首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the C-terminal part of yeast ATP synthase subunit 4 (subunit b) in the assembly of the whole enzyme was studied by using nonsense mutants generated by site-directed mutagenesis. The removal of at least the last 10 amino-acid residues promoted mutants which were unable to grow with glycerol or lactate as carbon source. These mutants were devoid of subunit 4 and of another F0 subunit, the mitochondrially encoded subunit 6. The removal of the last eight amino-acid residues promoted a temperature-sensitive mutant (PVY161). At 37 degrees C this strain showed the same phenotype as above. When grown at permissive temperature (30 degrees C) with lactate as carbon source, PVY161 and the wild-type strain both displayed the same generation time and growth yield. Furthermore, the two strains showed identical cellular respiration rates at 30 degrees C and 37 degrees C. However, in vitro the ATP hydrolysis of PVY161 mitochondria exhibited a low sensitivity to F0 inhibitors, while ATP synthesis displayed the same oligomycin sensitivity as wild-type mitochondria. It is concluded that, in this mutant, the assembly of the truncated subunit 4 in PVY161 ATP synthase is thermosensitive and that, once a functional F0 is formed, it is stable. On the other hand, the removal of the last eight amino-acid residues promoted in vitro a proton leak between the site of action of oligomycin and F1.  相似文献   

2.
Filtration-enrichment and inositol-less death methods of mutant isolation, coupled with a screen for cyanide-insensitive respiration, proved to be highly efficient methods for isolating temperature-sensitive (ts) nuclear Neurospora mutants having defective respiration. Eighteen different ts respiratory mutants have been isolated. Most of them are pleiotropic and defective in one or more of the following phenotypes: cytochrome aa3, b, and c (individual or multiple defects); oligomycin inhibition of ATPase activity; respiration and its inhibition by KCN and salicyl hydroxamic acid; and growth rates in liquid and solid media at 25 degrees and 38 degrees. Among these mutants are the first cytochrome c mutant of Neurospora and an extranuclear ts ATPase mutant. An added bonus was the fact that over half of the mutants were affected either in ribosome assembly or in protein synthesis in the mitochondrion. We have yet to find any mutants completely lacking activities associated with the respiratory chain. However, the wide spectrum of mutants isolated here, along with those currently available, constitutes a considerable resource for investigating respiration in obligate aerobes.  相似文献   

3.
The addition of glucose to a suspension of yeast initiated glycogen synthesis and ethanol formation. Other effects of the glucose addition were a transient rise in the concentration of cyclic AMP and a more prolonged increase in the concentration of hexose 6-monophosphate and of fructose 2,6-bisphosphate. The activity of glycogen synthase increased about 4-fold and that of glycogen phosphorylase decreased 3-5-fold. These changes could be reversed by the removal of glucose from the medium and induced again by a new addition of the sugar. These effects of glucose were also obtained with glucose derivatives known to form the corresponding 6-phosphoester. Similar changes in glycogen synthase and glycogen phosphorylase activity were induced by glucose in a thermosensitive mutant deficient in adenylate cyclase (cdc35) when incubated at the permissive temperature of 26 degrees C, but were much more pronounced at the nonpermissive temperature of 35 degrees C. Under the latter condition, glycogen synthase was nearly fully activated and glycogen phosphorylase fully inactivated. Such large effects of glucose were, however, not seen in another adenylate-cyclase-deficient mutant (cyr1), able to incorporate exogenous cyclic AMP. When a nitrogen source or uncouplers were added to the incubation medium after glucose, they had effects on glycogen metabolism and on the activity of glycogen synthase and glycogen phosphorylase which were directly opposite to those of glucose. By contrast, like glucose, these agents also caused, under most experimental conditions, a detectable rise in cyclic AMP concentration and a series of cyclic-AMP-dependent effects such as an activation of phosphofructokinase 2 and of trehalase and an increase in the concentration of fructose 2,6-bisphosphate and in the rate of glycolysis. Under all experimental conditions, the rate of glycolysis was proportional to the concentration of fructose 2,6-bisphosphate. Uncouplers, but not a nitrogen source, also induced an activation of glycogen phosphorylase and an inactivation of glycogen synthase when added to the cdc35 mutant incubated at the restrictive temperature of 35 degrees C without affecting cyclic AMP concentration.  相似文献   

