首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to measure the structural properties of the latest design (fourth-generation) of composite femurs and tibias from Pacific Research Laboratories, Inc. Fourth-generation composite bones have the same geometries as the third-generation bones, but the cortical bone analogue material was changed to one with increased fracture and fatigue resistance, tensile and compressive properties, thermal stability, and moisture resistance. The stiffnesses of the femurs and tibias were tested under bending, axial, and torsional loading, and the longitudinal strain distribution along the proximal-medial diaphysis of the femur was also determined. The fourth-generation composite bones had average stiffnesses and strains that were for the most part closer to corresponding values measured for natural bones, than was the case for third-generation composite bones; all measurements were taken by the same investigator in separate studies using identical methodology. For the stiffness tests, variability between the specimens was less than 10% for all cases, and setup variability was less than 6%.  相似文献   

2.
To assess the performance of femoral orthopedic implants, they are often attached to cadaveric femurs, and biomechanical testing is performed. To identify areas of high stress, stress shielding, and to facilitate implant redesign, these tests are often accompanied by finite element (FE) models of the bone/implant system. However, cadaveric bone suffers from wide specimen to specimen variability both in terms of bone geometry and mechanical properties, making it virtually impossible for experimental results to be reproduced. An alternative approach is to utilize synthetic femurs of standardized geometry, having material behavior approximating that of human bone, but with very small specimen to specimen variability. This approach allows for repeatable experimental results and a standard geometry for use in accompanying FE models. While the synthetic bones appear to be of appropriate geometry to simulate bone mechanical behavior, it has not, however, been established what bone quality they most resemble, i.e., osteoporotic or osteopenic versus healthy bone. Furthermore, it is also of interest to determine whether FE models of synthetic bones, with appropriate adjustments in input material properties or geometric size, could be used to simulate the mechanical behavior of a wider range of bone quality and size. To shed light on these questions, the axial and torsional stiffness of cadaveric femurs were compared to those measured on synthetic femurs. A FE model, previously validated by the authors to represent the geometry of a synthetic femur, was then used with a range of input material properties and change in geometric size, to establish whether cadaveric results could be simulated. Axial and torsional stiffnesses and rigidities were measured for 25 human cadaveric femurs (simulating poor bone stock) and three synthetic "third generation composite" femurs (3GCF) (simulating normal healthy bone stock) in the midstance orientation. The measured results were compared, under identical loading conditions, to those predicted by a previously validated three-dimensional finite element model of the 3GCF at a variety of Young's modulus values. A smaller FE model of the 3GCF was also created to examine the effects of a simple change in bone size. The 3GCF was found to be significantly stiffer (2.3 times in torsional loading, 1.7 times in axial loading) than the presently utilized cadaveric samples. Nevertheless, the FE model was able to successfully simulate both the behavior of the 3GCF, and a wide range of cadaveric bone data scatter by an appropriate adjustment of Young's modulus or geometric size. The synthetic femur had a significantly higher stiffness than the cadaveric bone samples. The finite element model provided a good estimate of upper and lower bounds for the axial and torsional stiffness of human femurs because it was effective at reproducing the geometric properties of a femur. Cadaveric bone experiments can be used to calibrate FE models' input material properties so that bones of varying quality can be simulated.  相似文献   

3.
Although stiffness and strength of lower limb bones have been investigated in the past, information is not complete. While the femur has been extensively investigated, little information is available about the strain distribution in the tibia, and the fibula has not been tested in vitro. This study aimed at improving the understanding of the biomechanics of lower limb bones by: (i) measuring the stiffness and strain distributions of the different low limb bones; (ii) assessing the effect of viscoelasticity in whole bones within a physiological range of strain-rates; (iii) assessing the difference in the behaviour in relation to opposite directions of bending and torsion. The structural stiffness and strain distribution of paired femurs, tibias and fibulas from two donors were measured. Each region investigated of each bone was instrumented with 8–16 triaxial strain gauges (over 600 grids in total). Each bone was subjected to 6–12 different loading configurations. Tests were replicated at two different loading speeds covering the physiological range of strain-rates. Viscoelasticity did not have any pronounced effect on the structural stiffness and strain distribution, in the physiological range of loading rates explored in this study. The stiffness and strain distribution varied greatly between bone segments, but also between directions of loading. Different stiffness and strain distributions were observed when opposite directions of torque or opposite directions of bending (in the same plane) were applied. To our knowledge, this study represents the most extensive collection of whole-bone biomechanical properties of lower limb bones.  相似文献   

