首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In vertebrates and bacteria, heparosan the precursor of heparin is synthesized by glycosyltransferases via the stepwise addition of UDP-N-acetylglucosamine and UDP-glucuronic acid. As heparin-like molecules represent a great interest in the pharmaceutical area, the cryptic Pasteurella multocida heparosan synthase PmHS2 found to catalyze heparosan synthesis using substrate analogs has been studied. In this paper, we report an efficient way to purify PmHS2 and to maintain its activity stable during 6 months storage at −80 °C using His-tag purification and a desalting step. In the presence of 1 mM of each nucleotide sugar, purified PmHS2 synthesized polymers up to an average molecular weight of 130 kDa. With 5 mM of UDP-GlcUA and 5 mM of UDP-GlcNAc, an optimal specific activity, from 3 to 6 h of incubation, was found to be about 0.145 nmol/μg/min, and polymers up to an average of 102 kDa were synthesized in 24 h. In this study, we show that the chain length distribution of heparosan polymers can be controlled by change of the initial nucleotide sugar concentration. It was observed that low substrate concentration favors the formation of high molecular weight heparosan polymer with a low polydispersity while high substrate concentration did the opposite. Similarities in the polymerization mechanism between PmHS2, PmHS1, and PmHAS are discussed.  相似文献   

2.
The Pasteurella multocida heparosan synthases, PmHS1 and PmHS2, are homologous (~65% identical) bifunctional glycosyltransferase proteins found in Type D Pasteurella. These unique enzymes are able to generate the glycosaminoglycan heparosan by polymerizing sugars to form repeating disaccharide units from the donor molecules UDP-glucuronic acid (UDP-GlcUA) and UDP-N-acetylglucosamine (UDP-GlcNAc). Although these isozymes both generate heparosan, the catalytic phenotypes of these isozymes are quite different. Specifically, during in vitro synthesis, PmHS2 is better able to generate polysaccharide in the absence of exogenous acceptor (de novo synthesis) than PmHS1. Additionally, each of these enzymes is able to generate polysaccharide using unnatural sugar analogs in vitro, but they exhibit differences in the substitution patterns of the analogs they will employ. A series of chimeric enzymes has been generated consisting of various portions of both of the Pasteurella heparosan synthases in a single polypeptide chain. In vitro radiochemical sugar incorporation assays using these purified chimeric enzymes have shown that most of the constructs are enzymatically active, and some possess novel characteristics including the ability to produce nearly monodisperse polysaccharides with an expanded range of sugar analogs. Comparison of the kinetic properties and the sequences of the wild-type enzymes with the chimeric enzymes has enabled us to identify regions that may be responsible for some aspects of both donor binding specificity and acceptor usage. In combination with previous work, these approaches have enabled us to better understand the structure/function relationship of this unique family of glycosyltransferases.  相似文献   

3.
The chemoenzymatic synthesis and structural characterization by 13C NMR of a tetramethyl cobalt-corphinoid produced by methylation of cobalt-precorrin-3 using CbiF are described.  相似文献   

4.
Chemoenzymatic synthesis of sucrose-containing aromatic polymers.   总被引:1,自引:0,他引:1  
A chemoenzymatic approach was developed to prepare sucrose-containing aromatic polymers. The protease from Bacillus licheniformis catalyzed the transesterification of sucrose with a diester of terephthalic acid in pyridine to give the mono- and diester products. At 45 degrees C, >70% of sucrose was consumed after 1 day and sucrose diester began to form after 6 days when >95% of sucrose had been converted to sucrose monoester. The final yield of sucrose diester after 20 days was 13.8%. The sucrose monoester was identified as sucrose 1'-terephthalate and the diester products consisted of sucrose 6,1'-diterephthalate and sucrose 6',1'-diterephthalate in a ratio of 2:1. The sucrose diester products were polymerized with ethylene-glycol and ethylene-diamine to give poly(ethylene-terephthalate) and poly(ethylene-terephthalamide), with sucrose contained in the polymer backbone. The polycondensation reactions were carried out in dimethylsulfoxide (DMSO) at 70 degrees C using zinc acetate as a catalyst. The sucrose-containing polyester and polyamide were obtained at 65% yield for 24 h and at 73% yield for 12 h, respectively. End-group analysis of the polymers by (13)C-NMR or (1)H-NMR in DMSO provided a number average molecular weight of 3200 and 4300 Da, respectively. Structural analyses of the polymers were performed with (1)H-NMR, (13)C-NMR, and FTIR. On the basis of (13)C-NMR, acylation of the C1', C6, and C6' hydroxyls were maintained in the polymer backbones.  相似文献   

