首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reexamination of the efficacy of vaccination against mousepox   总被引:5,自引:0,他引:5  
Experiments were conducted to evaluate the efficacy of three strains of vaccinia virus, IHD-T, Lister and Wyeth, to immunize the BALB/cByJ mouse against infection with ectromelia virus. Mice vaccinated with any of the strains were protected for at least 12 weeks against clinically apparent disease when challenged with cage-mates infected with a virulent stain (NIH-79) of ectromelia virus. However, 4 to 8 weeks after vaccination mice were capable of transmitting virus to non-vaccinated cage-mates. The results are discussed within the context of the current practices for preventing and controlling ectromelia epizootics.  相似文献   

2.
Ten recombinants between the viruses of vaccinia and ectromelia were isolated that cause the ectromelia virus specific lesions in mice. The structure of recombinant viral genomes, the efficiency of viral propagation in mice, the nature of lesions induced by viruses have been studied. Eight of obtained recombinants have a DNA insertion originating from the right end of ectromelia viral genome, nine recombinants have an insertion originating from the left end, seven recombinants possess both insertions. The latter recombinants have more pronounced pathogenicity for mice. Both revealed regions are supposed to define the specific pathogenicity of ectromelia virus for mice.  相似文献   

3.
Strain C57BL/6 (B6) mice infected with LP-BM5 murine leukemia virus (MuLV) develop a disease which combines abnormal lymphoproliferation with profound immunosuppression and has many features in common with human acquired immunodeficiency syndrome induced by HTLV-III/LAV retroviruses. To determine whether this LP-BM5 MuLV infection would affect the innate resistance of B6 mice to a naturally occurring, highly virulent murine pathogen, mice were exposed to ectromelia virus at various times after treatment with LP-BM5 viruses. At week 4 after infection with LP-BM5, mice challenged with ectromelia virus were unable to generate a humoral immune response to this virus, and between weeks 8 and 10 after infection, challenged mice lost the ability to generate an ectromelia virus-specific cytotoxic-T-cell response. Loss of the cellular immune responses to ectromelia virus was associated with an increased susceptibility to the lethal effects of the virus.  相似文献   

4.
Poxviruses are notorious for encoding multiple proteins that regulate cellular signaling pathways, including the ubiquitin-proteasome system. Bioinformatics indicated that ectromelia virus, the causative agent of lethal mousepox, encoded four proteins, EVM002, EVM005, EVM154, and EVM165, containing putative F-box domains. In contrast to cellular F-box proteins, the ectromelia virus proteins contain C-terminal F-box domains in conjunction with N-terminal ankyrin repeats, a combination that has not been previously reported for cellular proteins. These observations suggested that the ectromelia virus F-box proteins interact with SCF (Skp1, cullin-1, and F-box) ubiquitin ligases. We focused our studies on EVM005, since this protein had only one ortholog in cowpox virus. Using mass spectrometry, we identified cullin-1 as a binding partner for EVM005, and this interaction was confirmed by overexpression of hemagglutinin (HA)-cullin-1. During infection, Flag-EVM005 and HA-cullin-1 colocalized to distinct cellular bodies. Significantly, EVM005 coprecipitated with endogenous Skp1, cullin-1, and Roc1 and associated with conjugated ubiquitin, suggesting that EVM005 interacted with the components of a functional ubiquitin ligase. Interaction of EVM005 with cullin-1 and Skp1 was abolished upon deletion of the F-box, indicating that the F-box played a crucial role in interaction with the SCF complex. Additionally, EVM002 and EVM154 interacted with Skp1 and conjugated ubiquitin, suggesting that ectromelia virus encodes multiple F-box-containing proteins that regulate the SCF complex. Our results indicate that ectromelia virus has evolved multiple proteins that interact with the SCF complex.  相似文献   

5.
Ectromelia virus was shown to replicate in vitro in all lymphoma cell lines and in a small proportion of hybridoma lines tested. It was demonstrated that certain hybridoma cell lines, which were passed in ectromelia virus-infected mice, yielded ectromelia virus infectivity on explantation into tissue culture. This finding further substantiated the belief that ascitic fluid and hybridoma cell lines exposed to virus during mouse-passage could be important in the epidemiology of mousepox.  相似文献   

