首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the primary mechanisms by which sea ice loss is expected to affect polar bears is via reduced body condition and growth resulting from reduced access to prey. To date, negative effects of sea ice loss have been documented for two of 19 recognized populations. Effects of sea ice loss on other polar bear populations that differ in harvest rate, population density, and/or feeding ecology have been assumed, but empirical support, especially quantitative data on population size, demography, and/or body condition spanning two or more decades, have been lacking. We examined trends in body condition metrics of captured bears and relationships with summertime ice concentration between 1977 and 2010 for the Baffin Bay (BB) and Davis Strait (DS) polar bear populations. Polar bears in these regions occupy areas with annual sea ice that has decreased markedly starting in the 1990s. Despite differences in harvest rate, population density, sea ice concentration, and prey base, polar bears in both populations exhibited positive relationships between body condition and summertime sea ice cover during the recent period of sea ice decline. Furthermore, females and cubs exhibited relationships with sea ice that were not apparent during the earlier period (1977–1990s) when sea ice loss did not occur. We suggest that declining body condition in BB may be a result of recent declines in sea ice habitat. In DS, high population density and/or sea ice loss, may be responsible for the declines in body condition.  相似文献   

2.
A diatom based sea ice transfer function is developed using 99 surface sediment samples from the North Atlantic and the associated modern sea ice concentrations. Canonical correspondence analysis (CCA) is applied to the species assemblages of the surface sediment samples and the association of the species with two environmental parameters, August sea surface temperature and May sea ice concentration, is assessed. The results of this analysis indicate negative correlation between sea ice and sea surface temperature and that a group of diatom species is strongly associated with sea ice, especially May sea ice concentration. The results of the CCA legitimate the development of a diatom based sea ice transfer function. The maximum likelihood method has been applied as the transfer function method, as it has been proven most suitable with this particular data set. The newly developed transfer function is then used to reconstruct May sea ice concentration in three cases, each focusing on a different time period: the Last Glacial Maximum, the Younger Dryas and the Holocene. In all three cases the transfer function produces reasonable results when compared to other paleoclimatic proxy results. This suggests that the sea ice concentration reconstructed by the diatom based sea ice transfer function is a valid and reliable method, which can be applied as a valid proxy for May sea ice concentration.  相似文献   

3.
Understanding the flow of solar energy into ecosystems is fundamental to understanding ecosystem productivity and dynamics. To gain a better understanding of this fundamental process in the Antarctic winter sea ice, we produced a model that estimates the time-integrated exposure of seasonal Antarctic sea ice to PAR through the use of remotely sensed sea ice concentrations, sea ice movement and spatially distributed PAR calculations that account for cloud cover and have applied this model over the past three decades. The resulting spatially distributed estimates of sea ice exposure to PAR by mid-winter are evaluated in context of changes in the timing of sea ice formation that have been documented along the Western Antarctic Peninsula (WAP) region and its potential effects on the variation (seasonal and inter-annual) in the accumulation of sea ice algae in this region. The analysis shows the ice pack is likely to have large inter-annual variations (10–100 fold) in productivity throughout the autumn to winter transition in the sea ice along the WAP. Moreover, the pack ice is likely to have spatial structure in regards to biological processes that cannot be determined from analysis of sea ice concentration information alone. The resulting inter-annual variations in winter processes are likely to affect the dynamics of Antarctic krill (Euphausia superba).  相似文献   

4.
Vertical distribution of bacteria in arctic sea ice   总被引:4,自引:0,他引:4  
Abstract Heterotrophic bacteria were enumerated in north polar sea ice cores obtained near Point Barrow, Alaska. Highest concentrations of total and viable bacteria were found in the layer containing the sea ice microbial community identified by the maximum chlorophyll a content. Gas vacuolate bacteria were also found in the sea ice, a discovery which is consistent with their recent report from antarctic sea ice microbial communities. The gas vacuolate bacteria comprised 0.2% or less of the viable bacteria isolated from sea ice cores, lower than concentrations reported for most antarctic samples. Most gas vacuolate isolates from the sea ice cores were pigmented pink, orange, or yellow. An ice core from nearby saline Elson Lagoon contained an inverted sea ice microbial community with highest chlorophyll a concentrations and bacterial counts found in the top 0–20 cm of the ice. This surface layer also contained high numbers (up to 186 bacteria/ml) of a nonpigmented, gas vacuolate, elongated rod-shaped bacterium.  相似文献   

