首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of legumes to recognize and respond to beta-glucan elicitors by synthesizing phytoalexins is consistent with the existence of a membrane-bound beta-glucan-binding site. Related proteins of approximately 75 kDa and the corresponding mRNAs were detected in various species of legumes which respond to beta-glucans. The cDNAs for the beta-glucan-binding proteins of bean and soybean were cloned. The deduced 75-kDa proteins are predominantly hydrophilic and constitute a unique class of glucan-binding proteins with no currently recognizable functional domains. Heterologous expression of the soybean beta-glucan-binding protein in tomato cells resulted in the generation of a high-affinity binding site for the elicitor-active hepta-beta-glucoside conjugate (Kd = 4.5 nM). Ligand competition experiments with the recombinant binding sites demonstrated similar ligand specificities when compared with soybean. In both soybean and transgenic tomato, membrane-bound, active forms of the glucan-binding proteins coexist with immunologically detectable, soluble but inactive forms of the proteins. Reconstitution of a soluble protein fraction into lipid vesicles regained beta-glucoside-binding activity but with lower affinity (Kd = 130 nM). We conclude that the beta-glucan elicitor receptors of legumes are composed of the 75 kDa glucan-binding proteins as the critical components for ligand-recognition, and of an as yet unknown membrane anchor constituting the plasma membrane-associated receptor complex.  相似文献   

2.
3.
E G Cosio  T Frey  J Ebel 《FEBS letters》1990,264(2):235-238
Soybean membranes contain high-affinity binding sites for fungal beta-glucans. These sites may play a role in the recognition by soybean tissues of fungal phytoalexin elicitors. We have solubilized beta-glucan-binding activity from microsomal membranes using two C12-alkyl zwitterionic detergents, Zwittergent 3-12 (ZW 3-12) and the lysolecithin analog 1-dodecanoyl propanediol-3-phosphorylcholine [corrected] (ES12H). The solubilized binding sites displayed identical affinity for beta-glucans as that found in membranes (KD = 11-34 nM). Detergent-protein micelles with glucan binding activity eluted with approximate Mr values of 300,000 in ZW 3-12 and 380,000 in ES12H in gel permeation chromatography. Maximal binding activity eluted from a chromatofocusing column in the pH range between 6.2 and 6.6 with both ES12H and ZW 3-12, suggesting an apparent pI close to neutral.  相似文献   

4.
A successful defense against potential pathogens requires that a host organism is able to discriminate between self and nonself structures. Soybean (Glycine max L.) exploits a specific molecular pattern, a 1,6-beta-linked and 1,3-beta-branched heptaglucoside (HG), present in cell walls of the oomycetal pathogen Phytophthora sojae, as a signal compound eliciting the onset of defense reactions. The specific and high affinity HG-binding site is contained in the beta-glucan-binding protein (GBP), which in turn is part of a proposed receptor complex. The ability to perceive and respond to Phytophthora cell wall-derived beta-glucan elicitors is exclusive to plants that belong to the Fabaceae. However, we propose that the presence of the GBP is essential, but not sufficient for beta-glucan elicitor-dependent disease resistance because genes encoding GBP-related proteins can be retrieved from many plant species. Furthermore, we show that the GBP is composed of two different carbohydrateactive protein domains, one containing the beta-glucan-binding site, and the other related to glucan endoglucosidases of fungal origin. The glucan hydrolase displays most likely an endo-specific mode of action, cleaving only 1,3-beta-d-glucosidic linkages of oligoglucosides consisting of at least four moieties. Thus, the intrinsic endo-1,3-beta-glucanase activity of the GBP is perfectly suited during initial contact with Phytophthora to release oligoglucoside fragments enriched in motifs that constitute ligands for the high affinity binding site present in the same protein. The concept of innate immunity in plants receives substantial support by this highly sophisticated system using ancient enzyme modules as an active part of the recognition mechanism.  相似文献   