4.
The purpose of this study was to perform a comprehensive geometric, densitometric, biomechanical, and statistical analysis of paired femurs for an adult population over a wide age range using three imaging modalities to quantify the departure from symmetry in size, bone mineral density, and cross-sectional structural rigidities.Femur measurements were obtained from 20 pairs of cadaveric femurs. Dimensions of these anatomic sites were measured using calipers directly on the bone and plain radiographs. Dual energy X-ray absorptiometry was used to measure bone mineral density. Bone mineral content and axial and bending rigidities were determined from the CT imaging.No differences were observed between the geometric measurements, DXA based bone mineral density and axial and bending rigidities of left and right femurs (P>0.05 for all cases). Left and right proximal femurs are not significantly different based on geometric, densitometric, and structural rigidity measurements. However, absolute left–right differences for individual patients can be substantial. When using the contralateral femur as a control, the number of femur pairs required to assess significant changes in anatomic dimensions and structural properties induced by a tumor, infection, fracture, or implanted device can range from 3 to 165 pairs depending on the desired effect size or sensitivity (5% or 10% difference).This information is important both for femoral arthroplasty implant design and the use of the contralateral femur as an intra-subject control for clinical assessment and research studies. In addition, our statistical analysis provides sample size estimates for planning future orthopedic research studies.  相似文献   

5.
Mechanical tests of bone provide valuable information about material and structural properties important for understanding bone pathology in both clinical and research settings, but no previous studies have produced applicable non-invasive, quantitative estimates of bending stiffness. The goal of this study was to evaluate the effectiveness of using peripheral quantitative computed tomography (pQCT) data to accurately compute the bending stiffness of bone. Normal rabbit humeri (N=8) were scanned at their mid-diaphyses using pQCT. The average bone mineral densities and the cross-sectional moments of inertia were computed from the pQCT cross-sections. Bending stiffness was determined as a function of the elastic modulus of compact bone (based on the local bone mineral density), cross-sectional moment of inertia, and simulated quasistatic strain rate. The actual bending stiffness of the bones was determined using four-point bending tests. Comparison of the bending stiffness estimated from the pQCT data and the mechanical bending stiffness revealed excellent correlation (R2=0.96). The bending stiffness from the pQCT data was on average 103% of that obtained from the four-point bending tests. The results indicate that pQCT data can be used to accurately determine the bending stiffness of normal bone. Possible applications include temporal quantification of fracture healing and risk management of osteoporosis or other bone pathologies.  相似文献   

6.
Bone curvature: sacrificing strength for load predictability?   总被引:4,自引:0,他引:4  
Nearly all long bones of terrestrial mammals that have been studied are loaded in bending. Yet bending requires greater bone mass than axial compression for effective support of equivalent static loads. Most long bones, in fact, are curved along their length; their curvature augmenting rather than diminishing stresses developed due to bending. The most "efficient" design of a bone (maximal strength per unit mass) should be a form which is straight and resists axial compression. Bone curvature and the bending developed in the long bones of most species studied, therefore, poses a paradox in design. However, under natural conditions an animal's skeleton must support a range of dynamic loads that vary in both direction and magnitude. Thus, improved predictability of dynamic loading should represent an important feature in the design of the bone, in addition to its absolute strength. We present an explanation of long bone curvature, based on the conditions of stability for bending vs. axial compression in a column, that describes this apparent design paradox as a mechanism for improving the predictability of loading direction (and, consequently, the pattern of stresses within the bone). Our hypothesis argues that in order to understand the design "effectiveness" of long bone shape the role of the bone as a structural unit must be redefined to one in which bone strength is optimized concurrently with loading predictability. In agreement with our hypothesis, bone curvature appears to meet this requirement.  相似文献   