5.
Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers   总被引:7,自引:0,他引:7  
The length of the hyaluronan (HA) polysaccharide chain dictates its biological effects in many cellular and tissue systems. Long and short HA polymers often appear to have antagonistic or inverse effects. However, no source of very defined, uniform HA polymers with sizes greater than 10 kDa is currently available. We present a method to produce synthetic HA with very narrow size distributions in the range of approximately 16 kDa to approximately 2 MDa. The Pasteurella HA synthase enzyme, pmHAS, catalyzes the synthesis of HA polymer utilizing monosaccharides from UDP-sugar precursors. Recombinant pmHAS will also elongate exogenously supplied HA oligosaccharide acceptors in vitro in a nonprocessive fashion. As a result of bypassing the slow initiation step in vitro, the elongation process is synchronized in the presence of acceptor; thus all of polymer products are very similar in length. In contrast, without the use of an acceptor, the final polymer size range is difficult to predict and the products are more polydisperse. HA polymers of a desired size are constructed by controlling the reaction stoichiometry (i.e. molar ratio of precursors and acceptor molecules). The use of modified acceptors allows the synthesis of HA polymers containing tags (e.g. fluorescent, radioactive). In this scheme, each molecule has a single foreign moiety at the reducing terminus. Alternatively, the use of radioactive UDP-sugar precursors allows the synthesis of uniformly labeled native HA polymers. Overall, synthetic HA reagents with monodisperse size distributions and defined structures should assist in the elucidation of the numerous roles of HA in health and disease.  相似文献   

6.
The extracellular polysaccharide capsules of Pasteurella multocida types A, D, and F are composed of hyaluronan, N-acetylheparosan (heparosan or unsulfated, unepimerized heparin), and unsulfated chondroitin, respectively. Previously, a type D heparosan synthase, a glycosyltransferase that forms the repeating disaccharide heparosan backbone, was identified. Here, a approximately 73% identical gene product that is encoded outside of the capsule biosynthesis locus was also shown to be a functional heparosan synthase. Unlike PmHS1, the PmHS2 enzyme was not stimulated greatly by the addition of an exogenous polymer acceptor and yielded smaller- molecular-weight-product size distributions. Virtually identical hssB genes are found in most type A, D, and F isolates. The occurrence of multiple polysaccharide synthases in a single strain invokes the potential for capsular variation.  相似文献   

7.
For the purpose of developing a new synthetic polymer containing an asymmetric molecule branch, three racemic alcohols, i.e. 1-phenylethanol, 1-(4-methylphenyl)ethanol and 1-(2-naphthyl)ethanol, were esterified enzymatically with divinyladipate using a lipase from Pseudomonas cepacia. The enzymatic acylation of alcohols produced monoacylated products. Optically active polymerizable monomers, (R)-vinyl adipic acid (phenyl-1-yl) ethyl ester, (R)-vinyl adipic acid (4-methylphenyl-1-yl) ethyl ester and (R)-vinyl adipic acid (2-naphthyl-1-yl) ethyl ester with enantiometric excesses over 99%, 96% and 99%, respectively, were obtained. Each optically active monomer was then subjected to free radical polymerization, to give polymers having a number average molecular weight of 2.9 x 10(3) - 2.2 x 10(4). These polymers are considered useful as optically active polymers having biodegradability.  相似文献   

8.
Pasteurella multocida Type D, a causative agent of atrophic rhinitis in swine and pasteurellosis in other domestic animals, produces an extracellular polysaccharide capsule that is a putative virulence factor. It was reported previously that the capsule was removed by treating microbes with heparin lyase III. We molecularly cloned a 617-residue enzyme, pmHS, which is a heparosan (nonsulfated, unepimerized heparin) synthase. Recombinant Escherichia coli-derived pmHS catalyzes the polymerization of the monosaccharides from UDP-GlcNAc and UDP-GlcUA. Other structurally related sugar nucleotides did not substitute. Synthase activity was stimulated about 7-25-fold by the addition of an exogenous polymer acceptor. Molecules composed of approximately 500-3,000 sugar residues were produced in vitro. The polysaccharide was sensitive to the action of heparin lyase III but resistant to hyaluronan lyase. The sequence of the pmHS enzyme is not very similar to the vertebrate heparin/heparan sulfate glycosyltransferases, EXT1 and 2, or to other Pasteurella glycosaminoglycan synthases that produce hyaluronan or chondroitin. The pmHS enzyme is the first microbial dual-action glycosyltransferase to be described that forms a polysaccharide composed of beta4GlcUA-alpha4GlcNAc disaccharide repeats. In contrast, heparosan biosynthesis in E. coli K5 requires at least two separate polypeptides, KfiA and KfiC, to catalyze the same polymerization reaction.  相似文献   

