首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upon coexpression with Erwinia geranylgeranyldiphosphate (GGDP) synthase in Escherichia coli, C30 carotenoid synthase CrtM from Staphylococcus aureus produces novel carotenoids with the asymmetrical C35 backbone. The products of condensation of farnesyldiphosphate and GDP, C35 structures comprise 40 to 60% of total carotenoid accumulated. Carotene desaturases and carotene cyclases from C40 or C30 pathways accepted and converted the C35 substrate, thus creating a C35 carotenoid biosynthetic pathway in E. coli. Directed evolution to modulate desaturase step number, together with combinatorial expression of the desaturase variants with lycopene cyclases, allowed us to produce at least 10 compounds not previously described. This result highlights the plastic and expansible nature of carotenoid pathways and illustrates how combinatorial biosynthesis coupled with directed evolution can rapidly access diverse chemical structures.  相似文献   

2.
Using methods of laboratory evolution to force the C(30) carotenoid synthase CrtM to function as a C(40) synthase, followed by further mutagenesis at functionally important amino acid residues, we have discovered that synthase specificity is controlled at the second (rearrangement) step of the two-step reaction. We used this information to engineer CrtM variants that can synthesize previously unknown C(45) and C(50) carotenoid backbones (mono- and diisopentenylphytoenes) from the appropriate isoprenyldiphosphate precursors. With this ability to produce new backbones in Escherichia coli comes the potential to generate whole series of novel carotenoids by using carotenoid-modifying enzymes, including desaturases, cyclases, hydroxylases, and dioxygenases, from naturally occurring pathways.  相似文献   

3.
At least 700 natural carotenoids have been characterized; they can be classified into C(30), C(40) and C(50) subfamilies. The first step of C(40) pathway is the combination of two molecules of geranylgeranyl pyrophosphate to synthesize phytoene by phytoene synthase (CrtB or PSY). Most natural carotenoids originate from different types and levels of desaturation by phytoene desaturase (CrtI or PDS+ZDS), cyclization by lycopene cyclase (CrtY or LYC) and other modifications by different modifying enzyme (CrtA, CrtU, CrtZ or BCH, CrtX, CrtO, etc.) of this C(40) backbone. The first step of C(30) pathway is the combination of two molecules of FDP to synthesize diapophytoene by diapophytoene synthase (CrtM). But natural C(30) pathway only goes through a few steps of desaturation to form diaponeurosporene by diapophytoene desaturase (CrtN). Natural C(50) carotenoid decaprenoxanthin is synthesized starting from the C(40) carotenoid lycopene by the addition of 2 C(5) units. Concerned the importance of carotenoids, more and more attention has been concentrated on achieving novel carotenoids. The method being used successfully is to construct carotenoids biosynthesis pathways by metabolic engineering. The strategy of metabolic engineering is to engineer a small number of stringent upstream enzymes (CrtB, CrtI, CrtY, CrtM, or CrtN), then use a lot of promiscuous downstream enzymes to obtain large number of novel carotenoids. Two key enzymes phytoene desaturase (CrtI(m)) and lycopene cyclase (CrtY(m)) have been modified and used with a series of downstream modifying enzymes with broad substrate specificity, such as monooxygenase (CrtA), carotene desaturase (CrtU), carotene hydroxylase (CrtZ), zeaxanthin glycosylase (CrtX) and carotene ketolase (CrtO) to extend successfully natural C(30) and C(40) pathways in E. coli. Existing C(30) synthase CrtM to synthesize carotenoids with different chain length have been engineered and a series of novel carotenoids have been achieved using downstream modifying enzymes. C(35) carotenoid biosynthesis pathway has been constructed in E. coli as described. C(45) and C(50) carotenoid biosynthesis pathways have also been constructed in E. coli, but it is still necessary to extend these two pathways. Those novel acyclic or cyclic carotenoids have a potential ability to protect against photooxidation and radical-mediated peroxidation reactions which makes them interesting pharmaceutical candidates.  相似文献   