4.
The cdc30 mutation in the yeast Saccharomyces cerevisiae causes cell cycle arrest late in nuclear division when cells are shifted from the permissive temperature of 25 degrees C to the restrictive temperature of 36.5 degrees C. Cell cycle arrest at 36.5 degrees C is dependent upon the carbon source used: a shift-up in glucose containing media results in cell cycle blockade, whereas a shift-up in ethanol, fructose, glycerol, glycerol plus ethanol, or mannose does not. Metabolite analyses showed accumulation of glucose 6-phosphate in a cdc30-bearing strain after a temperature shift-up in glucose-containing medium. Thermal denaturation studies and kinetic measurements indicate the existence of two isoenzymes of phosphoglucose isomerase (EC 5.3.1.9); one of which is apparently altered in the temperature-sensitive cell cycle mutant. We propose that the gene products of both the CDC30 and PG11 genes are required for cell cycle progression in glucose media and that the PGI1 gene product has a regulatory function over the CDC30 gene product.  相似文献   

5.
H. Mitsuzawa  I. Uno  T. Oshima    T. Ishikawa 《Genetics》1989,123(4):739-748
The yeast Saccharomyces cerevisiae contains two ras homologues, RAS1 and RAS2, whose products have been shown to modulate the activity of adenylate cyclase encoded by the CYR1 gene. To isolate temperature-sensitive mutations in the RAS2 gene, we constructed a plasmid carrying a RAS2 gene whose expression is under the control of the galactose-inducible GAL1 promoter. A ras1 strain transformed with this plasmid was subjected to ethyl methanesulfonate mutagenesis and nystatin enrichment. Screening of approximately 13,000 mutagenized colonies for galactose-dependent growth at a high temperature (37 degrees) yielded six temperature-sensitive ras2 (ras2ts) mutations and one temperature-sensitive cyr1 (cyr1ts) mutation that can be suppressed by overexpression or increased dosage of RAS2. Some ras2ts mutations were shown to be suppressed by an extra copy of CYR1. Therefore increased dosage of either RAS2 or CYR1 can suppress the temperature sensitivity caused by a mutation in the other. ras1 ras2ts and ras1 cyr1ts mutants arrested in the G1 phase of the cell cycle at the restrictive temperature, and showed pleiotropic phenotypes to varying degrees even at a temperature permissive for growth (25 degrees), including slow growth, sporulation on rich media, increased accumulation of glycogen, impaired growth on nonfermentable carbon sources, heat-shock resistance, impaired growth on low concentrations of glucose, and lithium sensitivity. Of these, impaired growth on low concentrations of glucose and sensitivity to lithium are new phenotypes, which have not been reported for mutants defective in the cAMP pathway.  相似文献   

6.
SPO1 temperature-sensitive mutant ts14-1, located in cistron 31, has a DD (DNA synthesis-delayed) phenotype at 37 degrees C and produces progeny in a stretched program. At 44 degrees C it behaves as a DO (DNA synthesis-defective) mutant and shuts off the viral RNA synthesis about 10 min after infection. The thermal sensitivity of this mutant is due to the inactivity of gp-31 (the product of gene 31) at 44 degrees C. However, gp-31 is synthesized at that temperature and partly recovers its activity at 37 degrees C. Only 5 min at the permissive temperature is enough to trigger the continuation of the phage program and to produce progeny. The partial defect at 37 degrees C and the expansion of the middle program together with the pleiotropic defects at the nonpermissive temperature could be suitable for the study of the controls involved in bacteriophage development.  相似文献   

7.
Phenotypic analysis of a temperature-sensitive era mutant strain indicates that Escherichia coli cells depleted of Era undergo many physiological changes. At 43 degrees C, a completely non-permissive temperature, growth is arrested because of loss of the gene and depletion of the Era protein. Depletion of Era at 43 degrees C results in depressed synthesis of heat-shock proteins DnaK, GroEL/ES, D33.4 and C62.5, lack of thermal induction of ppGpp pool levels, and increased capacity for carbon source metabolism through the citric acid cycle. Thus, in addition to inhibition of cell growth and viability, loss of Era function results in pleiotropic changes including abnormal adaptation to thermal stress.  相似文献   