6.
R L Roper  L G Payne    B Moss 《Journal of virology》1996,70(6):3753-3762
With the aid of three monoclonal antibodies (MAbs), a glycoprotein specifically localized to the outer envelope of vaccinia virus was shown to be encoded by the A33R gene. These MAbs reacted with a glycosylated protein that migrated as 23- to 28-kDa and 55-kDa species under reducing and nonreducing conditions, respectively. The protein recognized by the three MAbs was synthesized by all 11 orthopoxviruses tested: eight strains of vaccinia virus (including modified vaccinia virus Ankara) and one strain each of cowpox, rabbitpox, and ectromelia viruses. The observation that the protein synthesized by ectromelia virus-infected cells reacted with only one of the three MAbs provided a means of mapping the gene encoding the glycoprotein. By transfecting vaccinia virus DNA into cells infected with ectromelia virus and assaying for MAb reactivity, we mapped the glycoprotein to the A33R open reading frame. The amino acid sequence and hydrophilicity plot predicted that the A33R gene product is a type II membrane protein with two asparagine-linked glycosylation sites. Triton X-114 partitioning experiments indicated that the A33R gene product is an integral membrane protein. The ectromelia virus homolog of the vaccinia virus A33R gene was sequenced, revealing 90% predicted amino acid identity. The vaccinia and variola virus homolog sequences predict 94% identical amino acids, the latter having one fewer internal amino acid. Electron microscopy revealed that the A33R gene product is expressed on the surface of extracellular enveloped virions but not on the intracellular mature form of virus. The conservation of this protein and its specific incorporation into viral envelopes suggest that it is important for virus dissemination.  相似文献   

7.
To understand the correlates of protective immunity against primary variola virus infection in humans, we have used the well-characterized mousepox model. This is an excellent surrogate small-animal model for smallpox in which the disease is caused by infection with the closely related orthopoxvirus, ectromelia virus. Similarities between the two infections include virus replication and transmission, aspects of pathology, and development of pock lesions. Previous studies using ectromelia virus have established critical roles for cytokines and effector functions of CD8 T cells in the control of acute stages of poxvirus infection. Here, we have used mice deficient in B cells to demonstrate that B-cell function is also obligatory for complete virus clearance and recovery of the host. In the absence of B cells, virus persists and the host succumbs to infection, despite the generation of CD8 T-cell responses. Intriguingly, transfer of naive B cells or ectromelia virus-immune serum to B-cell-deficient mice with established infection allowed these animals to clear virus and fully recover. In contrast, transfer of ectromelia virus-immune CD8 T cells was ineffective. Our data show that mice deficient in CD8 T-cell function die early in infection, whereas those deficient in B cells or antibody production die much later, indicating that B-cell function becomes critical after the effector phase of the CD8 T-cell response to infection subsides. Strikingly, our results show that antibody prevents virus from seeding the skin and forming pock lesions, which are important for virus transmission between hosts.  相似文献   

8.
The genetic variability of nine genes in 12 isolates and strains of ectromelia virus, which causes a smallpox-like disease (mousepox) in mice, was determined and allows for classification of ectromelia viruses. The low genetic variability suggests that evolutionary pressure maintains the activity of immunomodulatory genes in natural poxvirus infections.  相似文献   

9.
Efficacy of candidate DNA-vaccines based on the variola virus natural gene A30L and artificial gene A30Lopt with modified codon usage, optimized for expression in mammalian cells, was tested. The groups of mice were intracutaneously immunized three times with three-week intervals with candidate DNA-vaccines: pcDNA_A30L or pcDNA_A30Lopt, and in three weeks after the last immunization all mice in the groups were intraperitoneally infected by the ectromelia virus K1 strain in 10 LD50 dose for the estimation of protection. It was shown that the DNA-vaccines based on natural gene A30L and codon-optimized gene A30Lopt elicited virus, thereby neutralizing the antibody response and protected mice from lethal intraperitoneal challenge with the ectromelia virus with lack of statistically significant difference.  相似文献   

10.
IL-18 induces IFN-gamma and NK cell cytotoxicity, making it a logical target for viral antagonism of host defense. We demonstrate that the ectromelia poxvirus p13 protein, bearing homology to the mammalian IL-18 binding protein, binds IL-18, and inhibits its activity in vitro. Binding of IL-18 to the viral p13 protein was compared with binding to the cellular IL-18R. The dissociation constant of p13 for murine IL-18 is 5 nM, compared with 0.2 nM for the cellular receptor heterodimer. Mice infected with a p13 deletion mutant of ectromelia virus had elevated cytotoxicity for YAC-1 tumor cell targets compared with control animals. Additionally, the p13 deletion mutant virus exhibited decreased levels of infectivity. Our data suggest that inactivation of IL-18, and subsequent impairment of NK cell cytotoxicity, may be one mechanism by which ectromelia evades the host immune response.  相似文献   