5.
6.
Our quest to identify target proteins involved in the activity of tamoxifen led to the design of photoaffinity ligand analogues of tamoxifen able to cross-link such proteins. A new tritiated photoprobe, 4-(2-morpholinoethoxy)benzophenone (MBoPE), was synthesized and used to identify proteins involved in tamoxifen binding in rat liver. MBoPE, which has structural features in common with the potential antagonist of the intracellular histamine receptor (N,N-diethyl-2-[(4-phenylmethyl)phenoxy]ethanamine HCl: DPPE) is unable to bind the estrogen receptor although it does compete with tamoxifen for an antiestrogen binding site (AEBS). This tritiated benzophenone derivative was obtained by metal-catalyzed halogen-tritium replacement reaction. Because of its high specific activity, four target proteins could be photolabeled, three of which were identified with M(r) of 60,000, 49,500, and 14,000, while the fourth at 27,500 was in too low an amount and could not be sequenced. The 49.5 kDa protein corresponded by mass spectrometry to the microsomal epoxide hydrolase already identified with an aryl azide photoprobe [Mesange, F., et al. (1998) Biochem. J. 334, 107-112]. The 60 and 14 kDa proteins were identified as the carboxylesterase (ES10) and the liver fatty acid binding protein (L-FABP), respectively. The inhibitory effect of tamoxifen on carboxylesterase activity and the competitive efficacy of oleic acid on [(3)H]tamoxifen binding suggest that both proteins are AEBS subunits. Moreover, treatment of hepatocytes with antisense mRNA directed against ES10 or L-FABP abolished both tamoxifen and MBoPE binding. On the basis of previous pharmacological arguments, the 27.5 kDa protein might correspond to the sigma I receptor. Altogether, these results confirm that the microsomal epoxide hydrolase is a target for tamoxifen and provide evidence of two new target proteins implicated in cell lipid metabolism.  相似文献   

7.
CR3 (Mac-1; alphaMbeta2 integrin) functions as both a receptor for the opsonic iC3b fragment of C3 triggering phagocytosis or cytotoxicity and an adhesion molecule mediating leukocyte diapedesis. Recent reports have suggested that a CR3 lectin site may be required for both cytotoxic responses and adhesion. Cytotoxic responses require dual recognition of iC3b via the I domain of CD11b and specific microbial surface polysaccharides (e.g., beta-glucan) via a separate lectin site. Likewise, adhesion requires a lectin-dependent membrane complex between CR3 and CD87. To characterize the lectin site further, a recombinant baculovirus (rBv) system was developed that allowed high level expression of rCD11b on membranes and in the cytoplasm of Sf21 insect cells. Six rBv were generated that contained truncated cDNA encoding various CD11b domains. Immunoblotting of rBv-infected Sf21 cells showed that some native epitopes were expressed by five of six rCD11b fragments. Lectin activity of rCD11b proteins was evaluated by both flow cytometry with beta-glucan-FITC and radioactive binding assays with [125I]beta-glucan. Sf21 cells expressing rCD11b that included the C-terminal region, with or without the I-domain, exhibited lectin activity that was inhibited by unlabeled beta-glucan or anti-CR3 mAbs. The smallest rCD11b fragment exhibiting lectin activity included the C-terminus and part of the divalent cation binding region. The beta-glucan binding affinities of the three C-terminal region-containing rCD11bs expressed on Sf21 cell membranes were not significantly different from each other and were similar to that of neutrophil CR3. These data suggest that the lectin site may be located entirely within CD11b, although lectin site-dependent signaling through CD18 probably occurs with the heterodimer.  相似文献   

8.
The microbial degradation of the plant cell wall is an important biological process, representing a major component of the carbon cycle. Enzymes that mediate the hydrolysis of this composite structure are modular proteins that contain non-catalytic carbohydrate binding modules (CBMs) that enhance catalytic activity. CBMs are grouped into sequence-based families, and in a previous study we showed that a family 6 CBM (CBM6) that interacts with xylan contains two potential ligand binding clefts, designated cleft A and cleft B. Mutagenesis and NMR studies showed that only cleft A in this protein binds to xylan. Family 6 CBMs bind to a range of polysaccharides, and it was proposed that the variation in ligand specificity observed in these proteins reflects the specific cleft that interacts with the target carbohydrate. Here the biochemical properties of the C-terminal cellulose binding CBM6 (CmCBM6-2) from Cellvibrio mixtus endoglucanase 5A were investigated. The CBM binds to the beta1,4-beta1,3-mixed linked glucans lichenan and barley beta-glucan, cello-oligosaccharides, insoluble forms of cellulose, the beta1,3-glucan laminarin, and xylooligosaccharides. Mutagenesis studies, informed by the crystal structure of the protein (presented in the accompanying paper, Pires, V. M. R., Henshaw, J. L., Prates, J. A. M., Bolam, D., Ferreira, L. M. A. Fontes, C. M. G. A., Henrissat, B., Planas, A., Gilbert, H. J., Czjzek, M. (2004) J. Biol. Chem. 279, 21560-21568), show that both cleft A and B can accommodate cello-oligosaccharides and laminarin displays a preference for cleft A, whereas xylooligosaccharides exhibit absolute specificity for this site, and the beta1,4,-beta1,3-mixed linked glucans interact only with cleft B. The binding of CmCBM6-2 to insoluble cellulose involves synergistic interactions between cleft A and cleft B. These data show that CmCBM6-2 contains two binding sites that display differences in ligand specificity, supporting the view that distinct binding clefts with different specificities can contribute to the variation in ligand recognition displayed by family 6 CBMs. This is in sharp contrast to other CBM families, where variation in ligand binding is a result of changes in the topology of a single carbohydrate-binding site.  相似文献   