4.
The C30 carotene synthase CrtM from Staphylococcus aureus and the C40 carotene synthase CrtB from Erwinia uredovora were swapped into their respective foreign C40 and C30 biosynthetic pathways (heterologously expressed in Escherichia coli) and evaluated for function. Each displayed negligible ability to synthesize the natural carotenoid product of the other. After one round of mutagenesis and screening, we isolated 116 variants of CrtM able to synthesize C40 carotenoids. In contrast, we failed to find a single variant of CrtB with detectable C30 activity. Subsequent analysis revealed that the best CrtM mutants performed comparably to CrtB in an in vivo C40 pathway. These mutants showed significant variation in performance in their original C30 pathway, indicating the emergence of enzymes with broadened substrate specificity as well as those with shifted specificity. We discovered that Phe 26 alone determines the specificity of CrtM. The plasticity of CrtM with respect to its substrate and product range highlights the potential for creating further new carotenoid backbone structures.  相似文献   

5.
Molecular breeding of carotenoid biosynthetic pathways   总被引:24,自引:0,他引:24  
The burgeoning demand for complex, biologically active molecules for medicine, materials science, consumer products, and agrochemicals is driving efforts to engineer new biosynthetic pathways into microorganisms and plants. We have applied principles of breeding, including mixing genes and modifying catalytic functions by in vitro evolution, to create new metabolic pathways for biosynthesis of natural products in Escherichia coli. We expressed shuffled phytoene desaturases in the context of a carotenoid biosynthetic pathway assembled from different bacterial species and screened the resulting library for novel carotenoids. One desaturase chimera efficiently introduced six rather than four double bonds into phytoene, to favor production of the fully conjugated carotenoid, 3, 4,3',4'-tetradehydrolycopene. This new pathway was extended with a second library of shuffled lycopene cyclases to produce a variety of colored products. One of the new pathways generates the cyclic carotenoid torulene, for the first time, in E. coli. This combined approach of rational pathway assembly and molecular breeding may allow the discovery and production, in simple laboratory organisms, of new compounds that are essentially inaccessible from natural sources or by synthetic chemistry.  相似文献   

6.
We show that the C40 carotenoid desaturase CrtI from Pantoea ananatis (Erwinia uredovora) is capable of desaturating unnaturally long C45 and C50 carotenoid backbones in recombinant E. coli. Desaturation step number in these pathways is not very specific, and at least ten new C45 and C50 carotenoids were synthesized. We also present evidence for a novel asymmetric C40 backbone formed by the condensation of farnesyl diphosphate (C15PP) with farnesylgeranyl diphosphate (C25PP), and the subsequent desaturation of this backbone by CrtI in an atypical manner. Under some conditions, the C40, C45, and C50 carotenoid backbones synthesized in E. coli were monohydroxylated; their desaturation by CrtI in vitro led to yet more novel carotenoids. Challenging CrtI with larger-than-natural substrates in vivo has allowed us to show that this enzyme regulates desaturation step number by sensing the end groups of its substrate. Analysis of the mechanisms by which chemical diversity is generated and propagated through the nascent pathways provides insight into how natural product diversification occurs in nature.  相似文献   

7.
The desaturation reactions of C(30) carotenoids from diapophytoene to diaponeurosporene was investigated in vitro and by complementation in Escherichia coli. The expressed diapophytoene desaturase from Staphylococcus aureus inserts three double bonds in an FAD-dependent reaction. The enzyme is inhibited by diphenylamine. In the complementation experiment diapophytoene desaturase was able to convert C(40) phytoene to some extend but exhibited a high affinity to zeta-carotene. Comparison to the reaction of a phytoene desaturase from Rhodobacter capsulatus catalyzing a parallel three-step desaturation sequence with the corresponding C(40) carotenes revealed that this desaturase can also convert C(30) diapophytoene. Other homologous bacterial C(40) carotene desaturases could also utilize C(30) substrates, including one type of zeta-carotene desaturase which converted diaponeurosporene to diapolycopene. Further complementation experiments including the diapophytoene synthase gene from S. aureus revealed that the C(30) carotenogenic pathway is determined by this initial enzyme which is highly homologous to C(40) phytoene synthases.  相似文献   

