首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Yokota  I Yamazaki 《Biochemistry》1977,16(9):1913-1920
Under suitable experimental conditions the aerobic oxidation of NADH catalyzed by horseradish peroxidase occurred in four characteristic phases: initial burst, induction phase, steady state, and termination. A trace amount of H2O2 present in the NADH solution brought about initial burst in the formation of oxyperoxidase. About 2 mol of oxyperoxidase was formed per mol of H2O2. When a considerable amount of the ferric enzyme still remained, the initial burst was followed by an induction phase. In this phase the rate of oxyperoxidase formation from the ferric enzyme increased with the decrease of the ferric enzyme and an approximately exponential increase of oxyperoxidase was observed. A rapid oxidation of NADH suddenly began at the end of the induction phase and the oxidation continued at a relatively constant rate. In the steady state, oxygen was consumed and H2O2 accumulated. A drastic terminating reaction suddenly set in when the oxygen concentration decreased under a certain level. During the reaction, H2O2 disappeared accompanying an accelerated oxidation of NADH and the enzyme returned to the ferric form after a transient increase of peroxidase compound II. Time courses of NADH oxidation, O2 consumption, H2O2 accumulation, and formation of enzyme intermediates could be simulated with an electronic computer using 11 elementary reactions and 9 rate equations. The results were also discussed in relation to the mechanism for oscillatory responses of the reaction that appeared in an open system with a continuous supply of oxygen.  相似文献   

2.
Heme-containing plant peroxidases (EC 1.11.1.7) contain a highly conserved single tryptophan residue. Its replacement with Phe in recombinant horseradish peroxidase (rHRP) increased the stability of the mutant enzyme in acid media. The kinetic properties of native, wild-type, and W117F mutant recombinant horseradish peroxidase in the reactions of ammonium 2, 2;-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS), guaiacol, and o-phenylenediamine oxidation are very similar. However, significant changes in the reaction rate constant characteristic for the monomolecular rate-limiting step ascribed either to product dissociation from its complex with the enzyme or electron transfer from the substrate to the active site within the Michaelis complex were observed. The data indirectly indicate the participation of the single Trp residue in oxidation of ABTS and guaiacol and possible differences in kinetic mechanisms for oxidation of ABTS, guaiacol, and o-phenylenediamine.  相似文献   

3.
Several porphyrins, including HpD (haematoporphyrin derivative), potentiate the oxidation of NADPH by horseradish peroxidase/H2O2. To elucidate the mechanism of potentiation, the following observations are relevant. During peroxidase-catalysed NADPH oxidation, O2-.(superoxide radical) is generated, as judged from superoxide dismutase-inhibitable cytochrome c reduction. This generation of O2-. is suppressed by HpD. Peroxidase-catalysed NADPH oxidation is stimulated by superoxide dismutase and by anaerobic conditions. Under anaerobic conditions HpD has no influence on peroxide-catalysed NADPH oxidation. Previous studies have shown that horseradish peroxidase is inhibited by O2-.. Thus the experimental results indicate that the potentiating effect of HpD can be explained by its ability to inhibit O2-. generation in the horseradish peroxidase/H2O2/NADPH system.  相似文献   

4.
The kinetic characterization of horseradish peroxidase (HRPC) substrates is difficult because the reaction products are free radicals. The application of a spectrophotometrical method, which is based on determining the time necessary for a given quantity of L-ascorbic acid to be consumed (lag period) during its reaction with the free radicals generated by the enzyme acting on the reducing substrate, makes it possible to obtain the initial steady-state rates (v0). From the kinetic study of a series of derivates of phenol and aniline, the following parameters were determined for the first time: the global catalytic constant (kcat), the Michaelis constant of HRPC for H2O2 in the presence of each reducing substrate (K(M)H2O2), the Michaelis constant of HRPC for the reducing substrate (KMS), the binding constant of the reducing substrate with HRPC compound II (k5) and the rate constant of substrate oxidation by HRPC compound II (k6). The values obtained are disccussed.  相似文献   