9.
We analyzed the human monocyte-stimulating ability of laminarin from Eisenia bicyclis, lichenan from Cetraria islandica, and their oligomers depolymerized with endo-1,3-beta-glucanase from Arthrobacter sp. The respective beta-glucan oligomers with different degrees of polymerization (DP) were fractionated from hydrolytic products of laminarin and lichenan using gel-filtration chromatography. The monocyte-conditioned medium pre-cultured in the presence of a fraction of beta-glucan oligomer (DP>/=8) from laminarin exhibited inhibitory activity against the proliferation of human myeloid leukemia U937 cells, while those pre-cultured with other beta-glucan oligomers and the original laminarin and lichenan showed little or no activity. NMR analysis indicated that the beta-glucan oligomer (DP>/=8) has an average DP value of 13, and its ratio of beta-1,3- to beta-1,6-linkages in glucopyranose units was estimated to be 1.3:1. These results indicate that the beta-1,3-glucan oligomer with a higher content of beta-1,6-linkage stimulates monocytes to inhibit the proliferation of U937 cells.  相似文献   

10.
Here, we report an efficient one-cycle affinity selection using a natural-protein or random-peptide T7 phage pool for identification of binding proteins or peptides specific for small-molecules. The screening procedure involved a cuvette type 27-MHz quartz-crystal microbalance (QCM) apparatus with introduction of self-assembled monolayer (SAM) for a specific small-molecule immobilization on the gold electrode surface of a sensor chip. Using this apparatus, we attempted an affinity selection of proteins or peptides against synthetic ligand for FK506-binding protein (SLF) or irinotecan (Iri, CPT-11). An affinity selection using SLF-SAM and a natural-protein T7 phage pool successfully detected FK506-binding protein 12 (FKBP12)-displaying T7 phage after an interaction time of only 10 min. Extensive exploration of time-consuming wash and/or elution conditions together with several rounds of selection was not required. Furthermore, in the selection using a 15-mer random-peptide T7 phage pool and subsequent analysis utilizing receptor ligand contact (RELIC) software, a subset of SLF-selected peptides clearly pinpointed several amino-acid residues within the binding site of FKBP12. Likewise, a subset of Iri-selected peptides pinpointed part of the positive amino-acid region of residues from the Iri-binding site of the well-known direct targets, acetylcholinesterase (AChE) and carboxylesterase (CE). Our findings demonstrate the effectiveness of this method and general applicability for a wide range of small-molecules.  相似文献   

11.
Galanin receptor and its ligands in the rat hippocampus   总被引:8,自引:0,他引:8  
Receptors for the 29-amino-acid peptide, galanin, in membranes from the rat ventral hippocampus were examined using chloramine-T-iodinated porcine galanin as ligand. The equilibrium binding of 125I-galanin showed the presence of a high-affinity binding site (Kd = 1.91 +/- 0.40 nM). The concentration of the high-affinity-binding sites was 107 +/- 15 fmol/mg membrane protein. The on rate constant was estimated to be 2.6 +/- 0.1 M-1 min-1 at 37 degrees C. The affinity of rat galanin (differing in three amino acid residues from the porcine protein) was equal to that of porcine galanin. The 125I--galanin-binding site is a trypsin-sensitive membrane protein, which is heat-denaturated at 60 degrees C within 5 min. The effect of GTP and its analogs and of pertussis-toxin-catalyzed ADP-ribosylation on the binding of 125I-galanin suggest that the galanin receptor is coupled to an inhibitory G protein (Gi protein). 127I-galanin was shown to be a ligand with affinity equal to that of galanin in displacing 125I-galanin. The 125I-galanin-binding site in the ventral hippocampus recognizes as a ligand the tryptic fragments 1-20 and 21-29 of rat galanin and the synthetic fragments 12-29, 18-29 and 21-29 of porcine galanin. None of these afforded full inhibition of the binding of fragment 1-29 of 125I-galanin at a concentration of 1 microM.  相似文献   