8.
Enzymatic steps from two different biosynthetic pathways were combined in Escherichia coli, directing the synthesis of a new class of biomolecules--ubiquinones with prenyl side chains containing conjugated double bonds. This was achieved by the activity of a C(30) carotenoid desaturase, CrtN, from Staphylococcus aureus, which exhibited an inherent flexibility in substrate recognition compared to other carotenoid desaturases. By utilizing the known plasticity of E. coli's native ubiquinone biosynthesis pathway and the unusual activity of CrtN, modified ubiquinone structures with prenyl side chains containing conjugated double bonds were generated. The side chains of the new structures were confirmed to have different degrees of desaturation by mass spectrometry and nuclear magnetic resonance analysis. In vivo (14)C labeling and in vitro activity studies showed that CrtN desaturates octaprenyl diphosphates but not the ubiquinone compounds directly. Antioxidant properties of conjugated side chain ubiquinones were analyzed in an in vitro beta-carotene-linoleate model system and were found to be higher than the corresponding unmodified ubiquinones. These results demonstrate that by combining pathway steps from different branches of biosynthetic networks, classes of compounds not observed in nature can be synthesized and structural motifs that are functionally important can be combined or enhanced.  相似文献   

9.
Corynebacterium glutamicum accumulates the C50 carotenoid decaprenoxanthin. Rescued DNA from transposon color mutants of this Gram-positive bacterium was used to clone the carotenoid biosynthetic gene cluster. By sequence comparison and functional complementation, the genes involved in the synthesis of carotenoids with 50 carbon atoms were identified. The genes crtE, encoding a geranylgeranyl pyrophosphate synthase, crtB, encoding a phytoene synthase, and crtI, encoding a phytoene desaturase, are responsible for the formation of lycopene. The products of three novel genes, crtYe and crtYf, with sequence similarities to heterodimeric lycopene cyclase crtYc and crtYd, together with crtEb which exhibits a prenyl transferase motif, were involved in the conversion of C40 acyclic lycopene to cyclic C50 carotenoids. Using functional complementation in Escherichia coli, it could be shown that the elongation of lycopene to the acyclic C50 carotenoid flavuxanthin by the addition of C5 isoprenoid units at positions C-2 and C-2' is catalyzed by the crtEb gene product. Subsequently, the gene products of crtYe and crtYf in a concerted action convert the acyclic flavuxanthin into the cyclic C50 carotene, decaprenoxanthin, forming two epsilon-ionone groups. The mechanisms, involving two individual steps for the formation of cyclic C50 carotenoids from lycopene, are proposed on the basis of these results.  相似文献   

10.
The first carotenoid biosynthetic gene from the basidiomycetous yeast Xanthophyllomyces dendrorhous was isolated by heterologous complementation in Escherichia coli. The isolated gene, denominated as crtI, was found to encode for phytoene desaturase. The coding region is interrupted by 11 introns. The deduced amino acid sequence showed significant homology with its bacterial and eukaryotic counterparts, especially those of fungal origin. A plasmid containing the geranylgeranyl diphosphate synthase and phytoene synthase encoding genes from Erwinia uredovora was introduced in E. coli together with the phytoene desaturase encoding cDNA from X. dendrorhous. As a result, lycopene accumulation was observed in these transformants. We conclude that in X. dendrorhous the four desaturase steps, by which phytoene is converted into lycopene, are carried out by a single gene product.  相似文献   

11.
Directed evolution of squalene synthase for dehydrosqualene biosynthesis   总被引:1,自引:0,他引:1  
Squalene synthase (SQS) catalyzes the first step of sterol/hopanoid biosynthesis in various organisms. It has been long recognized that SQSs share a common ancestor with carotenoid synthases, but it is not known how these enzymes selectively produce their own product. In this study, SQSs from yeast, human, and bacteria were independently subjected to directed evolution for the production of the C30 carotenoid backbone, dehydrosqualene. This was accomplished via high-throughput screening with Pantoea ananatis phytoene desaturase, which can selectively convert dehydrosqualene into yellow carotenoid pigments. Genetic analysis of the resultant mutants revealed various mutations that could effectively convert SQS into a “dehydrosqualene synthase.” All of these mutations are clustered around the residues that have been proposed to be important for NADPH binding.  相似文献   

12.