5.
The kinetics of microperoxidase-11 (MP-11) in the oxidation reaction of guaiacol (AH) by hydrogen peroxide was studied, taking into account the inactivation of enzyme during reaction by its suicide substrate, H2O2. Concentrations of substrates were so selected that: 1) the reaction was first-order in relation to benign substrate, AH and 2) high ratio of suicide substrate to the benign substrate, [H2O2] > [AH]. Validation and reliability of the obtained kinetic equations were evaluated in various nonlinear and linear forms. Fitting of experimental data into the obtained integrated equation showed a close match between the kinetic model and the experimental results. Indeed, a similar mechanism to horseradish peroxidase was found for the suicide-peroxide inactivation of MP-11. Kinetic parameters of inactivation including the intact activity of MP-11, alphai, and the apparent inactivation rate constant, ki, were obtained as 0.282 +/- 0.006 min(-1) and 0.497 +/- 0.013(-1) min at [H2O2] = 1.0 mM, 27 degrees C, phosphate buffer 5.0 mM, pH = 7.0. Results showed that inactivation of microperoxidase as a peroxidase model enzyme can occur even at low concentrations of hydrogen peroxide (0.4 mM).  相似文献   

6.
EDTA (4 mM) blocks the oxidation of iodide to I-3 (increase of extinction at 353 nm) by H2O2 catalyzed by horseradish peroxidase, which is reversed by the addition of an equimolar concentration of Zn2+. Addition of suboptimal concentration of EDTA (2 mM) not only decreases the rate of forward reaction of I-3 formation but also causes loss of extinction of the same when I-3 is generated. The loss of extinction of I-3 is proportional to the enzyme concentration and is blocked by azide, the inhibitor of the peroxidase. EDTA also causes bleaching of nonenzymatically formed I-3 (from iodide and H2O2) only in the presence of horseradish peroxidase, and the effect is reversed by the equimolar concentration of Zn2+. Both the bleaching of I-3 by EDTA and reversal of EDTA effect by Zn2+ are sensitive to azide. The decrease of extinction of I-3 (formed by dissolving iodine in KI solution) is dependent on EDTA, H2O2, and horseradish peroxidase. Molecular iodine is also bleached but at a slower rate than I-3. Evidence is presented to show that this bleaching of I-3 is due to enzymatic conversion of I-3 to iodide in presence of EDTA and H2O2 and this involves pseudocatalatic degradation of H2O2 to O2.  相似文献   

7.
The kinetics of horseradish peroxidase (EC 1.11.1.7)-catalyzed oxidation of o-dianisidine by hydrogen peroxide in the presence of thiourea were studied. At the first, fast step of this process thiourea acts as a competitive reversible inhibitor with respect to o-dianisidine (Ki = 0.22 mM). The formation of a thiourea-peroxidase complex was determined by the increase in the absorbance at A495 and A638 of the enzyme. The dissociation constant for the peroxidase-thiourea complex is equal to 2.0-2.7 mM. Thiourea is not a specific substrate of peroxidase during the oxidation reaction by H2O2, but is an oxidase substrate (although not a very active one) of peroxidase. The irreversible inactivation of the enzyme during its incubation with thiourea was studied. The first-order inactivation rate constant (kin) was shown to increase with a fall in the enzyme concentration. The curve of the dependence of kin on the initial concentration of thiourea shows a maximum at 5-7 mM. The enzyme inactivation is due to its modification by intermediate free radical products of thiourea oxidation. The inhibitors of the free radical reactions (o-dianisidine) protect the enzyme against inactivation. The degree of inactivation depends on concentrations and ratio of thiourea and peroxidase. A possible mechanism of peroxidase interaction with thiourea is discussed.  相似文献   