7.
BACKGROUND: The use of artificial bone analogs in biomechanical testing of orthopaedic fracture fixation devices has increased, particularly due to the recent development of commercially available femurs such as the third generation composite femur that closely reproduce the bulk mechanical behavior of human cadaveric and/or fresh whole bone. The purpose of this investigation was to measure bone screw pullout forces in composite femurs and determine whether results are comparable to cadaver data from previous literature. METHOD OF APPROACH: The pullout strengths of 3.5 and 4.5 mm standard bicortical screws inserted into synthetic third generation composite femurs were measured and compared to existing adult human cadaveric and animal data from the literature. RESULTS: For 3.5 mm screws, the measured extraction shear stress in synthetic femurs (23.70-33.99 MPa) was in the range of adult human femurs and tibias (24.4-38.8 MPa). For 4.5 mm screws, the measured values in synthetic femurs (26.04-34.76 MPa) were also similar to adult human specimens (15.9-38.9 MPa). Synthetic femur results for extraction stress showed no statistically significant site-to-site effect for 3.5 and 4.5 mm screws, with one exception. Overall, the 4.5 mm screws showed statistically higher stress required for extraction than 3.5 mm screws. CONCLUSIONS: The third generation composite femurs provide a satisfactory biomechanical analog to human long-bones at the screw-bone interface. However, it is not known whether these femurs perform similarly to human bone during physiological screw "toggling."  相似文献   

8.
Mechanical validation of whole bone composite tibia models   总被引:5,自引:0,他引:5  
Composite synthetic models of the human tibia have recently become commercially available as substitutes for cadaveric specimens. Their use is justified by the advantages they offer as a substitute for real tibias. The present investigation concentrated on an extensive experimental validation of the mechanical behaviour of the whole bone composite model, compared to human specimens for different loading conditions. The stiffness of the tibias was measured with a torsional load applied along the long axis, and with a bending load applied both in the latero-medial and in the antero-posterior direction. The bending stiffness of the composite tibias matched well with that of the cadaveric specimens. This was not true for the torsional stiffness. In fact, the composite tibias were much stiffer than the cadaveric specimens, possibly due to the structure of the reinforcement material. The inter-specimen variability for the composite tibias was much lower than that for the cadaveric specimens. Thus, it seems that the composite tibias are suitable to replace cadaveric specimens for certain types of test, whereas they might be unsuitable for others, depending on the loading regimen.  相似文献   

9.
Biomechanical preconditioning of biological specimens by cyclic loading is routinely done presumably to stabilize properties prior to the main phase of a study. However, no prior studies have actually measured these effects for whole bone of any kind. The aim of this study, therefore, was to quantify these effects for whole bones. Fourteen matched pairs of fresh-frozen intact cadaveric canine femurs were sinusoidally loaded in 4-point bending from 50?N to 300?N at 1?Hz for 25 cycles. All femurs were tested in both anteroposterior (AP) and mediolateral (ML) bending planes. Bending stiffness (i.e., slope of the force-vs-displacement curve) and linearity R(2) (i.e., coefficient of determination) of each loading cycle were measured and compared statistically to determine the effect of limb side, cycle number, and bending plane. Stiffnesses rose from 809.7 to 867.7?N/mm (AP, left), 847.3 to 915.6?N/mm (AP, right), 829.2 to 892.5?N/mm (AP, combined), 538.7 to 580.4?N/mm (ML, left), 568.9 to 613.8?N/mm (ML, right), and 553.8 to 597.1?N/mm (ML, combined). Linearity R(2) rose from 0.96 to 0.99 (AP, left), 0.97 to 0.99 (AP, right), 0.96 to 0.99 (AP, combined), 0.95 to 0.98 (ML, left), 0.94 to 0.98 (ML, right), and 0.95 to 0.98 (ML, combined). Stiffness and linearity R(2) versus cycle number were well-described by exponential curves whose values leveled off, respectively, starting at 12 and 5 cycles. For stiffness, there were no statistical differences for left versus right femurs (p?=?0.166), but there were effects due to cycle number (p?相似文献   

10.
One difficulty that arises in an analysis of the cross-sectional properties of bone is whether to include cancellous bone in the analysis. The purpose of this paper is to determine how different amounts of cancellous bone affect the measurement of structural properties of bone cross-sections. Thirty-two tibial and femoral cross-sections were chosen at random from a series of cross-sectioned nonhuman primate bones. Geometrical properties were calculated for the cross-sections, and torsional and bending stress analyses were performed. The results suggest that the effect of including cancellous bone in the analysis is closely related to the amount of bone, where it lies within the cross-section, and the type of analysis performed. Including cancellous bone in calculations of structural properties of bone cross-sections may cause the strength and stiffness of the bone to be exaggerated.  相似文献   