9.
Chemoenzymatic synthesis of oligosaccharides and glycoproteins   总被引:2,自引:0,他引:2  
Oligosaccharides are involved in a wide range of biological processes including, for example, bacterial and viral infection, cancer metastasis, the blood-clotting cascade and many other crucial intercellular recognition events. The molecular details of these biological recognition events are, however, not well understood. To express their function, oligosaccharides often occur as glycoconjugates attached to proteins (called glycoproteins) or lipids (called glycolipids) that are often found on the surface of cells. Such physiological relevance has stimulated researchers to make significant advances in oligosaccharide and glycoprotein preparation despite the chemically imposing and polydisperse nature of these molecules. The chemical and Chemoenzymatic methods developed recently have facilitated the synthesis of structurally defined oligosaccharides and glycoconjugates such that a more thorough understanding of their biological function and potential therapeutic application can be addressed.  相似文献   

10.
By the design of ligand 1,1-(1,5-pentamethylene)bis-1H-benzimidazole (pbbm), we have synthesized polymers {[Co(NO3)(pbbm)2]NO3 · 1/2H2O}n (1), {[CdCl(pbbm)2]Cl · CH3OH}n (2) and {[Cu(Ac)2(pbbm)] · CH3OH}n (3), and characterized their structures by single crystal X-ray diffraction as well as thermoanalysis. In polymers 1 and 2, one of the anions coordinates to the central ion, the other is located in the environment. Two pbbm ligands coordinate simultaneously to two metal centers generating one-dimensional cup-like helical chains. To our best knowledge, this cup-like structure has never been observed in the reported polymers. In polymer 3, each Cu atom is five-coordinate by two nitrogen atoms from two pbbm ligands, and three oxygen atoms from one monodentate acetate anion and one chelating acetate anion leading to one-dimensional wave-like linear chain. In addition, the DTA and TG results of the three polymers are in agreement with the crystal structures.  相似文献   

11.
L-Galactosylated dimeric sialyl Lewis X (SLeX) has been prepared employing a combination of chemical and enzymatic synthetic methods. GDP-L-galactose has been chemically synthesised. Enzymatic transfer of L-galactose onto the acceptor (Sia-alpha2,3-Gal-beta1,4-GlcNAc-beta1,3/6)2-Man-alpha1-OMe was achieved using the human alpha-1,3-fucosyltransferase V.  相似文献   

12.
13.
A novel chemoenzymatic approach to synthesize neoglycoproteins containing high-mannose-type oligosaccharides is described. p-Isothiocyanatophenyl-beta-d-glucopyranoside (Glc-ITC) was transferred to the reducing end of the high-mannose-type oligosaccharides using a transglycosylation activity of endo-beta-N-acetylglucosaminidase A (Endo-A). A novel oligosaccharide, Man(6)GlcNAc-Glc-ITC, was synthesized as a coupling reagent for lysyl and N-terminal residues of the protein moiety. The neoglycoconjugate was coupled with several nonglycosylated proteins such as ribonuclease A, lysozyme, and alpha-lactalbumin. Between one and four high-mannose-type oligosaccharides were incorporated per molecule of these proteins. This method should be very useful for the synthesis of neoglycoproteins with homogeneous high-mannose-type oligosaccharides.  相似文献   

14.
Heparan sulfate (HS) is a highly sulfated polysaccharide that plays essential physiological and pathophysiological functions. The biosynthesis of HS involves a series of specialised sulfotransferases, an epimerase and glycosyl transferases. The availability of these enzymes offers a promising method to prepare HS polysaccharides and structurally defined oligosaccharides. Given the fact that chemical synthesis of large HS oligosaccharides is extremely difficult, preparation of HS using a chemoenzymatic approach has gained momentum. This review article summarises recent progress on the development of a chemoenzymatic approach to prepare HS and HS oligosaccharides.  相似文献   

15.
Two new 3D lanthanide coordination polymers {[Ln(C2O4)(ClO4)(H2O)] · Cl}n [Ln = Pr (1) and Nd (2)] have been synthesized by hydrothermal reactions and characterized by elemental analysis, X-ray single-crystal analyses, IR and Raman spectroscopy. X-ray crystal structure analyses reveal that compounds 1 and 2 are isostructural and crystallized in the space group P21/c. A 1D zigzag chains formed by oxalate ligands in μ2-mode to bridge Ln(III) atoms present in the two complexes and the adjacent zigzag chains were further connected by μ31111 fashion of into a 3D framework with ordered 1D channels, in which uncoordinated Cl anions are located as counterions. In addition, the IR and Raman spectrum further confirm the presence of tetradentate-coordinated perchlorates.  相似文献   