Background

Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data.

Methodology/Principal Findings

Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection.

Conclusions/Significance

Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This phylogenetic framework is applicable to understanding the evolution of specific carotenoid biosynthetic proteins or the unique characteristics of carotenoid biosynthetic evolution in a specific phylogenetic lineage. Together, these analyses suggest a “bramble” model for microbial carotenoid biosynthesis whereby later biosynthetic steps exhibit greater evolutionary plasticity and reticulation compared to those closer to the biosynthetic “root”. Structural diversification may be constrained (“trimmed”) where selection is strong, but less so where selection is weaker. These analyses also highlight likely productive avenues for future research and bioprospecting by identifying both gaps in current knowledge and taxa which may particularly facilitate carotenoid diversification.  相似文献   

13.
14.
The first committed steps of steroid/hopanoid pathways involve squalene synthase (SQS). Here, we report the Escherichia coli production of diaponeurosporene and diapolycopene, yellow C30 carotenoid pigments, by expressing human SQS and Staphylococcus aureus dehydrosqualene (C30 carotenoid) desaturase (CrtN). We suggest that the carotenoid pigments are synthesized mainly via the desaturation of squalene rather than the direct synthesis of dehydrosqualene through the non-reductive condensation of prenyl diphosphate precursors, indicating the possible existence of a “squalene route” and a “lycopersene route” for C30 and C40 carotenoids, respectively. Additionally, this finding yields a new method of colorimetric screening for the cellular activity of squalene synthases, which are major targets for cholesterol-lowering drugs.  相似文献   

15.
Biosynthesis of C(30) carotenoids is relatively restricted in nature but has been described in Staphylococcus and in methylotrophic bacteria. We report here identification of a novel gene (crtNb) involved in conversion of 4,4'-diapolycopene to 4,4'-diapolycopene aldehyde. An aldehyde dehydrogenase gene (ald) responsible for the subsequent oxidation of 4,4'-diapolycopene aldehyde to 4,4'-diapolycopene acid was also identified in Methylomonas. CrtNb has significant sequence homology with diapophytoene desaturases (CrtN). However, data from knockout of crtNb and expression of crtNb in Escherichia coli indicated that CrtNb is not a desaturase but rather a novel carotenoid oxidase catalyzing oxidation of the terminal methyl group(s) of 4,4'-diaponeurosporene and 4,4'-diapolycopene to the corresponding terminal aldehyde. It has moderate to low activity on neurosporene and lycopene and no activity on beta-carotene or zeta-carotene. Using a combination of C(30) carotenoid synthesis genes from Staphylococcus and Methylomonas, 4,4'-diapolycopene dialdehyde was produced in E. coli as the predominant carotenoid. This C30 dialdehyde is a dark-reddish purple pigment that may have potential uses in foods and cosmetics.  相似文献   

16.
Cyanidioschyzon merolae is considered to be one of the most primitive of eukaryotic photosynthetic organisms. To obtain insights into the origin and evolution of the pathway of carotenoid biosynthesis in eukaryotic plants, the carotenoid content of C. merolae was ascertained, genes encoding enzymes of carotenoid biosynthesis in this unicellular red alga were identified, and the activities of two candidate pathway enzymes of particular interest, lycopene cyclase and beta-carotene hydroxylase, were examined. C. merolae contains perhaps the simplest assortment of chlorophylls and carotenoids found in any eukaryotic photosynthetic organism: chlorophyll a, beta-carotene, and zeaxanthin. Carotenoids with epsilon-rings (e.g., lutein), found in many other red algae and in green algae and land plants, were not detected, and the lycopene cyclase of C. merolae quite specifically produced only beta-ringed carotenoids when provided with lycopene as the substrate in Escherichia coli. Lycopene beta-ring cyclases from several bacteria, cyanobacteria, and land plants also proved to be high-fidelity enzymes, whereas the structurally related epsilon-ring cyclases from several plant species were found to be less specific, yielding products with beta-rings as well as epsilon-rings. C. merolae lacks orthologs of genes that encode the two types of beta-carotene hydroxylase found in land plants, one a nonheme diiron oxygenase and the other a cytochrome P450. A C. merolae chloroplast gene specifies a polypeptide similar to members of a third class of beta-carotene hydroxylases, common in cyanobacteria, but this gene did not produce an active enzyme when expressed in E. coli. The identity of the C. merolae beta-carotene hydroxylase therefore remains uncertain.  相似文献   