11.
Torsion is an important testing modality commonly used to calculate structural properties of long bones. However, the effects of size and geometry must be excluded from the overall structural response in order to compare material properties of bones of different size, age and species. We have developed a new method to analyze torsional properties of bones using actual cross-sectional information and length-wise geometrical variations obtained by micro-computed topographic (μCT) imaging. The proposed method was first validated by manufacturing three rat femurs through rapid prototyping using a plastic with known material properties. The observed variations in calculated torsional shear modulus of the hollow elliptical model of mid-shaft cross-section (Ekeland et al.), multi-prismatic model of five true cross-sections (Levenston et al.) and multi-slice model presented in this study were 96%, ?7% and 6% from the actual properties of the plastic, respectively. Subsequently, we used this method to derive relationships expressing torsional properties of rat cortical bone as a function of μCT-based bone volume fraction or apparent density over a range of normal and pathologic bone densities. Results indicate that a regression model of shear modulus or shear strength and bone volume fraction or apparent density described at least 81% of the variation in torsional properties of normal and pathologic bones. Coupled with the structural rigidity analysis technique introduced by the authors, the relationships reported here can provide a non-invasive tool to assess fracture risk in bones affected by pathologies and/or treatment options.  相似文献   

12.
BACKGROUND AND PURPOSE: Use of rabbits in orthopedic investigations is common. In this study, focus is on factors that influence bone healing and on distraction osteogenesis. Biomechanical characteristics of two external fixator systems (Orthofix device and Hoffmann device) for long bones were tested. METHODS: Twelve freshly dissected tibiae were obtained from six skeletally mature New Zealand White rabbits, and four-point bending stiffness in two planes (90 and 180 degrees to the fixator pins) and torsional stiffness and strength of the bone-fixator complex were evaluated by use of a material testing machine. RESULTS: In four-point bending, Orthofix device had higher stiffness and strength, compared with Hoffmann device. When the load was applied 180 degrees to the pins, both devices had higher stiffness, compared with that at 90 degrees. In torsional testing, Orthofix device had significantly higher stiffness and strength. CONCLUSIONS: Significant differences in structural properties between the two systems were evident. Loading direction and gap conditions were important factors in determining properties of the systems. Therefore, type of external fixation system and fixation technique should be considered when designing experiments, using the rabbit long bone model.  相似文献   

13.
Despite advances in understanding the molecular basis of Osteogenesis Imperfecta, the mechanisms by which type I collagen mutations compromise whole bone function are not well understood. Previously, we have shown that a heterozygous type I collagen mutation is associated with increased brittleness of long bones from Mov13 transgenic mice, a model of the mild form of Osteogenesis Imperfecta. In the current study, we investigated tissue-level damage processes by testing the hypothesis that the fatigue properties of Mov13 tissue were significantly compromised relative to littermate controls. We also quantified tissue structure and mineral content to explain variations in the fatigue behavior. Micro-beam specimens were machined from the anterior and posterior quadrants of Mov13 and control femurs and subjected to cyclic bending at one of four stress levels. Mov13 tissue exhibited a 22–25% reduction in tissue bending strength and a similar reductions in fatigue life and the stress level at which damage was apparent. These results provided tissue-level evidence that damage accumulation mechanisms were significantly compromised in Mov13 cortical tissue. Given that significant alterations in tissue structure were observed in Mov13 femurs, the results of this study support the idea that Mov13 femurs were brittle because alterations in tissue structure associated with the mutation interfered with normal damage processes. These results provide new insight into the pathogenesis of Osteogenesis Imperfecta and are consistent with bone behaving as a damaging composite material, where damage accumulation is central to bone fracture.  相似文献   

14.
(1) The mean delta18O(BP) ( per thousandSMOW) for any given bone sampled from captive alligators maintained at high constant temperature was lower (indicative of higher temperatures of bone deposition) than that of the same bone from wild alligators caught in Northern Florida, but these differences were only greater than two standard deviations from the mean for the thoracic vertebrae and metatarsal bones. (2) Inter-bone variability of delta18O(BP) ( per thousandSMOW) was similar for captive alligators maintained at constant temperatures and the wild alligators, but intra-bone variability was much greater in wild alligators. (3) The order of mean delta18O(BP) ( per thousandSMOW) of bones (from highest to lowest) differed between treatment groups. However, intra-bone variability obscured the significance of those differences. Nevertheless, the thoracic vertebra had the highest mean delta18O(BP) ( per thousandSMOW), indicative of lower temperatures, and the lowest variability of bones in both groups of alligators. Conversely, the tibia was one of the warmest and more variable bones in both groups of alligators. (4) The pattern of delta18O(BP) ( per thousandSMOW) values across sites within long bones were identical between alligator treatment groups for the femur and humerus but differed between groups for the tibia and metatarsus, and differed between different long bones. The predicted intra-bone pattern for long bones of increasing delta18O(BP) ( per thousandSMOW) indicative of lower temperatures in more distal sampling sites was only obtained from the femurs. (5) Paired cortical and cancellous bone samples from the same site from all individuals in both treatment groups were available for proximal humeri and distal femurs. delta18O(BP) ( per thousandSMOW) values from cortical bone were more variable than those from cancellous bone for both bones. (6) Cortical bone had lower delta18O(BP) ( per thousandSMOW) values indicative of warmer temperatures than cancellous bone at sites sampled on the proximal humeri and distal femurs of all three animals from both treatment groups.  相似文献   