8.
Formation of H2O2 during the oxidation of three lignin-derived hydroquinones by the ligninolytic versatile peroxidase (VP), produced by the white-rot fungus Pleurotus eryngii, was investigated. VP can oxidize a wide variety of phenols, including hydroquinones, either directly in a manner similar to horseradish peroxidase (HRP), or indirectly through Mn3+ formed from Mn2+ oxidation, in a manner similar to manganese peroxidase (MnP). From several possible buffers (all pH 5), tartrate buffer was selected to study the oxidation of hydroquinones as it did not support the Mn2+-mediated activity of VP in the absence of exogenous H2O2 (unlike glyoxylate and oxalate buffers). In the absence of Mn2+, efficient hydroquinone oxidation by VP was dependent on exogenous H2O2. Under these conditions, semiquinone radicals produced by VP autoxidized to a certain extent producing superoxide anion radical (O2*-) that spontaneously dismutated to H2O2 and O2. The use of this peroxide by VP produced quinone in an amount greater than equimolar to the initial H2O2 (a quinone/H2O2 molar ratio of 1 was only observed under anaerobic conditions). In the presence of Mn2+, exogenous H2O2 was not required for complete oxidation of hydroquinone by VP. Reaction blanks lacking VP revealed H2O2 production due to a slow conversion of hydroquinone into semiquinone radicals (probably via autooxidation catalysed by trace amounts of free metal ions), followed by O2*- production through semiquinone autooxidation and O2*- reduction by Mn2+. This peroxide was used by VP to oxidize hydroquinone that was mainly carried out through Mn2+ oxidation. By comparing the activity of VP to that of MnP and HRP, it was found that the ability of VP and MnP to oxidize Mn2+ greatly increased hydroquinone oxidation efficiency.  相似文献   

9.
Incubation of aqueous solutions of 2-nitropropane in air causes a slow oxidation reaction that generates H(2)O(2). Purified horseradish peroxidase catalyses the oxidation of such preincubated 2-nitropropane solutions according to the equation: [Formula: see text] The pH optimum is 4.5 and K(m) for 2-nitropropane is 16mm. Other nitroalkanes or nitro-aromatics tested are not oxidized at significant rates by peroxidase. H(2)O(2) or 2,4-dichlorophenol increases the rate of 2-nitropropane oxidation by peroxidase. Catalase inhibits the reaction completely. Superoxide dismutase or mannitol, a scavenger of the hydroxyl radical, OH(.), each inhibits partially. Aniline and guaiacol are also powerful inhibitors of 2-nitropropane oxidation. It is suggested that peroxidase uses the traces of H(2)O(2) generated during preincubation of 2-nitropropane to catalyse oxidation of this substrate into a radical species that can reduce O(2) to the superoxide ion, O(2) (-.).O(2) (-.), or OH(.) derived from it, then appears to react with more nitropropane, generating further radicals and H(2)O(2) to continue the oxidation. Inhibition by aniline and guaiacol seems to be due to a competition for H(2)O(2).  相似文献   

10.
We report here that the Leishmania major ascorbate peroxidase (LmAPX), having similarity with plant ascorbate peroxidase, catalyzes the oxidation of suboptimal concentration of ascorbate to monodehydroascorbate (MDA) at physiological pH in the presence of added H(2)O(2) with concurrent evolution of O(2). This pseudocatalatic degradation of H(2)O(2) to O(2) is solely dependent on ascorbate and is blocked by a spin trap, alpha-phenyl-n-tert-butyl nitrone (PBN), indicating the involvement of free radical species in the reaction process. LmAPX thus appears to catalyze ascorbate oxidation by its peroxidase activity, first generating MDA and H(2)O with subsequent regeneration of ascorbate by the reduction of MDA with H(2)O(2) evolving O(2) through the intermediate formation of O(2)(-). Interestingly, both peroxidase and ascorbate-dependent pseudocatalatic activity of LmAPX are reversibly inhibited by SCN(-) in a concentration dependent manner. Spectral studies indicate that ascorbate cannot reduce LmAPX compound II to the native enzyme in presence of SCN(-). Further kinetic studies indicate that SCN(-) itself is not oxidized by LmAPX but inhibits both ascorbate and guaiacol oxidation, which suggests that SCN(-) blocks initial peroxidase activity with ascorbate rather than subsequent nonenzymatic pseudocatalatic degradation of H(2)O(2) to O(2). Binding studies by optical difference spectroscopy indicate that SCN(-) binds LmAPX (Kd = 100 +/- 10 mM) near the heme edge. Thus, unlike mammalian peroxidases, SCN(-) acts as an inhibitor for Leishmania peroxidase to block ascorbate oxidation and subsequent pseudocatalase activity.  相似文献   