5.
Bottom-ice algae within Antarctic sea ice were examined using chlorophyll fluorescence imaging. The detailed structure of the bottom-ice algal community growing in the platelet and congelation layers of solid pieces of sea ice was evident for the first time in chlorophyll imaging mode. Strands of fluorescence representing algal cells were clearly visible growing upward into brine channels in a fine network. Images of effective quantum yield (ФPSII) revealed that the ФPSII of algae embedded in the sea ice was approximately 0.5. Furthermore, ФPSII decreased slightly with distance from the ice-water interface.The response of Antarctic sea ice algae to changes in irradiance and salinity, and the effects of slowly warming and melting the ice block sample were examined using this system. The ФPSII of bottom-ice algae decreased as irradiance increased and salinities decreased. Bottom-ice algae appear to be most vulnerable to changes in their environment during the melting process of the ice, and this suggests that algae from this region of the ice may not be able to cope with the stress of melting during summer.Chlorophyll fluorescence imaging provides unprecedented imagery of chlorophyll distribution in sea ice and allows measurement of the responses of sea ice algae to environmental stresses with minimal disruption to their physical habitat. The results obtained with this method are comparable to those obtained with algae that have been melted into liquid culture and this indicates that previous melting protocols reveal meaningful data. In this chlorophyll imaging study, rapid light curves did not saturate and this may prevent further use of this configuration.  相似文献   

6.
《Bio Systems》1986,19(4):289-298
Archaeomonads are chrysophyte cysts abundant in Weddell Sea sea ice, but they form in the water column in reponse to conditions that occur in areas where no sea ice is present. The association between archaeomonads and sea ice depends on a particular sequence of oceanographic conditions, beginning with lateral advection followed by vertical harvesting on rising ice crystals. Comparing fossil and modern distributions suggests archaeomonads underwent an ecological transition or expansion in the Early Tertiary Period, from sediment underlying anoxic waters to sediments underlying sea ice.  相似文献   

7.
Climate change is altering the biogeochemical and physical characteristics of the Arctic marine environment, which impacts sea ice algal and phytoplankton bloom dynamics and the vertical transport of these carbon sources to benthic communities. Little is known about whether the contribution of sea ice-derived carbon to benthic fauna and nitrogen cycling has changed over multiple decades in concert with receding sea ice. We combined compound-specific stable isotope analysis of amino acids with highly branched isoprenoid diatom lipid biomarkers using archived (1982–2016) tissue of benthivorous Atlantic walrus to examine temporal trends of sea ice-derived carbon, nitrogen isotope baseline and trophic position of Atlantic walrus at high- and mid-latitudes in the Canadian Arctic. Associated with an 18% sea ice decline in the mid-Arctic, sea ice-derived carbon contribution to Atlantic walrus decreased by 75% suggesting a strong decoupling of sea ice-benthic habitats. By contrast, a nearly exclusive amount of sea ice-derived carbon was maintained in high-Arctic Atlantic walrus (98% in 1996 and 89% in 2006) despite a similar percentage in sea ice reduction. Nitrogen isotope baseline or the trophic position of Atlantic walrus did not change over time at either location. These findings indicate latitudinal differences in the restructuring of carbon energy sources used by Atlantic walrus and their benthic prey, and in turn a change in Arctic marine ecosystem functioning between sea ice–pelagic–benthic habitats.  相似文献   

8.
9.
All photosynthetic organisms endeavor to balance energy supply with demand. For sea‐ice diatoms, as with all marine photoautotrophs, light is the most important factor for determining growth and carbon‐fixation rates. Light varies from extremely low to often relatively high irradiances within the sea‐ice environment, meaning that sea‐ice algae require moderate physiological plasticity that is necessary for rapid light acclimation and photoprotection. This study investigated photoprotective mechanisms employed by bottom Antarctic sea‐ice algae in response to relatively high irradiances to understand how they acclimate to the environmental conditions presented during early spring, as the light climate begins to intensify and snow and sea‐ice thinning commences. The sea‐ice microalgae displayed high photosynthetic plasticity to increased irradiance, with a rapid decline in photochemical efficiency that was completely reversible when placed under low light. Similarly, the photoprotective xanthophyll pigment diatoxanthin (Dt) was immediately activated but reversed during recovery under low light. The xanthophyll inhibitor dithiothreitol (DTT) and state transition inhibitor sodium fluoride (NaF) were used in under‐ice in situ incubations and revealed that nonphotochemical quenching (NPQ) via xanthophyll‐cycle activation was the preferred method for light acclimation and photoprotection by bottom sea‐ice algae. This study showed that bottom sea‐ice algae from the east Antarctic possess a high level of plasticity in their light‐acclimation capabilities and identified the xanthophyll cycle as a critical mechanism in photoprotection and the preferred means by which sea‐ice diatoms regulate energy flow to PSII.  相似文献   