8.
A temperature-sensitive mutant of Neurospora crassa was found to undergo rapid death on minimal medium at 35 degrees C. The loss of viability in this mutant was prevented by various factors which retard growth, including deprivation of carbon sources or interruption of protein synthesis. Synthesis of nucleic acids and protein in this mutant was normal at the early stages of germination and then depressed at 35 degrees C. The active transport of glucose and the respiration rate in this mutant were depressed at 35 degrees C. Phopholipid synthesis was significantly repressed at 35 degrees C. The possible significance of the characteristics of this mutant is discussed in terms of membrane biosynthesis.  相似文献   

9.
The respiration rate of heterotrophic Lemna paucicostata Hegelm. 6746 cultures at 26–27°C and given a brief pulse of red light, assumes patterns with properties dependent on the nitrogen source supplied. In a search for conditions specifically affecting features of those patterns expressing photperiodic timing, their amplitudes have been measured as relative peak height (RPH) — the increased height at the daily peak as a proportion of the average daily minimum — at both 21°C and 28°C. On nitrate, ammonium or aspartate medium, RPH is reduced roughly 70% at 21°C as compared to 28°C, but on nitrogen-deficient medium the reduction is only 20–30%. Yet growth and the actual intensity of respiration are not differently temperature sensitive on NO3 and N-deficient media. Nor does RPH itself correlate with growth rate. Previous evidence indicates that patterns on NO3 and NH4 media reflect photoperiodic timing and that those on aspartale and N-deficient media do not; hence the temperature sensitivity of RPH does not correlate with whether or not a pattern reflects photo-periodic timing. However, different daily patterns arc elicited by pulses of red or far-red on NO3. NH4 and aspartale media but not on the N-deficient. Hence the temperature sensitivity of RPH does correlate with the degree to which the patterns distinguish between red and far-red, which is to say between high anti low levels of Pfr-phytochrome. This suggests that high temperature sensitivity in RPH reflects a reaction limited by N assimilation and saturating only at relatively high levels of Pfr.  相似文献   

10.
We describe the characterization of a mutation of the locus GLR1. This mutation allowed for (i) the glucose repression-insensitive synthesis ot the enzymes maltase, galactokinase, alpha-galactosidase, reduced nicotinamide adenine dinucleotide-cytochrome c reductase, and cytochrome c oxidase and (ii) growth on maltose in the presence of the gratuitous glucose repressor D-glucosamine. The glucosamine resistance cosegregated with the glucose-insensitive synthesis of the enzymes listed above. In addition, crosses between the glucosamine-resistant mutant and isogenic sensitive strains gave only tetrads containing two resistant and two sensitive spores. Thus, a single pleiotropic mutation is responsible for both phenotypes. We call the locus GLR1, for glucose regulation, and the glucose repression-insensitive mutation glr1-1.  相似文献   

11.
1. The effect of carbon source variation in bacterial growth media on their growth rate, inducible enzyme and cyclic AMP synthesis was examined: an inverse relationship between the culture's growth rate and its differential rate of inducible enzyme (tryptophanase and beta-galactosidase), and cyclic AMP synthesis was found. 2. The effect of the culture's growth phase on its sensitivity or resistance to glucose catabolite repression was determined in the wild type and a catabolite insensitive mutant (ABDROI): the wild type's sensitivity to glucose repression was not affected, whereas the insensitivity of the mutant was found to be limited to its early logarithmic phase of growth. At late log, or stationary phase, the mutant was found to be sensitive to glucose repression. 3. Examination of the kinetics of glucose uptake by the mutant, using alpha-[1 4-C] methyl-glucoside showed evidence for two transport systems each with a different affinity to glucose. A low affinity transport system (apparent Km of 3.4-10-minus 5 M) which appears mostly at the early logarithmic phase of growth. A high affinity transport system (apparent Km of 1.2-10-minus 5 M) which appears mostly at the late log and stationary phases of growth. 4. The effect of the culture density variation on its sensitivity to glucose repression showed that sensitivity to glucose catabolic repression is primarily a reflection of the formation of an allosteric effector molecule between glucose and its specific transport molecule which in turn regulates the activity of the adenylate cyclase.  相似文献   