17.
18.
ABSTRACT: BACKGROUND: Corynebacterium glutamicum contains the glycosylated C50 carotenoid decaprenoxanthin as yellow pigment. Starting from isopentenyl pyrophosphate, which is generated in the non-mevalonate pathway, decaprenoxanthin is synthesized via the intermediates farnesyl pyrophosphate, geranylgeranyl pyrophosphate, lycopene and flavuxanthin. RESULTS: Here, we showed that the genes of the carotenoid gene cluster crtE-cg0722-crtBIYeYfEb are co-transcribed and characterized defined gene deletion mutants. Gene deletion analysis revealed that crtI, crtEb, and crtYeYf, respectively, code for the only phytoene desaturase, lycopene elongase, and carotenoid C45/C50 epsilon-cyclase, respectively. However, the genome of C. glutamicum also encodes a second carotenoid gene cluster comprising crtB2I2-1/2 shown to be co-transcribed, as well. Ectopic expression of crtB2 could compensate for the lack of phytoene synthase CrtB in C. glutamicum DeltacrtB, thus, C. glutamicum possesses two functional phytoene synthases, namely CrtB and CrtB2. Genetic evidence for a crtI2-1/2 encoded phytoene desaturase could not be obtained since plasmid-borne expression of crtI2-1/2 did not compensate for the lack of phytoene desaturase CrtI in C. glutamicum DeltacrtI. The potential of C. glutamicum to overproduce carotenoids was estimated with lycopene as example. Deletion of the gene crtEb prevented conversion of lycopene to decaprenoxanthin and entailed accumulation of lycopene to 0.03 +/- 0.01 mg/g cell dry weight (CDW). When the genes crtE, crtB and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were overexpressed in C. glutamicum DeltacrtEb intensely red-pigmented cells and an 80 fold increased lycopene content of 2.4 +/- 0.3 mg/g CDW were obtained. CONCLUSION: C. glutamicum possesses a certain degree of redundancy in the biosynthesis of the C50 carotenoid decaprenoxanthin as it possesses two functional phytoene synthase genes. Already metabolic engineering of only the terminal reactions leading to lycopene resulted in considerable lycopene production indicating that C. glutamicum may serve as a potential host for carotenoid production.  相似文献   

19.
20.
Directed evolution of farnesyl diphosphate (FPP, C15) synthase (IspA) of Escherichia coli was carried out by error-prone PCR with a color complementation screen utilizing C40 carotenoid pathway enzymes. This allowed IspA mutants with enhanced production of the C40 carotenoid precursor geranylgeranyl diphosphate (GGPP, C20) to be readily identified. Analysis of these mutants was carried out in order to better understand the mechanisms of product chain length specificity in this enzyme. The 12 evolved clones having enhanced C20 GGPP production have characteristic mutations in the conserved regions of prenyl diphosphate synthases (designated regions I through VII). Some of these mutations (I76T, Y79S, Y79H, C75Y, H83Y, and H83Q) are found near or before the conserved first aspartate rich motif (FARM), which is involved in the mechanism for chain elongation reaction of all prenyl synthases. Molecular modeling suggested a mechanism for chain length determination for these mutations including substitutions at the 1st and 9th amino acids upstream of the FARM that have not been reported previously. In addition, a mutation on a helix adjacent to the FARM within the substrate-binding pocket (D115G) suggests a novel mechanism for chain length determination. One mutant IspA clone carries a mutation of C155G at the 2nd amino acid upstream of conserved region IV (GQxxDL), which was recently found to be an important region controlling the chain elongation of a Type III GGPP synthase. One IspA clone carries mutations (T234A and T249I) near the conserved second aspartate rich motif (SARM). As a verification of the in vivo activity of the mutant clones (represented as C40 carotenoid formation), we confirmed the product distribution of wild-type and mutant IspA using an in vitro assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号