15.
The aim of this paper is to describe a new numerical-experimental method to determine the stiffness of a conceptual proximal femoral prototype. The methodology consists of the comparison of the numerical and experimental displacement distributions of the prosthesis loaded as a cantilever beam to validate a design concept: controlled stiffness prosthesis. The manufactured prototype used to test the applicability of the numerical-experimental procedure integrates a stiff metal core bonded to a composite material made of an epoxy resin reinforced with carbon-glass braided pre-forms. The prosthesis with an embedded controlled stiffness concept was obtained by varying the geometry of the core with the composite layer thickness.  相似文献   

16.
《Journal of biomechanics》2014,47(16):3898-3902
Fourth generation composite femurs (4GCFs, models #3406 and #3403) simulate femurs of males <80 years with good bone quality. Since most hip fractures occur in old women with fragile bones, concern is raised regarding the use of standard 4GCFs in biomechanical experiments. In this study the stability of hip fracture fixations in 4GCFs was compared to human cadaver femurs (HCFs) selected to represent patients with hip fractures.Ten 4GCFs (Sawbones, Pacific Research Laboratories, Inc., Vashon, WA, USA) were compared to 24 HCFs from seven females and five males >60 years. Proximal femur anthropometric measurements were noted. Strain gauge rosettes were attached and femurs were mounted in a hip simulator applying a combined subject-specific axial load and torque. Baseline measurements of resistance to deformation were recorded. Standardized femoral neck fractures were surgically stabilized before the constructs were subjected to 20,000 load-cycles. An optical motion tracking system measured relative movements.Median (95% CI) head fragment migration was 0.8 mm (0.4 to 1.1) in the 4GCF group versus 2.2 mm (1.5 to 4.6) in the cadaver group (p=0.001). This difference in fracture stability could not be explained by observed differences in femoral anthropometry or potential overloading of 4GCFs. 4GCFs failed with fracture-patterns different from those observed in cadavers.To conclude, standard 4GCFs provide unrealistically stable bone-implant constructs and fail with fractures not observed in cadavers. Until a validated osteopenic or osteoporotic composite femur model is provided, standard 4GCFs should only be used when representing the biomechanical properties of young healthy femurs.  相似文献   