12.
Branched 1,6-1,3-beta-glucans from Phytophthora sojae cell walls represent pathogen-associated molecular patterns (PAMPs) that have been shown to mediate the activation of plant defence reactions in many legumes. In soybean, a receptor protein complex containing a high affinity beta-glucan-binding protein (GBP) was identified and investigated in detail. In the model legume Medicago truncatula, used for functional genomic studies of various plant-microbe interactions, a high-affinity beta-glucan-binding site was characterized biochemically. However, to date, none of the genes encoding GBPs from M. truncatula have been described. Here, we report the identification of four full-length clones encoding putative beta-glucan-binding proteins from M. truncatula, MtGBP1, 2, 3, and 4, composing a multigene family encoding GBP-related proteins in this plant. Differences in expression patterns as well as in regulation on treatment with two different biotic elicitors are demonstrated for the members of the GBP family and for a selection of defence-related genes.  相似文献   

13.
We have recently reported the existence of binding sites in soybean membranes for a beta-glucan fraction derived from the fungal pathogen Phytophthora megasperma f. sp. glycinea, which may play a role in the elicitor-mediated phytoalexin response of this plant [Schmidt, W. E. & Ebel, J. (1987) Proc. Natl Acad. Sci. USA 84, 4117-4121]. The specificity of beta-glucan binding to soybean membranes has now been investigated using a variety of competing polyglucans and oligoglucans of fungal origin. P. megasperma beta-glucan binding showed high apparent affinity for branched glucans with degrees of polymerization greater than 12. Binding affinity showed good correlation with elicitor activity as measured in a soybean cotyledon bioassay. Modification of the glucans at the reducing end with phenylalkylamine reagents had no effect on binding affinity. This characteristic was used to synthesize an oligoglucosyl tyramine derivative suitable for radioiodination. The 125I-glucan (15-30 Ci/mmol) provided higher sensitivity and lower detection limits for the binding assays while behaving in a manner identical to the [3H]glucan used previously. More accurate determinations of the Kd value for glucan binding indicated a higher affinity than previously shown (37 nM versus 200 nM). The 125I-glucan was used to provide the first reported evidence of specific binding of a fungal beta-glucan fraction in vivo to soybean protoplasts. The binding affinity to protoplasts proved identical to that found in microsomal fractions.  相似文献   

14.
Z-DNA-binding proteins from bull testis.   总被引:3,自引:1,他引:2       下载免费PDF全文
Three Z-DNA-binding proteins of Mr 31, 33 and 58 kD were isolated from mature bull testis. They were obtained in a native state suitable for binding studies. These are the first examples of Z-DNA-binding proteins from a mammalian tissue. Purification involved tissue extraction with 0.35 M NaCl, cation exchange chromatography on CM-Trisacryl M and two consecutive anion exchange FPLC runs on Mono Q. The proteins appeared virtually homogeneous by anion exchange FPLC, SDS polyacrylamide gel electrophoresis and reverse phase HPLC (58 kD protein only). Yields from 50 g of testis tissue were: 31 kD protein, 40 micrograms; 33 kD protein, 100 micrograms; and 58 kD protein, 150 micrograms. Z-DNA binding was determined by Scatchard analysis of filter binding data using brominated poly(dG-dC).poly(dG-dC) as a conformation-specific ligand. Dissociation constants (Kz, in mol nucleotide/liter) were: 31 kD protein, 7 X 10(-7) M; 33 kD protein, 8 X 10(-7) M; 58 kD protein, 6 X 10(-8) M (primary binding site) and 6 X 10(-7) M (secondary binding site). B-DNA binding to poly(dG-dC).poly(dG-dG) was too low for reliable determination under the conditions of assay. This attested to a high degree of conformational specificity of the three proteins. The 58 kD protein bound Z-DNA at the primary site with an affinity almost equivalent to that of a polyclonal anti-Z-DNA antiserum raised in a rabbit (Kz, 4 X 10(-8) M).  相似文献   

