首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
It has been demonstrated that under iron-restricted conditions Bordetella pertussis can take up iron from human transferrin within 30 min of exposure. B. pertussis utilizes two mechanisms for acquiring iron from human transferrin, a direct contact method and a siderophore mediated system. Both systems are shown to result in bacterial internalization of iron from transferrin. However, direct contact between B. pertussis and transferrin provides far more effective iron uptake than siderophore activity alone.  相似文献   

2.
Bordetella pertussis was able to grow in vitro under conditions where the only iron present was bound to the iron-binding proteins ovotransferrin, transferrin or lactoferrin. Under these conditions the bacteria produced neither hydroxamate nor phenolate-catecholate siderophores to assist in the procurement of iron. Examination of B. pertussis outer-membrane preparations by SDS-PAGE and immunoblotting showed that the iron-binding protein ovotransferrin was bound directly to the bacterial surface. Assays of the binding of radiolabelled transferrin by the bacteria showed that the association was a specific process and that there was turnover of the bound proteins. Competitive binding assays indicated that lactoferrin could be bound in the same way. It is suggested that B. pertussis obtains iron directly from host iron-binding proteins during infection.  相似文献   

3.
4.
Utilization of transferrin-bound iron by Listeria monocytogenes   总被引:5,自引:0,他引:5  
Abstract It has been demonstrated that under iron-restricted conditions, Listeria monocytogenes can utilize iron-loaded transferrin (Tf) from a range of species as its sole source of iron for growth. Human transferrin conjugated to horseradish-peroxidase (HRP-Tf) bound directly to whole cells of L. monocytogenes . This binding was blocked by apotransferrin indicating that the receptor can bind transferrin in either the iron-bound or iron-free form. Transferrin-binding was not host specific because both bovine and equine transferrin inhibited the binding of HRP-conjugated human transferrin. SDS-PAGE and Western blotting of bacterial surface extracts revealed the presence of a transferrin-binding protein of approximately 126 kDa.  相似文献   

5.
Actinobacillus pleuropneumoniae is an important primary pathogen in pigs, which causes a highly contagious pleuropneumonia. As an adaptation to the iron-restricted environment of the host, A. pleuropneumoniae possesses iron acquisition pathways mediated by surface receptors that specifically bind transferrin from the host. The receptor is composed of two receptor proteins, transferrin-binding protein A and B (TbpA and B), which are both capable of binding to transferrin. An impairment of iron uptake mechanisms is likely to reduce virulence. For this reason, these two proteins can be useful as a candidate target for A. pleuropneumoniae vaccination. To do this, genes encoding the TbpA and B from a serotype 5 isolate of A. pleuropneumoniae were amplified from genomic DNA template by PCR and cloned into a pRSET prokaryotic expression vector, generating the pRSET-A.pp-TbpA and B. Escherichia coli BL21(DE3)pLysS competent cells were transformed with each construct followed by the induction of protein expression by the addition of IPTG. Bands corresponding to the predicted sizes (110 and 60 kDa) were seen on the SDS-PAGE. Polyclonal antibodies raised against recombinant TbpA and B from mice were reacted with bacterial proteins. This result indicates that the recombinant proteins can induce immunological responses and might be useful as candidate targets for A. pleuropneumoniae vaccination.  相似文献   

6.
Siderophore production by Aeromonas salmonicida.   总被引:4,自引:0,他引:4  
Growth under conditions of iron-restriction and the production of siderophores was examined in 21 typical and 14 atypical strains of Aeromonas salmonicida. With the exception of one atypical strain, all strains grew and multiplied in the presence of the high-affinity iron chelators ethylenediamine di(o-hydroxyphenylacetic acid), alpha, alpha'-dipyridyl or transferrin. Chrome azurol S agar was used to screen bacterial strains growing under these conditions for the production of siderophores. Siderophore production was detected only in the typical strains. Siderophores were also detected in the iron-restricted culture supernatants of typical strains. Siderophores were also detected in the iron-restricted culture supernatants of typical strains, where they were associated with an iron-binding activity. The siderophore was extracted from iron-restricted culture supernatant of one strain by adsorption onto an XAD-7 resin; it behaved as a 2,3-diphenol-catechol in several colorimetric assays. The results indicate that although both typical and atypical strains of A. salmonicida grow and multiply under conditions of iron-restriction, they use different iron-uptake mechanisms, siderophore-mediated and siderophore-independent, respectively. In cross-feeding assays, growth of typical strains was stimulated only by homologous iron-restricted supernatant, suggesting strain differences in the siderophore produced. However, one strain produced a culture supernatant with growth-stimulating activity for other typical and also atypical strains.  相似文献   