17.
Rats are a common model for the study of bone healing, with the cranium, femur, and tibia being the bones studied most frequently. This study examines noncritical-sized lesions that would allow rats to continue to bear weight without the need for fixation but that are sufficiently large to enable characterization of the healing process. We compared the femoral bone strength associated with 3 lesion sizes selected for use in future studies. Sprague–Dawley rats (age, 10 to 16 wk) were used to assess the ultimate breaking strength, stress, and break force of normal, unmanipulated femurs. We then created lesions of 3 different sizes in the mid- to distal diaphysis of the left and right femurs and characterized the associated decreases in bone strength. Femurs (n= 85) for this study were collected through tissue sharing from rats used in other acute surgical procedures and were tested by using a 3-point bending flexural materials-testing machine. Our hypothesis was that, as a model for bone healing, 3 induced lesions of different sizes would show incremental and proportional decreases in femoral strength, with the intermediate-sized (1.5-mm) lesion demonstrating a decrease of 20% to 40%. A lesion of 1.5 mm yielded a decrease in strength of 17% for both the left and right femurs. The strength of left femurs carrying intermediate lesions was significantly less than that of control, uninjured femur bones. In addition to providing validation for our own future bone-healing project, these data are a useful baseline for other investigators studying bone healing in a rat femur model.Rodents, particularly rats, represent a reliable and affordable model for conducting basic research involving the skeleton.2 Although biomechanical techniques for testing bone strength have been well documented, few studies define the theory, methods, and experimental procedures for evaluating the fracture toughness of bone (fracture resistance), especially whole-bone testing in small animals.10 This said, femurs are still the ideal rat and mouse bones to use to evaluate the fracture toughness properties in small-animal model studies.4,10 Bending tests are useful to assess the mechanical properties of bones from rodents and other small animals.15 Even though this method of testing is referred to as a ‘bending test,’ the material (in this case, bone) is actually fractured to assess fracture toughness or breaking. For bending tests, long bones are loaded mainly in bending or compression during normal movement of the animals and are subject to both intrinsic and extrinsic large bending forces.4,14 In rodents, locomotion results in alternating tension and compression on the cortex of weight-supporting bones during the gait cycle, with no limit on the magnitude or direction in which these forces can be exerted.8 This makes testing of bending, compression, torsion or any combination of methods potentially applicable. Therefore we chose to conduct 3-point bending testing on rat femurs. Bones were stressed to the point of fracture and the values required were recorded for computer-assisted analysis.In the testing of bone, the fundamental structural properties of greatest importance are stiffness, strength, and toughness.8,10 Measured and calculated values of importance are peak force (ultimate breaking strength), fatigue resistance, stress, strain, break force, and energy to break. We chose to collect and compare peak force (measured data) as well as stress and break force (both calculated data). We made these choices because the most important biomechanical property from a clinical point of view is the peak force, which corresponds to the ability of a patient''s leg to resist high loading before a fracture or irreversible deformation occurs.Strength can be tested as tension, compression, bending, or shear.8,10 Strength as a material parameter is defined as the ultimate stress at which failure occurs, but strength is defined structurally as the ultimate load (or force) when failure of the system occurs.8 In the current study, we tested the strength of rat femurs via 3-point bending. We hypothesized that the 1.5-mm lesion, which involved 39% of the bone circumference, would yield a 20% to 40% decrease in strength. In addition, the femurs with induced lesions showed a consistent decrease in strength, with larger lesions associated with lower peak force on both the right and left sides.  相似文献   

18.
Bone allograft material is treated with sterilization methods to prevent the transmission of diseases from the donor to the recipient. The effect of some of these treatments on the integrity of the bone is unknown. This study was performed to evaluate the effect of several sterilization methods on the mechanical behaviour of human middle ear bones. Due to the size and composition of the bones (approximately 1.5 mm diameter by 4 mm long), mechanical testing options were limited to the traditional platens compression test. Experiments were first performed with synthetic bone to evaluate the precision of this test applied to small specimens. Following this, fresh frozen human ossicles were thawed and sterilized with (i) 1 N NaOH (n = 12); (ii) 0.9% LpH, a phenolic solution (n = 12); or (iii) steam at 134 degrees C (n = 18). A group of 26 control specimens did not receive any sterilization treatment. Material and structural properties were determined from axial compression testing. Results from the synthetic bone showed that the test was reproducible, with standard deviations less than 20% of the means. Significant differences occurred in stiffness and ultimate force values between NaOH-treated and autoclaved bones when compared to normals (p<0.05), but not for LpH-treated bones. LpH is not approved for medical use, so NaOH is the most appropriate of the treatments studied for the sterilization of ossicle allografts.  相似文献   

19.
In vitro comparative testing of fracture fixation implants is limited by the highly variable material properties of cadaveric bone. Bone surrogate specimens are often employed to avoid this confounding variable. Although validated surrogate models of normal bone (NB) exist, no validated bone model simulating weak, osteoporotic bone (OPB) is available. This study presents an osteoporotic long-bone model designed to match the lower cumulative range of mechanical properties found in large series of cadaveric femora reported in the literature. Five key structural properties were identified from the literature: torsional rigidity and strength, bending rigidity and strength, and screw pull-out strength. An OPB surrogate was designed to meet the low range for each of these parameters, and was mechanically tested. For comparison, the same parameters were determined for surrogates of NB. The OPB surrogate had a torsional rigidity and torsional strength within the lower 2% and 16%, respectively, of the literature based cumulative range reported for cadaveric femurs. Its bending rigidity and bending strength was within the lower 11% and 8% of the literature-based range, respectively. Its pull-out strength was within the lower 2% to 16% of the literature based range. With all five structural properties being within the lower 16% of the cumulative range reported for native femurs, the OPB surrogate reflected the diminished structural properties seen in osteoporotic femora. In comparison, surrogates of NB demonstrated structural properties within 23-118% of the literature-based range. These results support the need and utility of the OPB surrogate for comparative testing of implants for fixation of femoral shaft fractures in OPB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号