11.
A kinetic study has been carried out over the pH range of 2.63-9.37 for the reaction of horseradish peroxidase with hydrogen peroxide to form compound I of th;e enzyme. Analysis of the results, indicates that there are two kinetic influencing, ionizable groups on the enzyme with pKa values of 3.2 and 3.9. Protonation of these groups results in a decrease in the rate of reaction of the enzyme with H2O2. A previous study of the kinetics of cyanide binding to horseradish peroxidase (Ellis, W.D. & Dunford, H.B.: Biochemistry 7, 2054-2062 (1968)) has been extended to down to pH 2.55, and analysis of these results also indicates the presence of two kinetically important ionizable groups on the enzyme with pKa values of 2.9 and 3.9.  相似文献   

12.
Manganese oxidation by manganese peroxidase (MnP) was investigated. Stoichiometric, kinetic, and MnII binding studies demonstrated that MnP has a single manganese binding site near the heme, and two MnIII equivalents are formed at the expense of one H2O2 equivalent. Since each catalytic cycle step is irreversible, the data fit a peroxidase ping-pong mechanism rather than an ordered bi-bi ping-pong mechanism. MnIII-organic acid complexes oxidize terminal phenolic substrates in a second-order reaction. MnIII-lactate and -tartrate also react slowly with H2O2, with third-order kinetics. The latter slow reaction does not interfere with the rapid MnP oxidation of phenols. Oxalate and malonate are the only organic acid chelators secreted by the fungus in significant amounts. No relationship between stimulation of enzyme activity and chelator size was found, suggesting that the substrate is free MnII rather than a MnII-chelator complex. The enzyme competes with chelators for free MnII. Optimal chelators, such as malonate, facilitate MnIII dissociation from the enzyme, stabilize MnIII in aqueous solution, and have a relatively low MnII binding constant.  相似文献   

13.
Melanosomes scavenged tyrosyl radical that was generated by ultraviolet irradiation of tyrosine. Purified mushroom tyrosinase also removed tyrosyl radical in a dose-dependent manner. To elucidate the underlying mechanism, we analyzed the reaction of mushroom tyrosinase with tyrosyl radical generated by horseradish peroxidase and hydrogen peroxide. Resting tyrosinase, which contained a small amount of oxytyrosinase, did not oxidize tyrosine to DOPAchrome until horseradish peroxidase exhausted H(2)O(2) and thereafter the enzyme recovered its full activity. During the inhibition period most tyrosine was converted to dityrosine, suggesting that only a small amount of tyrosyl radical was enough to interact with a fraction of tyrosinase which was in the active oxy-form. When horseradish peroxidase and H(2)O(2) were added to oxytyrosinase, which was prepared by allowing it to turn over beforehand, DOPAchrome production was abolished with an accelerated consumption of H(2)O(2). Dityrosine formation was totally suppressed and tyrosine concentration stayed constant during the inhibition period with a concomitant production of O(2). The results are accounted for by a mechanism in which tyrosyl radical is reduced to tyrosine by oxytyrosinase and the resulting met-form reacts with H(2)O(2) to return to the oxy-form.  相似文献   