7.
The ability of Staphylococcus epidermidis strains to grow in the presence of human transferrin and varying amounts of ferric iron was studied. At initial bacterial densities up to 10(4) cfu ml(-1), none of the three strains grew when transferrin iron saturation was below the full saturation point, whereas the bacteria grew consistently when transferrin was fully iron-saturated and there was non-transferrin-bound iron in the medium. Precultivation of the bacteria under iron-restricted conditions to induce siderophore production did not abolish the growth dependence on non-transferrin-bound iron. At initial bacterial densities of 10(6) cfu ml(-1), the bacteria proliferated consistently also in the presence of partially saturated transferrin. The results indicate that at low bacterial densities, S. epidermidis cannot utilise transferrin-bound iron for growth and that its proliferation is dependent on non-transferrin-bound iron.  相似文献   

8.
In order to investigate whether the iron acquisition mechanisms of Staphylococcus aureus are induced by iron restriction in vitro, we examined S. aureus ATCC 6538 for production of siderophore and expression of transferrin-binding protein (SA-tbp) in normal or deferrated brain heart infusion broth (BHI). Siderophore production was earlier and greater in the deferrated BHI. The SA-tbp, detected by ligand blot assay, was expressed only in the deferrated BHI. When human transferrin was added to the deferrated BHI, siderophore production was later and lower than when transferrin was not present. In conclusion, both iron acquisition mechanisms of S. aureus were found to be iron-repressible and via both of them, human transferrin-bound iron was utilized for growth under iron-restricted condition.  相似文献   

9.
Bacterial iron homeostasis   总被引:36,自引:0,他引:36  
Iron is essential to virtually all organisms, but poses problems of toxicity and poor solubility. Bacteria have evolved various mechanisms to counter the problems imposed by their iron dependence, allowing them to achieve effective iron homeostasis under a range of iron regimes. Highly efficient iron acquisition systems are used to scavenge iron from the environment under iron-restricted conditions. In many cases, this involves the secretion and internalisation of extracellular ferric chelators called siderophores. Ferrous iron can also be directly imported by the G protein-like transporter, FeoB. For pathogens, host-iron complexes (transferrin, lactoferrin, haem, haemoglobin) are directly used as iron sources. Bacterial iron storage proteins (ferritin, bacterioferritin) provide intracellular iron reserves for use when external supplies are restricted, and iron detoxification proteins (Dps) are employed to protect the chromosome from iron-induced free radical damage. There is evidence that bacteria control their iron requirements in response to iron availability by down-regulating the expression of iron proteins during iron-restricted growth. And finally, the expression of the iron homeostatic machinery is subject to iron-dependent global control ensuring that iron acquisition, storage and consumption are geared to iron availability and that intracellular levels of free iron do not reach toxic levels.  相似文献   

10.
Five strains of Histophilus ovis (9L, 642A, 714, 5688T, and 3384Y) were investigated with respect to iron acquisition. All strains used ovine, bovine, and goat transferrins (Tfs), but not porcine or human Tfs, as iron sources for growth. In solid phase binding assays, total membranes from only two (9L and 642A) of the five strains, grown under iron-restricted conditions, were able to bind Tfs (ovine, bovine, and goat, but not porcine or human). However, when the organisms were grown under iron-restricted conditions in the presence of bovine transferrin (Tf), total membranes from all strains exhibited Tf binding (as above); competition experiments demonstrated that all three Tfs (ovine, bovine, and goat) were bound by the same receptor(s). Membranes from organisms grown under iron-replete conditions in the presence or absence of bovine Tf failed to bind any of the test Tfs. An affinity-isolation procedure allowed the isolation of two putative Tf-binding polypeptides (78 and 66 kDa) from total membranes of strains 9L and 642A grown under iron-restricted conditions, and from membranes of all strains if the growth medium also contained Tf. It is concluded that all strains tested acquire Tf-bound iron by means of siderophore-independent mechanisms involving surface receptors analogous to the Tf-binding proteins (TbpA and TbpB) found in comparable organisms; although iron restriction alone is sufficient to promote the expression of these proteins by strains 9L and 642A, their production by strains 714, 5688T, and 3384Y appears to require two signals, iron restriction and the presence of Tf.  相似文献   

