and desorbed with these beads without noticeable loss in their Al(III) adsorption capacity. CONCLUSIONS: Adsorption of Al(III) demonstrate the affinity of magnetic dye-affinity beads. The MSFB experiments allowed us to conclude that this inexpensive sorbent system may be an important alternative to the existing adsorbents in the removal of aluminium.  相似文献   

18.
Summary A new type of microcarrier was described using bead emulsion-polymerization techniques. An aqueous solution of gelatin and glutaraldehyde was dispersed in a hydrophobic phase of mineral oil, using Triton X-114 as an emulsifier, and polymerization was initiated. The resultant spherical beads, composed entirely of gelatin, showed excellent mechanical stability to ethanol drying, sterilization, and long-term use in microcarrier spinner cultures. The solid gelatin microcarriers supported the growth of L-929 fibroblast, swine aorta endothelial, human umbilical endothelial, and HeLa-S3 cultures with no adverse effects on cell morphology or growth. The beads were transparent in growth medium and attached cells were clearly visualized without staining. The beads were also compatible with techniques for scanning electron microscopy. Collagenase could be used to entirely digest the gelatin beads, leaving the cells free from microcarriers and suspended in solution while retaining 98% cell viability. The results further showed that after collagenase treatment the cells would populate fresh gelatin microcarriers and grow to confluence. Cell attachment kinetics revealed that the endothelial cells attached to the gelatin beads at the same rate as to tissue culture plates, whereas the fibroblast cells attached to the beads more slowly. However, once the fibroblast cells were attached to the gelatin microcarriers they spread and grew normally. This research was supported in part by the National Institutes of Health (GN 29127) and Ventrex Laboratories, Portland, Maine.  相似文献   

19.
Adsorption of human serum proteins (Albumin and total protein) onto high purity synthesis nano-hydroxyapatite (HA), Ca10(PO4)6(OH)2, has been studied in a wide temperature range by UV–visible spectrophotometer. Adsorption isotherm is basically important to describe how solutes interact with adsorbent, and is critical in optimizing the use of adsorbent. In the present study, the experimental results were fitted to the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (DR) models to obtain the characteristic parameters of each model and square of the correlation coefficients (R2). According to the results, the DR isotherm model had the best agreement with the experimental data. The effect of temperature on adsorption of human serum proteins (HSP) onto the synthesized nano-HA was studied. The experimental results indicated that temperature increase generally causes an increase in the adsorption of HSP onto the nano-HA. This is basically due to the effect of temperature on the HSP activity and its diffusion rate on HA surfaces.  相似文献   

20.
Crosslinked-poly(vinylbenzylchloride), poly(VBC), beads were prepared by suspension polymerization and poly(glycidylmethacrylate) was grafted by surface-initiated-atom radical polymerization (SI-ATRP) technique. Epoxy groups of the grafted poly(GMA) were reacted with hydrazine and ammonia to create an affinity binding sites. The hydrazine and amine functionalized poly(VBC-g-GMA) beads were used as an affinity support for adsorption of invertase from solution and yeast crude extract. The influence of pH, equilibrium time, ionic strength and initial invertase concentration on the adsorption capacities of both hydrazine and amine functionalized beads has been investigated. Maximum invertase adsorptions onto hydrazine and amine functionalized beads, were 86.7 and 30.4 mg/g at pH 4.0 and 5.5, respectively. The experimental equilibrium data fitted well to the Temkin isotherm model. Finally, the hydrazine functionalized poly(VBC-g-GMA) beads were used for the purification of invertase from crude yeast extract in a batch system and the purity of the eluted invertase from the hydrazine functionalized beads was determined as 92% by HPLC from single step purification protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号