14.
Catalysis of the H2O2-dependent oxidation of 3,4-dimethoxybenzyl (veratryl) alcohol by the hemoprotein ligninase isolated from wood-decaying fungus, Phanerochaete chrysosporium Burds, is characterized. The reaction yields veratraldehyde and exhibits a stoichiometry of one H2O2 consumed per aldehyde formed. Ping-pong steady-state kinetics are observed for H2O2 (KM = 29 microM) and veratryl alcohol (KM = 72 microM) at pH 3.5. The magnitude of the turnover number varies from 2 to 3 s-1 at this pH, depending on the preparation of the enzyme. Each preparation of enzyme consists of a mixture of active and inactive enzyme. Extensive steady-state kinetic studies of several different preparations of enzyme, suggest a mechanism in which H2O2 reacts with enzyme to form an intermediate that subsequently reacts with the alcohol to return the enzyme to the resting state. The pH dependence of the overall reaction indicates that an ionization occurs having an apparent pK alpha approximately 3.1. The activity is, thus, nearly zero at pH 5 and increases to a maximum near pH approximately 2. However, the enzyme is unstable at this low pH. Transient-state kinetic studies reveal that, upon reaction of ligninase with H2O2, spectral changes occur in the Soret region, which, by analogy to previous studies of horseradish peroxidase, are consistent with formation of Compounds I and II. The active form of the enzyme appears to react rapidly with H2O2; we observed a positive correlation between the turnover number of the enzyme preparation and the extent of a rapid reaction between H2O2 and ligninase to form Compound I. Free radical cations derived from veratryl alcohol do not appear to be released from the enzyme during catalysis; however, other substrates are known to be converted to cation radicals (Kersten, P., Tien, M., Kalyanaraman, B., and Kirk, T.K. (1985) J. Biol. Chem. 260, 2609-2612). Our results are generally consistent with a classical peroxidase mechanism for the action of ligninase on lignin-like substrates.  相似文献   

15.
We report the fluorescence decrease of the water-soluble π-π-conjugated polymer poly(2-methoxy-5-propyloxy sulfonate phenylene vinylene, MPS-PPV) by the catalytic activity of horseradish peroxidase in the presence of H(2)O(2). MPS-PPV acts as a donor substrate in the catalytic cycle of horseradish peroxidase where the electron-deficient enzymatic intermediates compounds I and II can subtract electrons from the polymer leading to its fluorescence decrease. The addition of phenolic drug acetaminophen to the former solution favors the decrease of the polymer fluorescence, which indicates the peroxidase-catalyzed co-oxidation of MPS-PPV and acetaminophen. The encapsulation of horseradish peroxidase within polyacrylamide microgels allows the isolation of intermediates compound I and compound II from the polymer, leading to a fluorescence decrease that is only due to the product of biocatalytic acetaminophen oxidation. This system could be used to develop a new device for phenolic compounds detection.  相似文献   

16.
We recently described that horseradish peroxidase (HRP) and myeloperoxidase (MPO) catalyze the oxidation of melatonin, forming the respective indole ring-opening product N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) (Biochem. Biophys. Res. Commun. 279, 657-662, 2001). Although the classic peroxidatic enzyme cycle is expected to participate in the oxidation of melatonin, the requirement of a low HRP:H(2)O(2) ratio suggested that other enzyme paths might also be operative. Here we followed the formation of AFMK under two experimental conditions: predominance of HRP compounds I and II or presence of compound III. Although the consumption of substrate is comparable under both conditions, AFMK is formed in significant amounts only when compound III predominates during the reaction. Using tryptophan as substrate, N- formyl-kynurenine is formed in the presence of compound III. Both, melatonin and tryptophan efficiently prevents the formation of p-670, the inactive form of HRP. Since superoxide dismutase (SOD) inhibits the production of AFMK, we proposed that compound III acts as a source of O(-*)(2) or participates directly in the reaction, as in the case of enzyme indoleamine 2,3-dioxygenase.  相似文献   