10.
Notes on the biology of sea ice in the Arctic and Antarctic   总被引:1,自引:0,他引:1  
The sea ice which covers large areas of the polar regions plays a major role in the marine ecosystem of both the Arctic and Southern Oceans. Not only do warmblooded animals depend on sea ice as a platform, but the sympagic organisms living internally within the sea ice or at the interfaces ice/snow and ice/water provide a substantial part of the total primary production of the ice covered regions. In addition sea ice organisms are an important food source for a variety of pelagic animals and may initiate phytoplankton spring blooms after ice melt by seeding effects.Sea ice organisms often are enriched by some orders of magnitude if the same volume of melted ice is compared to that of the underlying water column. Three hypotheses try to explain this discrepancy and are discussed. Investigations on the nutrient chemistry within the sea ice system and in-situ observations still are rare. Intense growth of sympagic organisms can result in nutrient deficiencies, at least in selected habitats. Advances in endoscopie methods may lead to a better understanding of the life within the sea ice.Paper presented at the Symposium on Polar regions: the challenge for biological and ecological research organised by the Swiss Committee for Polar Research, Basel on 2 October 1992  相似文献   

11.
The Contributions of Sea Ice Algae to Antarctic Marine Primary Production   总被引:7,自引:1,他引:6  
The seasonally ice-covered regions of the Southern Ocean havedistinctive ecological systems due to the growth of microalgaein sea ice. Although sea ice microalgal production is exceededby phytoplankton production on an annual basis in most offshoreregions of the Southern Ocean, blooms of sea ice algae differconsiderably from the phytoplankton in terms of timing and distribution.Thus sea ice algae provide food resources for higher trophiclevel organisms in seasons and regions where water column biologicalproduction is low or negligible. A flux of biogenic materialfrom sea ice to the water column and benthos follows ice melt,and some of the algal species are known to occur in ensuingphytoplankton blooms. A review of algal species in pack iceand offshore plankton showed that dominance is common for threespecies: Phaeocystis antarctica, Fragilariopsis cylindrus andFragilariopsis curta. The degree to which dominance by thesespecies is a product of successional processes in sea ice communitiescould be an important in determining their biogeochemical contributionto the Southern Ocean and their ability to seed blooms in marginalice zones.  相似文献   

12.
We present a computational model of the large-scale cumulative light exposure of sea ice in the Southern Ocean off East Antarctica (30°E–150°E). The model uses remotely sensed or modelled sea ice concentration, snow depth over sea ice, and solar irradiance data, and tracks sea ice motion over the season of interest in order to calculate the cumulative exposure of the ice field to photosynthetically active radiation (PAR). Light is the limiting factor to sea ice algal growth over winter and early spring, and so the results have implications for the estimation of algal biomass in East Antarctica. The model results indicate that highly light-exposed ice is restricted to within a few degrees of the coast in the eastern part of the study region, but extends much further north in the 30°E–100°E sector. The relative influences of sea ice motion, solar flux, and snow depth variations on interannual variations in model predictions were evaluated. The model estimates of cumulative PAR were found to correlate with satellite estimates of subsequent open-water chlorophyll-a concentration, consistent with the notion that sea ice algae can provide inocula for phytoplankton blooms.  相似文献   

13.

Aim

Climate change is fundamentally altering habitats, with complex consequences for species across the globe. The Arctic has warmed 2–3 times faster than the global average, and unprecedented sea ice loss can have multiple outcomes for ice‐associated marine predators. Our goal was to assess impacts of sea ice loss on population‐specific habitat and behaviour of a migratory Arctic cetacean.

Location

Arctic Ocean.

Methods

Using satellite telemetry data collected during summer‐fall from sympatric beluga whale (Delphinapterus leucas) populations (“Chukchi” and “Beaufort” belugas), we applied generalized estimating equations to evaluate shifts in sea ice habitat associations and diving behaviour during two periods: 1993–2002 (“early”) and 2004–2012 (“late”). We used resource selection functions to assess changes in sea ice selection as well as predict trends in habitat selection and “optimal” habitat, based on satellite‐derived sea ice data from 1990 to 2014.