15.
Although sterol carrier protein-2 (SCP-2) stimulates sterol transfer in vitro, almost nothing is known regarding the identity of the putative cholesterol binding site. Furthermore, the interrelationship(s) between this SCP-2 ligand binding site and the recently reported SCP-2 long chain fatty acid (LCFA) and long chain fatty acyl-CoA (LCFA-CoA) binding site(s) remains to be established. In the present work, two SCP-2 ligand binding sites were identified. First, both [4-(13)C]cholesterol and 22-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3beta-ol (NBD-cholesterol) binding assays were consistent with a single cholesterol binding site in SCP-2. This ligand binding site had high affinity for NBD-cholesterol, K(d) = 4.15 +/- 0.71 nM. (13)C NMR-labeled ligand competition studies demonstrated that the SCP-2 high affinity cholesterol binding site also bound LCFA or LCFA-CoA. However, only the LCFA-CoA was able to effectively displace the SCP-2-bound [4-(13)C]cholesterol. Thus, the ligand affinities at this SCP-2 binding site were in the relative order cholesterol = LCFA-CoA > LCFA. Second, (13)C NMR studies demonstrated the presence of another ligand binding site on SCP-2 that bound either LCFA or LCFA-CoA but not cholesterol. Photon correlation spectroscopy was consistent with SCP-2 being monomeric in both liganded and unliganded states. In summary, both (13)C NMR and fluorescence techniques demonstrated for the first time that SCP-2 had a single high affinity binding site that bound cholesterol, LCFA, or LCFA-CoA. Furthermore, results with (13)C NMR supported the presence of a second SCP-2 ligand binding site that bound either LCFA or LCFA-CoA but not cholesterol. These data contribute to our understanding of a role for SCP-2 in both cellular cholesterol and LCFA metabolism.  相似文献   

16.
Regulation of the activity of beta-glucan synthase was studied using microsomal preparations from corn coleoptiles. The specific activity as measured by the incorporation of glucose from uridine diphospho-D-[U-14C]glucose varied between 5 to 15 pmol (mg protein)-1 min-1. Calcium promoted beta-glucan synthase activity and the promotion was observed at free calcium concentrations as low as 1 micromole. Kinetic analysis of substrate-velocity curve showed an apparent Km of 1.92 x 10(-4) M for UDPG. Calcium increased the Vmax from 5.88 x 10(-7) mol liter-1 min-1 in the absence of calcium to 9.52 x 10(-7) mol liter-1 min-1 and 1.66 x 10(-6) mol liter-1 min-1 in the presence of 0.5 mM and 1 mM calcium, respectively. The Km values remained the same under these conditions. Addition of ATP further increased the activity above the calcium-promoted level. Sodium fluoride, a phosphoprotein phosphatase inhibitor, promoted glucan synthase activity indicating that phosphorylation and dephosphorylation are involved in the regulation of the enzyme activity. Increasing the concentration of sodium fluoride from 0.25 mM to 10 mM increased glucan synthase activity five-fold over the + calcium + ATP control. Phosphorylation of membrane proteins also showed a similar increase under these conditions. Calmodulin, in the presence of calcium and ATP stimulated glucan synthase activity substantially, indicating that calmodulin could be involved in the calcium-dependent phosphorylation and promotion of beta-glucan synthase activity. The role of calcium in mediating auxin action is discussed.  相似文献   

17.
Association constants for tRNA binding to poly(U) programmed ribosomes were assessed under standardized conditions with a single preparation of ribosomes, tRNAs, and elongation factors, respectively, at 15 and 10 mM Mg2+. Association constants were determined by Scatchard plot analysis (the constants are given in units of [10(7)/M] measured at 15 mM Mg2+): the ternary complex Phe-tRNA.elongation factor EF-Tu.GTP (12 +/- 3), Phe-tRNA (1 +/- 0.4), AcPhe-tRNA (0.7 +/- 0.3), and deacylated tRNA(Phe) (0.4 +/- 0.15) bind with decreasing affinity to the A site of poly(U)-programmed ribosomes. tRNA(Phe) (7.2 +/- 0.8) binds to the P site with higher affinity than AcPhe-tRNA (3.7 +/- 1.3). The affinity of the E site for deacylated tRNA(Phe) (1 +/- 0.2) is about the same as that of the A site for AcPhe-tRNA (0.7 +/- 0.3). At lower Mg2+ concentrations the affinity of the E site ligand becomes stronger relative to the affinities of the A site ligands. Phe-tRNA and ternary complexes can occupy the A site at 0 degrees C in the presence of poly(U) even if the P site is free, whereas, as already known, deacylated tRNA or AcPhe-tRNA bind first to the P site of programmed ribosomes. Hill plot analyses of the binding data confirm an allosteric linkage between A and E sites in the sense of a negative cooperativity.  相似文献   