12.
Temperature-sensitive yeast mutants defective in gene CDC24 continued to grow (i.e., increase in cell mass and cell volume) at restrictive temperature (36 degrees C) but were unable to form buds. Staining with the fluorescent dye Calcofluor showed that the mutants were also unable to form normal bud scars (the discrete chitin rings formed in the cell wall at budding sites) at 36 degrees C; instead, large amounts of chitin were deposited randomly over the surfaces of the growing unbudded cells. Labeling of cell-wall mannan with fluorescein isothiocyanate-conjugated concanavalin A suggested that mannan incorporation was also delocalized in mutant cells grown at 36 degrees C. Although the mutants have well-defined execution points just before bud emergence, inactivation of the CDC24 gene product in budded cells led both to selective growth of mother cells rather than of buds and to delocalized chitin deposition, indicating that the CDC24 gene product functions in the normal localization of growth in budded as well as in unbudded cells. Growth of the mutant strains at temperatures less than 36 degrees C revealed allele-specific differences in behavior. Two strains produced buds of abnormal shape during growth at 33 degrees C. Moreover, these same strains displayed abnormal localization of budding sites when growth at 24 degrees C (the normal permissive temperature for the mutants); in each case, the abnormal pattern of budding sites segregated with the temperature sensitivity in crosses. Thus, the CDC24 gene product seems to be involved in selection of the budding site, formation of the chitin ring at that site, the subsequent localization of new cell wall growth to the budding site and the growing bud, and the balance between tip growth and uniform growth of the bud that leads to the normal cell shape.  相似文献   

13.
Escherichia coli contains a major phosphofructokinase isoenzyme, phosphofructokinase 1, which is allosteric, and a minor isoenzyme, phosphofructokinase 2. The pfkB1 mutation is known to increase the amount of phosphofructokinase 2 and allow growth on sugars of mutants lacking phosphofructokinase 1; it does not affect growth on substances such as glycerol or lactate (i.e., 'gluconeogenic growth'). However, gluconeogenic growth is markedly impaired in strains with a different allele, pfkB1*. We show here that strains with pfkB1* contain an altered form of phosphofructokinase 2, called phosphofructokinase 2*, which has been purified. Phosphofructokinase 2* is cold labile and has slightly different kinetic characteristics from phosphofructokinase 2, which include being less sensitive to inhibition by fructose 1,6-bisphosphate. The Km for fructose 6-phosphate is low (about 5 X 10(-5) M) in both phosphofructokinase 2 and phosphofructokinase 2*. However, in strains lacking phosphofructokinase 1, a high level of phosphofructokinase 2 is associated with unusually high concentrations of hexose monophosphates during growth on glucose, while a strain with phosphofructokinase 2* instead of phosphofructokinase 2 grows more rapidly on glucose and contains lower levels of hexose monophosphates. In gluconeogenic conditions, by contrast, hexose monophosphate levels are normal in phosphofructokinase 2 strains, while the impaired growth of phosphofructokinase 2* strains is associated with high levels of fructose 2,6-bisphosphate and very low levels of hexose monophosphates. These results show that phosphofructokinase 2, as studied in vitro, should no longer be regarded as a 'non-allosteric' protein, a conclusion also reached by Kotlarz and Buc on the basis of different types of experiments [Eur. J. Biochem. 117, 569-574 (1981)]. The fact that mutational alteration of phosphofructokinase 2 allows more rapid growth on glucose but severely impairs gluconeogenic growth is an indication of the significance of the regulation in vivo. The more rapid growth of the mutant on glucose might be explained on the basis of decreased sensitivity to an inhibitor (possibly, but not necessarily, fructose 1,6-bisphosphate), although other models are possible. A variety of speculations are offered as to the mechanism of gluconeogenic impairment.  相似文献   