11.
The effect of iron deprivation on the expression of outer membrane proteins and the ability to use heme as an iron source by uropathogenic Proteus mirabilis , Pr 6515, was studied. Examination of iron-restricted bacteria showed three outer membrane proteins ranging from 66 to 75 kDa to be affected by iron restriction, as well as a newly expressed 64-kDa protein. These proteins were induced within 15 minutes of iron-deprivation. The strain grew in the presence of ferric citrate, hemin and hemoglobin as iron sources, but could not use transferrin, lactoferrin or siderophores from exogenous sources. The 64- and 66-kDa proteins showed hemin-binding activity by affinity chromatography, and both reacted in Western blots with sera from mice transurethrally infected with the same strain. We suggest that P. mirabilis expresses iron-regulated outer membrane proteins that could be involved in heme uptake and may have a role in pathogenesis.  相似文献   

12.
Recent studies have shown that Bordetella bronchiseptica utilizes a siderophore-mediated transport system for acquisition of iron from the host iron-binding proteins lactoferrin and transferrin. We recently identified the B. bronchiseptica siderophore as alcaligin, which is also produced by B. pertussis. Alcaligin production by B. bronchiseptica is repressed by exogenous iron, a phenotype of other microbes that produce siderophores. In this study, we report that alcaligin production by B. bronchiseptica RB50 and GP1SN was repressed by the Bordetella global virulence regulator, bvg, in addition to being Fe repressed. Modulation of bvg locus expression with 50 mM MgSO4 or inactivation of bvg by deletion allowed strain RB50 to produce alcaligin. In modulated organisms, siderophore production remained Fe repressed. These observations contrasted with our previous data indicating that alcaligin production by B. bronchiseptica MBORD846 and B. pertussis was repressed by Fe but bvg independent. Despite bvg repression of alcaligin production, strain RB50 was still able to acquire Fe from purified alcaligin, suggesting that expression of the bacterial alcaligin receptor was not repressed by bvg. We tested 114 B. bronchiseptica strains and found that bvg repression of alcaligin production was strongly associated with Bordetella phylogenetic lineage and with host species from which the organisms were isolated.  相似文献   

13.
Since the environmental iron concentration has emerged as an important attribute in the expression of bacterial virulence, the purpose of this study was to determine the effects of transferrin, lactoferrin, heme compounds, and inorganic iron sources (ferric and ferrous sulfate) on the growth of Bilophila wadsworthia and to study its outer membrane composition when grown under these different simulated in vivo conditions. Lactoferrin, transferrin, hemin and hemoglobin supported full growth of the bacteria in media lacking other iron sources. Bilophila wadsworthia was also capable of growing in the presence of ferrous and ferric sulfate. Profiles obtained by SDS-PAGE showed two iron-regulated outer membrane proteins (IROMPs) of 190 kDa and 88 kDa. The 190 kDa was susceptible to proteinase K cleavage in whole cells, indicating its exposure at the cell surface. These two major IROMPs were expressed in iron-restricted media supplemented with iron-bound organic sources and repressed by the addition of inorganic iron sources.  相似文献   

14.
15.
Outer membranes from Haemophilus pleuropneumoniae grown under iron-replete and iron-restricted conditions in vitro were analysed by means of SDS-PAGE and immunoblotting. Iron restriction resulted in the appearance of two or more novel polypeptides in the molecular size range of 96-102 kD and an increased amount of a 79 kD polypeptide. These polypeptides were recognized by porcine immune sera indicating their production by H. pleuropneumoniae during growth in vivo. Although soluble siderophore production could not be detected, growth of the organisms on an iron-restricted medium was enhanced by the presence of porcine transferrin but not by bovine or human transferrin. The results suggest that H. pleuropneumoniae possesses a specific transferrin receptor, perhaps in the form of an iron-regulated outer membrane protein.  相似文献   