18.
The family 6 carbohydrate-binding module (CBM) of Clostridium thermocellum XynA was expressed, and the binding equilibria of the CBM with xylooligosaccharides (degree of polymerization DP = 2-8) were observed by isothermal titration calorimetry (ITC) at pH 8. The association constant, Ka, increased with increasing DP from 5 x 10(3) M(-1) (DP = 2) to approximately 5 x 10(5) M(-1) (DP = 5-8) at 20 degrees C. The Ka values at 60 degrees C were about 1/10 of those at 20 degrees C. The binding was found to be an enthalpy-driven reaction. The DP dependence of the thermodynamic parameters of the binding reaction suggested the size of the ligand-binding site to be 5 xylose units long.  相似文献   

19.
The proteins commonly referred to as 14-3-3s have recently come to prominence in the study of protein:protein interactions, having been shown to act as allosteric or steric regulators and possibly scaffolds. The binding of 14-3-3 proteins to the regulatory phosphorylation site of nitrate reductase (NR) was studied in real-time by surface plasmon resonance, using primarily an immobilized synthetic phosphopeptide based on spinach NR-Ser543. Both plant and yeast 14-3-3 proteins were shown to bind the immobilized peptide ligand in a Mg2+-stimulated manner. Stimulation resulted from a reduction in KD and an increase in steady-state binding level (Req). As shown previously for plant 14-3-3s, fluorescent probes also indicated that yeast BMH2 interacted directly with cations, which bind and affect surface hydrophobicity. Binding of 14-3-3s to the phosphopeptide ligand occurred in the absence of divalent cations when the pH was reduced below neutral, and the basis for enhanced binding was a reduction in K(D). At pH 7.5 (+Mg2+), AMP inhibited binding of plant 14-3-3s to the NR based peptide ligand. The binding of AMP to 14-3-3s was directly demonstrated by equilibrium dialysis (plant), and from the observation that recombinant plant 14-3-3s have a low, but detectable, AMP phosphatase activity.  相似文献   

20.
Two nonstoichiometric ligand binding sites have been previously reported for the NK-1 receptor, with the use of classical methods (radioligand binding and second messenger assays). The most populated (major, NK-1M) binding site binds substance P (SP) and is related to the adenylyl cyclase pathway. The less populated (minor, NK-1m) binding site binds substance P, C-terminal hexa- and heptapeptide analogues of SP, and the NK-2 endogenous ligand, neurokinin A, and is coupled to the phospholipase C pathway. Here, we have examined these two binding sites with plasmon-waveguide resonance (PWR) spectroscopy that allows the thermodynamics and kinetics of ligand-receptor binding processes and the accompanying structural changes of the receptor to be monitored, through measurements of the anisotropic optical properties of lipid bilayers into which the receptor is incorporated. The binding of the three peptides, substance P, neurokinin A, and propionyl[Met(O(2))(11)]SP(7-11), to the partially purified NK-1 receptor has been analyzed by this method. Substance P and neurokinin A bind to the reconstituted receptor in a biphasic manner with two affinities (K(d1) = 0.14 +/- 0.02 nM and K(d2) = 1.4 +/- 0.18 nM, and K(d1) = 5.5 +/- 0.7 nM and K(d2) = 620 +/- 117 nM, respectively), whereas only one binding affinity (K(d) = 5.5 +/- 0.4 nM) could be observed for propionyl[Met(O(2))(11)]SP(7-11). Moreover, binding experiments in which one ligand was added after another one has been bound to the receptor have shown that the binding of these ligands to each binding site was unaffected by the fact that the other site was already occupied. These data strongly suggest that these two binding sites are independent and non-interconvertible on the time scale of these experiments (1-2 h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号