14.
1. In non-fermentable substrates growth of mutant tsm-8 cells of Saccharomyces cerevisiae is restricted to about one generation after shift from 23 to 35 degrees C. Non-permissive conditions (35 degrees C, glycerol) cause a gradual decrease in respiration to about 20% of the activity at permissive temperature 23 degrees C). 2. Anaerobically grown and glucose-repressed mutant cells exhibit a decreased adaptation rate of mitochondrial functions to aerobic growth and non-fermentative growth, even at 23 degrees C, as revealed by determination of respiratory rates and mitochondrial protein synthesis. 3. At 35 degrees C, rho+ cells of mutant tsm-8 are converted to p- cells within 6-8 generations of growth, in all fermentable substrates tested. Drugs or antibiotics as nalidixic acid, acriflavin, chloramphenicol and erythromycin, bongkrecic acid, antimycin and FCCP, as well as anaerobiosis, have little or no influence on this kinetics. A heat shock does not yield rho- petites to a significant extent. 4. Reversion of tsm-8 cells to wild type function, which occurs spontaneously with a frequency of 10(-8), is found to be due to a mitochondrial mutational event.  相似文献   

15.
The interactive effects of solutes, potassium sorbate and incubation temperature on growth, heat resistance and tolerance to freezing of Zygosaccharomyces rouxii were investigated. Growth rates in media supplemented with glucose, sucrose or NaCl to aw 0.93 were more rapid than in unsupplemented media (aw 0.99). Although growth in unsupplemented medium was lower at 35 degrees C, incubation at 21 degrees C or 35 degrees C had little effect on growth in media supplemented with glucose and sucrose. The addition of 300 micrograms potassium sorbate/ml to media resulted in reduced growth rates, particularly at 35 degrees C. Heat resistance of Z. rouxii was substantially greater in cultures previously incubated at 35 degrees C than in cultures incubated at 21 degrees C in media both with and without 300 micrograms potassium sorbate/ml. Zygosaccharomyces rouxii was tolerant to freezing at -18 degrees C for up to 120 d in all test media supplemented with glucose, sucrose or NaCl. The addition of 300 micrograms potassium sorbate/ml to sucrose-supplemented media resulted in increased resistance to freezing in cultures previously incubated at 21 degrees C. Sensitivity to freezing increased when cultures were incubated at 21 degrees C in media not supplemented with solutes. Glucose and sucrose provided the best protection against inactivation by heating and freezing, regardless of the presence of potassium sorbate in growth media.  相似文献   

16.
The bacterium Xenorhabdus sp. is symbiotically associated with the entomopathogenic nematode Steinernema riobravis. This nematode is produced in monoxenic culture with Xenorhabdus sp. and is sold as a biological insecticide. Acceptable yields in fermentors can only be achieved in the presence of vigorous growth of the bacterium. We investigated the fatty acid composition of Xenorhabdus species when grown at 15, 20, 25 or 30 degrees C on media containing one of two primary carbon sources: glucose or lipids from the insect host, Galleria mellonella. Both temperature and primary carbon source significantly affected lipid quantity and quality in Xenorhabdus sp. Bacteria grown with insect lipids as a primary carbon source accumulated more lipids with greater proportion of longer chain fatty acids than bacteria grown with glucose as a primary carbon source. Cells grown with insect lipids at 15 degrees C had a lower lipid content than cells grown on the same media at 20, 25 or 30 degrees C. Increasing growth temperature increased saturated fatty acids and decreased unsaturated fatty acids, irrespective of carbon source. We recommend addition of complex fatty acid sources that resemble natural host lipids to growth medium for mass producing entomopathogenic nematodes. This could provide nematode quality similar to in vivo-produced nematodes.  相似文献   

17.
We recently described the isolation of a mutant Chinese hamster ovary cell (Cmd 4) resistant to the cytotoxic effects of colcemid (Cabral et al., Cell 20:29-36, 1980). This mutant carries an altered beta-tubulin but still grows normally at 37 degrees C. In the present study we found that Cmd 4 is temperature sensitive for growth at 40.3 degrees C. A class of revertants selected for temperature resistance had simultaneously lost colcemid resistance and the altered beta-tubulin. In addition, we isolated a temperature-resistant revertant which carries a further alteration in the mutant beta-tubulin polypeptide. This second alteration appears to make the mutant beta-tubulin incompetent to assemble into microtubules, resulting in a strain which is again colcemid sensitive. These revertant cell lines provide strong evidence that a mutation in beta-tubulin can confer both colcemid resistance and temperature sensitivity on a mammalian cell line. Cellular microtubules studied by indirect immunofluorescence in both mutant and revertant cell lines had an apparently normal distribution at permissive and nonpermissive temperatures, yet mitosis appears to be abnormal in the mutant cell line. We conclude from these studies that incorporation of the altered beta-tubulin into microtubules does not affect their distribution but may affect their function during mitosis.  相似文献   