16.
Pathogenic Gram-negative bacteria of the Pasteurellaceae and Neisseriaceae acquire iron for growth from host transferrin through the action of specific surface receptors. Iron is removed from transferrin by the receptor at the cell surface and is transported across the outer membrane to the periplasm. A periplasmic binding protein-dependent pathway subsequently transports iron into the cell. The transferrin receptor is composed of a largely surface-exposed lipoprotein, transferrin binding protein B, and a TonB-dependent integral outer membrane protein, transferrin binding protein A. To examine the role of transferrin binding protein B in the iron removal process, complexes of recombinant transferrin binding protein B and transferrin were prepared and compared with transferrin in metal-binding and -removal experiments. A polyhistidine-tagged form of recombinant transferrin binding protein B was able to purify a complex with transferrin that was largely monodisperse by dynamic light scattering analysis. Gallium was used instead of iron in the metal-binding studies, since it resulted in increased stability of recombinant transferrin binding protein B in the complex. Difference absorption spectra were used to monitor removal of gallium by nitrilotriacetic acid. Kinetic and equilibrium binding studies indicated that transferrin binds gallium more tightly in the presence of transferrin binding protein B. Thus, transferrin binding protein B does not facilitate metal ion removal and additional components are required for this process.  相似文献   

17.
We evaluated the iron uptake mechanisms in Pasteurella piscicida strains as well as the effect of iron overload on the virulence of these strains for fish. With this aim, the capacity of the strains to obtain iron from transferrin and heme compounds as well as their ability to overcome the inhibitory activity of fish serum was analyzed. All the P. piscicida strains grew in the presence of the iron chelator ethylene-diamine-di (O-hydroxyphenyl acetic acid) or of human transferrin, which was used by a siderophore-mediated mechanism. The chemical tests and cross-feeding assays showed that P. piscicida produced a siderophore which was neither a phenolate nor a hydroxamate. Cross-feeding assays as well as preliminary chromatographic analysis suggest that this siderophore may be chemically related to multocidin. All the P. piscicida isolates utilized hemin and hemoglobin as an iron source, since the virulence of the strains increased when the fish were preinoculated with these compounds. This effect was stronger in the avirulent strains (50% lethal dose was reduced by 4 logs when fish were pretreated with hemin or hemoglobin). Only the pathogenic P. piscicida isolates were resistant to the bactericidal action of the fresh fish serum. The nonpathogenic strains grew in fish serum only when it was heat-inactivated or when it was supplemented with ferric ammonium citrate, hemin, or hemoglobin. In all the strains, at least three iron-regulated outer membrane proteins (IROMPs) (105, 118, and 145 kDa) were increased when the strains were cultured in iron-restricted medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Hemin has been implicated in the pathogenesis of the oral pathogen, Bacteroides gingivalis. In order to elucidate the role of hemin (iron) in the growth and expression of outer membrane proteins, B. gingivalis strain W50 was grown with and without hemin to induce iron-limitation. Cells grew slower under iron stress and growth was completely inhibited in the absence of added hemin. The outer membrane protein profiles of B. gingivalis grown under iron-replete and iron-restricted conditions were studied by extrinsic radiolabelling with [125I] and polyacrylamide gel-electrophoresis. The induction of 10 surface proteins, with apparent molecular weights of 26, 29, 50, 56, 58, 60, 62, 71, 77, and 80 Kd, was observed in B. gingivalis grown under iron-restricted conditions. These proteins were repressed under iron-replete conditions. We postulate the involvement of the iron-regulated proteins in hemin uptake and virulence in B. gingivalis.  相似文献   

19.
Each of two affinity isolation methods, the first based on biotinylated porcine transferrin plus streptavidin-agarose, and the second on Sepharose-coupled porcine transferrin, followed by SDS-PAGE, allowed the isolation and identification of two potential porcine-transferrin-binding polypeptides (approximately 64 kDa and 99 kDa) from total membranes of Actinobacillus pleuropneumoniae grown under iron-restricted conditions. Both polypeptides were iron-repressible and were identified as potential receptor candidates as they were not isolated when biotinylated human transferrin was used instead of biotinylated porcine transferrin. The 64 kDa polypeptide was the more easily removed from Sepharose-coupled porcine transferrin and only the 99 kDa polypeptide appeared to be an outer-membrane protein. While these results suggest that the 99 kDa polypeptide represents the porcine transferrin receptor of A. pleuropneumoniae, and that the 64 kDa polypeptide represents an associated protein serving an accessory role, other interpretations are also possible.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号