17.
Peroxidase from the obligate chemosynthetic bacterium Nitrosomonas europaea was purified 1,500-fold, and its properties were examined. The enzyme had a molecular weight of 53,000 and exhibited characteristic absorption maxima at 410, 524, and 558 mmu. The optimal pH and temperature were 7.5 and 44 C, respectively. The peroxidase reaction had an energy of activation of 5,850 cal/mole and required a primary substrate (H(2)O(2)) concentration of 7 x 10(-6)m to proceed at half maximal velocity (K(m)). Reduced cytochrome, c,p-phenylenediamine and pyrogallol acted as hydrogen donors to the purified peroxidase-H(2)O(2) complex. Conditions most suitable for the chemical oxidation of ammonium by H(2)O(2) were determined. The reaction was rapid and produced nitrite but no nitrate. Hydroxylamine was not detected as an intermediate, but it could substitute for ammonium in the system. Neither the rate nor the extent of these reactions was influenced by purified peroxidase, and no evidence was obtained to support a conclusion that the enzyme performs a vital role in the transformation of ammonium to nitrite by N. europaea.  相似文献   

18.
The kinetics of the cytolytic activity expressed by lactoperoxidase and horseradish peroxidase toward erythrocytes in the presence of H2O2 and iodide have been investigated at physiological pH. The action of both enzymes was found to be very similar with respect to their kinetic mechanisms. Both enzymes showed saturation kinetics at higher enzyme concentrations under conditions where substrate concentrations were not limiting. Optimal concentrations of H2O2 and iodide were found to be 40 and 25 microM, respectively, for both enzymes. Higher concentrations of H2O2 inhibited the cytolytic activity. The pH dependence of the cytolytic reaction is also very similar for both enzymes, showing maximal activity at about pH 6.3. Moreover, the cytolytic activities of both enzymes were inhibited by tyrosine, tryptophan, cysteine, and to a lesser extent by histidine. We conclude from these data that the mechanisms of horseradish peroxidase and lactoperoxidase in promoting the lysis of erythrocytes are closely related if not identical.  相似文献   

19.
Porphobilinogen oxygenase and horseradish peroxidase show dual oxygenase and peroxidase activities. By treating porphobilinogen oxygenase with phenylhydrazine in the presence of H2O2 both activities were inhibited. When horseradish peroxidase was treated in the same manner only the peroxidase activity was lost while its oxygenase activity toward porphobilinogen remained unchanged. The phenylhydrazine treatment alkylated the prosthetic heme group of porphobilinogen oxygenase and N-phenylheme as well as N-phenylprotoporphyrin IX were isolated from the treated hemoprotein. In horseradish peroxidase the modified heme was mainly 8-hydroxymethylheme. The apoproteins of the alkylated enzymes were isolated and recombined with hemin IX. The oxygenase and peroxidase activities of porphobilinogen oxygenase were entirely recovered in the reconstituted enzyme, while the reconstituted horseradish peroxidase regained 75% of its peroxidase activity.  相似文献   

20.
The peroxidase from Coprinus macrorhizus is inactivated by phenylhydrazine or sodium azide in the presence of H2O2. Inactivation by phenylhydrazine results in formation of the delta-meso-phenyl and 8-hydroxymethyl derivatives of the prosthetic heme group and covalent binding of the phenyl moiety to the protein but not in the detectable formation of Fe-phenyl- or N-phenylheme adducts. Alkylhydrazines are catalytically oxidized but do not inactivate the enzyme. Catalytic oxidation of sodium azide produces the azidyl radical and results in its addition to the delta-meso position of the prosthetic heme group. Comparison of the heme adducts obtained with C. macrorhizus peroxidase with those generated by horseradish peroxidase shows that the regiochemistry of the addition reactions is the same in both cases. The results suggest that substrates interact primarily or exclusively with the heme edge rather than the ferryl oxygen of C. macrorhizus peroxidase and indicate that the interaction occurs with the same sector of the heme edge as in horseradish peroxidase. The active-site topologies of this pair of plant and fungal peroxidases thus appear to be similar, although the observation that alkylhydrazines add to the heme edge of horseradish but not C. macrorhizus peroxidase clearly shows that there are significant differences in the two active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号