16.
A chemoenzymatic approach for the efficient synthesis of DNA-carbohydrate conjugates was developed and applied to an antibody-based strategy for the detection of DNA glycoconjugates. A phosphoramidite derivative of N-acetylglucosamine (GlcNAc) was synthesized and utilized to attach GlcNAc sugars to the 5'-terminus of DNA oligonucleotides by solid-phase DNA synthesis. The resulting GlcNAc-DNA conjugates were used as substrates for glycosyl transferase enzymes to synthesize DNA glycoconjugates. Treatment of GlcNAc-DNA with beta-1,4-galactosyl transferase (GalT) and UDP-Gal produced N-acetyllactosamine-modified DNA (LacNAc-DNA), which could be converted quantitatively to the trisaccharide Lewis X (LeX)-DNA conjugate by alpha-1,3-fucosyltransferase VI (FucT) and GDP-Fuc. The facile enzymatic synthesis of LeX-DNA from GlcNAc-DNA also was accomplished in a one-pot reaction by the combined action of GalT and FucT. The resulting glycoconjugates were characterized by gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), and glycosidase digestion experiments. Covalent modification of the 5'-terminus of DNA with carbohydrates did not interfere with the ability of DNA glycoconjugates to hybridize with complementary DNA, as indicated by UV thermal denaturation analysis. The trisaccharide DNA glycoconjugate, LeX-DNA, was detected by a dual DNA hybridization/monoclonal antibody (mAb) detection protocol ("Southwestern"): membrane-immobilized LeX-DNA was visualized by Southern detection with a radiolabeled complementary DNA probe and by Western chemiluminescence detection with a mAb specific for the LeX antigen. The efficient chemoenzymatic synthesis of DNA glycoconjugates and the Southwestern detection protocol may facilitate the application of glycosylated DNA to cellular targeting and DNA glycoconjugate detection strategies.  相似文献   

17.
植物类型Ⅲ聚酮化合物合酶(PKS)催化合成多种植物次生代谢产物的基本分子骨架,参与植物体许多重要生物学功能的行使,一直是研究蛋白结构与功能关系、基于结构进行分子改造的重要模式分子家族。目前在蛋白质数据库(PDB)中有超过80个不同种属来源的类型Ⅲ PKS的三维结构被报道,其中包括了研究最为透彻的查尔酮合酶在内的7种酶的晶体结构,这些结构的发表对于阐明该类酶复杂多变的底物专一性、链延伸和不同的环化反应机制奠定了结构基础。三维空间结构解析以及基于定点突变的结构功能分析是进行酶工程、基因工程的基础。以下系统综述了植物类型Ⅲ PKS超家族晶体结构和功能的研究进展。  相似文献   

18.
This paper reports the chemoenzymatic synthesis of an amylose-grafted xanthan gum. An amine-functionalized maltooligosaccharide was chemically introduced to xanthan gum by condensation with its carboxylates using a condensing agent to produce a maltooligosaccharide-grafted xanthan gum. Then, a phosphorylase-catalyzed enzymatic polymerization of glucose 1-phosphate from the graft chain ends on the xanthan gum derivative was performed, giving an amylose-grafted xanthan gum. Furthermore, the product formed a gel with an ionic liquid, which was converted into a hydrogel with high water content by replacement of the ionic liquid with water. The ionically cross-linked hydrogel was also provided by soaking the primary formed hydrogel in FeCl3 aqueous solution. The mechanical properties of the resulting hydrogels were evaluated by compressive testing.  相似文献   

19.
Possibilities and limitations of chemoenzymatic synthesis of novel structural analogues of an antiviral preparation of Ribavirin (1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide) were established. A synthesis of various amides of 1H-1,2,4-triazole-3-carboxylic acid and its 5-substituted analogues—potential substrates of purine nucleoside phosphorylase—has been described. Comparative efficiency of preparation methods of these amides, as well as the methods of introduction of functional groups to the C5 position of heterocyclic system, were investigated. Novel analogues of Ribavirin containing various substitutes in the carboxamide group were synthesized. A biotechnological method was developed for the preparation of 1-β-D-ribofuranozyl-1,2,4-triazole-3-carbonitryl, an intermediate in the synthesis of Viramidine, the modern analogue of Ribavirin.  相似文献   

20.
Heparin is a naturally occurring glycosaminoglycan isolated from animal tissues and is medically used as an anticoagulant drug. Adulteration attempts of isolated heparin with chondroitin sulfate in the past resulted in great safety concerns. Also, increasing demands on batch-to-batch homogeneity for better evaluation and control of its pharmacodynamic and pharmacokinetic properties kindled the development of synthetic routes for the production of heparin and its derivatives. The discovery of enzymes involved in glycosaminoglycan biosynthesis and their application in chemoenzymatic synthesis makes it feasible to generate low molecular weight heparins (LMWHs) and ultra-low molecular weight heparins (ULMWHs). Understanding the scope and limitations of these enzymes currently used in the production of synthetic heparins will help to achieve more defined heparins with controlled medicative properties. Here, we summarized the recent advances in the chemoenzymatic synthesis of LMW/ULMW heparins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号