Results

Sea ice cover declined substantially between periods, and Chukchi belugas specifically used significantly lower sea ice concentrations during the late than early period. Use of bathymetric features did not change between periods for either population. Population‐specific sea ice selection, predicted habitat and the amount of optimal habitat also generally did not change during 1990–2014. Chukchi belugas tracked during 2007–2012 made significantly more long‐duration and deeper dives than those tracked during 1998–2002.

Main conclusions

Taken together, our results suggest bathymetric parameters are consistent predictors of summer‐fall beluga habitat rather than selection for specific sea ice conditions during recent sea ice loss. Beluga whales were able to mediate habitat change despite their sea ice associations. However, trends towards prolonged and deeper diving possibly indicate shifting foraging opportunities associated with ecological changes that occur in concert with sea ice loss. Our results highlight that responses by some Arctic marine wildlife can be indirect and variable among populations, which could be included in predictions for the future.
  相似文献   

14.
Sea ice is a unique habitat in polar seas. A diverse assemblage of plants and animals lives in its interior parts and at the ice-water interface. Their distribution is to a large extent controlled by abiotic parameters such as light, salinity and space, as well as food availability. In both the Arctic and Antarctic, the highest metazoan concentrations occur mostly in the bottom centimetres of the sea ice. Dominant metazoans are nematodes, turbellarians, rotifers and crustaceans. The ice-water interface itself houses in addition to endemic amphipods migrants from both the ice and the pelagic realm. To survive with the environmental conditions of the sea ice habitat, the ice biota is adapted, specifically to seasonal salinity variations from below 5 to above 60 PSU. Sea ice metazoans feed mainly on the algae growing within the sea ice. The loss of habitat during ice melt periods can lead to substantial sedimentation of ice fauna to the sea floor, where it might act as food source for the benthos.  相似文献   

15.
Recent studies predict that the Arctic Ocean will have ice-free summers within the next 30 years. This poses a significant challenge for the marine organisms associated with the Arctic sea ice, such as marine mammals and, not least, the ice-associated crustaceans generally considered to spend their entire life on the underside of the Arctic sea ice. Based upon unique samples collected within the Arctic Ocean during the polar night, we provide a new conceptual understanding of an intimate connection between these under-ice crustaceans and the deep Arctic Ocean currents. We suggest that downwards vertical migrations, followed by polewards transport in deep ocean currents, are an adaptive trait of ice fauna that both increases survival during ice-free periods of the year and enables re-colonization of sea ice when they ascend within the Arctic Ocean. From an evolutionary perspective, this may have been an adaptation allowing success in a seasonally ice-covered Arctic. Our findings may ultimately change the perception of ice fauna as a biota imminently threatened by the predicted disappearance of perennial sea ice.  相似文献   

16.
何剑峰 《生态学报》2004,24(4):750-754
近年来随着北极地区的开放和全球变化对北极地区生态环境和海冰现存量的影响日益显现,北极浮冰生态学研究得到了广泛的重视和实质性的进展.最新研究结果显示,浮冰本身包含了一个复杂的生物群落,高纬度浮冰生物群落的初级产量远高于原先的估算,浮冰生物群落在北极海洋生态系统中的作用被进一步确认.但由于对浮冰生物群落的研究受后勤保障条件的制约,目前尚有大量科学问题有待今后进一步深入研究,预期我国科学家将在其中做出贡献.  相似文献   

17.
Summary Factors influencing the fate of ice algae released from melting sea ice were studied during a R V Polarstern cruise (EPOS Leg 2) to the northwestern Weddell Sea. The large-scale phytoplankton distribution patterns across the receding ice edge and small-scale profiling of the water column adjacent to melting ice floes indicated marked patchiness on both scales. The contribution of typical ice algae to the phytoplankton was not significant. In experiments simulating the conditions during sea ice melting, ice algae revealed a strong propensity to form aggregates. Differences in the aggregation potential were found for algal assemblages collected from the ice interior and the infiltration layer. Although all algal species collected from the ice were also found in aggregates, the species composition of dispersed and aggregated algae differed significantly. Aggregates were of a characteristic structure consisting of monospecific microaggregates which are likely to have formed in the minute brine pockets and channels within the ice. Sinking rates of aggregates were three orders of magnitude higher than those of dispersed ice algae. These observations, combined with the negligible seeding effect of ice algae found during this study, suggest that ice algae released from the melting sea ice are subject to rapid sedimentation. High grazing pressure at the ice edge of the investigation area is another factor eliminating ice algae released during melting.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