18.
The low-temperature metabolism of erythrocytes from the freeze-tolerant frog Rana sylvatica was investigated by (13)C and (31)P NMR spectroscopy. Erythrocytes readily took up high concentrations of the natural cryoprotectant, glucose, at both high (12 and 17 degrees C) and low (4 degrees C) temperatures but glucose was apparently not metabolized at 4 degrees C. Strong inhibition of glucose catabolism at low temperature would facilitate the maintenance of the very high concentrations of glucose (approximately 200 mM) that are accumulated to provide cryoprotection during freezing in wood frogs. Analysis of (13)C labeling of glycolytic intermediates at 4 degrees C showed mixing of label primarily in hexose (fructose) and hexose phosphate (glucose 6-phosphate, fructose 6-phosphate) pools but little label incorporation into triose phosphate intermediates. These data are consistent with a profound low-temperature-induced inhibition of phosphofructokinase (PFK). Investigations into potential PFK control mechanisms were undertaken. (31)P NMR analysis showed that the intracellular pH of erythrocytes increased from 7.0 to 7.3 as temperature decreased from 17 to 4 degrees C in a manner consistent with alphastat regulation. This change is exactly opposite to that expected if overall PFK activity was regulated by changes in cellular pH since PFK is less active at lower pH values in vitro. Other factors must, therefore, operate to regulate PFK at lower temperatures.  相似文献   

19.
Bacillus subtilis mutants with temperature-sensitive growth on complex media were screened for defects in phospholipid metabolism. One mutant was isolated that showed temperature-sensitive net synthesis of phosphatidylethanolamine. The mutant did not accumulate phosphatidylserine at the nonpermissive temperature. In the presence of hydroxylamine, wild-type B. subtilis accumulated phosphatidylserine at both 32 and 45 degrees C, whereas the mutant did only at 32 degrees C. In vitro phosphatidylethanolamine synthesis with bacterial membranes is no more temperature sensitive with mutant membranes than with wild-type membranes. The mutation probably affects the synthesis indirectly, possibly by altering a membrane protein. The mutant bacteria grew at the nonpermissive temperature, 45 degrees C, in a phosphate buffer-based minimal medium, although net synthesis of phosphatidylethanolamine was also temperature sensitive in this medium. One mutation caused both temperature-sensitive growth on complex media and temperature-sensitive net synthesis of phosphatidylethanolamine. The mutation is linked to aroD by transformation.  相似文献   

20.
The S. cerevisiae myristoyl-CoA:protein N-myristoyltransferase gene (NMT1) is essential for vegetative growth. NMT1 was found to be allelic with a previously described, but unmapped and unidentified mutation that causes myristic acid (C14:0) auxotrophy. The mutant (nmt1-181) is temperature sensitive, but growth at the restrictive temperature (36 degrees C) is rescued with exogenous C14:0. Several analogues of myristate with single oxygen or sulfur for methylene group substitutions partially complement the phenotype, while others inhibit growth even at the permissive temperature (24 degrees C). Cerulenin, a fatty acid synthetase inhibitor, also prevents growth of the mutant at 24 degrees C. Complementation of growth at 36 degrees C by exogenous fatty acids is blocked by a mutation affecting the acyl:CoA synthetase gene. The nmt1-181 allele contains a single missense mutation of the 455 residue acyltransferase that results in a Gly451----Asp substitution. Analyses of several intragenic suppressors suggest that Gly451 is critically involved in NMT catalysis. In vitro kinetic studies with purified mutant enzyme revealed a 10-fold increase in the apparent Km for myristoyl-CoA at 36 degrees C, relative to wild-type, that contributes to an observed 200-fold reduction in catalytic efficiency. Together, the data indicate that nmt-181 represents a sensitive reporter of the myristoyl-CoA pools utilized by NMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号