18.
Raymond JA  Kim HJ 《PloS one》2012,7(5):e35968
Diatoms and other algae not only survive, but thrive in sea ice. Among sea ice diatoms, all species examined so far produce ice-binding proteins (IBPs), whereas no such proteins are found in non-ice-associated diatoms, which strongly suggests that IBPs are essential for survival in ice. The restricted occurrence also raises the question of how the IBP genes were acquired. Proteins with similar sequences and ice-binding activities are produced by ice-associated bacteria, and so it has previously been speculated that the genes were acquired by horizontal transfer (HGT) from bacteria. Here we report several new IBP sequences from three types of ice algae, which together with previously determined sequences reveal a phylogeny that is completely incongruent with algal phylogeny, and that can be most easily explained by HGT. HGT is also supported by the finding that the closest matches to the algal IBP genes are all bacterial genes and that the algal IBP genes lack introns. We also describe a highly freeze-tolerant bacterium from the bottom layer of Antarctic sea ice that produces an IBP with 47% amino acid identity to a diatom IBP from the same layer, demonstrating at least an opportunity for gene transfer. Together, these results suggest that the success of diatoms and other algae in sea ice can be at least partly attributed to their acquisition of prokaryotic IBP genes.  相似文献   

19.
This study investigates the distribution of Antarctic minke whales (AMW) in relation to sea ice concentration and variations therein. Information on AMW densities in the sea ice‐covered parts of the Southern Ocean is required to contextualize abundance estimates obtained from circumpolar shipboard surveys in open waters, suggesting a 30% decline in AMW abundance. Conventional line‐transect shipboard surveys for density estimation are impossible in ice‐covered regions, therefore we used icebreaker‐supported helicopter surveys to obtain information on AMW densities along gradients of 0%–100% of ice concentration. We conducted five helicopter surveys in the Southern Ocean, between 2006 and 2013. Distance sampling data, satellite‐derived sea‐ice data, and bathymetric parameters were used in generalized additive models (GAMs) to produce predictions on how the density of AMWs varied over space and time, and with environmental covariates. Ice concentration, distance to the ice edge and distance from the shelf break were found to describe the distribution of AMWs. Highest densities were predicted at the ice edge and through to medium ice concentrations. Medium densities were found up to 500 km into the ice edge in all concentrations of ice. Very low numbers of AMWs were found in the ice‐free waters of the West Antarctic Peninsula (WAP). A consistent relationship between AMW distribution and sea ice concentration weakens the support for the hypothesis that varying numbers of AMWs in ice‐covered waters were responsible for observed changes in estimated abundance. The potential decline in AMW abundance stresses the need for conservation measures and further studies into the AMW population status. Very low numbers of AMWs recorded in the ice‐free waters along the WAP support the hypothesis that this species is strongly dependent on sea ice and that forecasted sea ice changes have the potential of heavily impacting AMWs.  相似文献   

20.
There is mounting evidence that multiyear ice (MYI) is a unique component of the Arctic Ocean and may play a more important ecological role than previously assumed. This study improves our understanding of the potential of MYI as a suitable habitat for sea ice algae on a pan‐Arctic scale. We sampled sea ice cores from MYI and first‐year sea ice (FYI) within the Lincoln Sea during four consecutive spring seasons. This included four MYI hummocks with a mean chl a biomass of 2.0 mg/m2, a value significantly higher than FYI and MYI refrozen ponds. Our results support the hypothesis that MYI hummocks can host substantial ice‐algal biomass and represent a reliable ice‐algal habitat due to the (quasi‐) permanent low‐snow surface of these features. We identified an ice‐algal habitat threshold value for calculated light transmittance of 0.014%. Ice classes and coverage of suitable ice‐algal habitat were determined from snow and ice surveys. These ice classes and associated coverage of suitable habitat were applied to pan‐Arctic CryoSat‐2 snow and ice thickness data products. This habitat classification accounted for the variability of the snow and ice properties and showed an areal coverage of suitable ice‐algal habitat within the MYI‐covered region of 0.54 million km2 (8.5% of total ice area). This is 27 times greater than the areal coverage of 0.02 million km2 (0.3% of total ice area) determined using the conventional block‐model classification, which assigns single‐parameter values to each grid cell and does not account for subgrid cell variability. This emphasizes the importance of accounting for variable snow and ice conditions in all sea ice studies. Furthermore, our results indicate the loss of MYI will also mean the loss of reliable ice‐algal habitat during spring when food is sparse and many organisms depend on ice‐algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号