11.
The incidence and duration of transmission of infection with ectromelia virus strain NIH-79 was tested in innately resistant (C57BL/6) and innately susceptible (BALB/c) inbred mice. Transmission by C57BL/6 index mice occurred through 3 weeks and by BALB/c index mice through 4 weeks, although the duration of infection in individual index mice was often shorter. Soiled caging that previously housed infected mice was inconsistently infectious. Transmission was high in cages where infected mice died and were cannibalized by cagemates, but was low to moderate in cages where there was no cannibalism. Infected mice that were bred 6 weeks after they were infected, delivered virus-free progeny and did not transmit infection to their non-immune breeding partners. Sentinel mice housed in the room with experimentally infected mice were seronegative for antibody to ectromelia virus and to other murine viruses. These results support the view that infection with NIH-79 virus is typically short-lived. They also indicate that breeding of recovered mice can save valuable colonies that have been exposed to ectromelia virus.  相似文献   

12.
Renewed interest in smallpox and the need for safer vaccines have highlighted our lack of understanding of the requirements for protective immunity. Since smallpox has been eradicated, surrogate animal models of closely related orthopoxviruses, such as ectromelia virus, have been used to establish critical roles for CD8 T cells in the control of primary infection. To study the requirements for protection against secondary infection, we have used a prime-challenge regime, in which avirulent ectromelia virus was used to prime mice that were then challenged with virulent ectromelia virus. In contrast to primary infection, T cells are not required for recovery from secondary infection, since gene knockout mice deficient in CD8 T-cell function and wild-type mice acutely depleted of CD4, CD8, or both subsets were fully protected. Protection correlated with effective virus control and generation of neutralizing antibody. Notably, primed mice that lacked B cells, major histocompatibility complex class II, or CD40 succumbed to secondary infection. Thus, antibody is essential, but CD4 or CD8 T cells are not required for recovery from secondary poxvirus infection.  相似文献   

13.
An in vitro culture method was used to study secondary cell-mediated responses to ectromelia virus infection in mice. Infected, syngeneic spleen cells or peritoneal cells were efficient "stimulator" cells when cultured with "responder" cells obtained from mice infected with ectromelia 4-6 weeks previously. The kinetics of generation of cytotoxic cells in cultures were determined; a peak occurred on days 4-5. A separation procedure performed on the cytotoxic cells showed that activity was associated mainly with the Ig-negative subpopulation (T cell-rich) and that H-2 compatibility between cytotoxic cells and target cells was required. The secondary response was virus-specific, at the level of both induction and target cell lysis, at least so far as ectromelia and lymphocytic choriomeningitis (LCM) viruses are concerned. Seperation of responder cells prior to culture showed that a potent secondary response was generated with the Ig-negative (T cell-rich) subpopulation and only a weak response was observed when the responder cells were Ig-positive (rich in B cells). Infected stimulator cells did not appear to secrete significant amounts of soluble antigen into the medium over 4 days of culture. Thus, antigenic patterns effective in memory T cell stimulation may be largely associated with the surfaces of infected cells.Pretreatment of ectromelia virus with UV- or gamma-irradiation did not impair its ability to induce antigenic changes in stimulator cells. Stimulator cells treated with UV-or gamma-irradiated virus for 1 h and then immediately with pactamycin to inhibit further viral protein synthesis and replication were efficient stimulators, thus indicating that antigenic changes are induced very rapidly on the surface of stimulator cells after uptake of virus. These treatments are being used to further characterize the cellular requirements in the stimulator population.  相似文献   

14.
We observed the expression of recombinant plasmids genes containing ectromelia virus DNA fragments in E. coli minicells. Using plasmids with vaccinia or ectromelia viruses DNA fragments inserted upstream of lacZ gene we showed that certain orthopoxvirus genome fragments carry out a promoter-like function in bacterial cells.  相似文献   

15.
Four genetic loci were tested for linkage with loci that control genetic resistance to lethal ectromelia virus infection in mice. Three of the loci were selected because of concordance with genotypes assigned to recombinant inbred (RI) strains of mice derived from resistant C57BL/6 and susceptible DBA/2 (BXD) mice on the basis of their responses to challenge infection. Thirty-six of 167 male (C57BL/6 x DBA/2)F1 x DBA/2 backcross (BC) mice died (22%), of which 27 (75%) were homozygous for DBA/2 alleles at Hc and H-2D. Twenty-eight percent of sham-castrated and 6% of sham-ovariectomized BC mice were susceptible to lethal mousepox, whereas 50% of gonadectomized mice were susceptible. There was no linkage evident between Hc or H-2D and loci that controlled resistance to lethal ectromelia virus infection in 44 castrated BC mice. Mortality among female mice of BXD RI strains with susceptible or intermediate male phenotypes was strongly correlated (r = 0.834) with male mortality. Gonadectomized C57BL/6 mice were as resistant as intact mice to lethal ectromelia virus infection. These results indicate that two gonad-dependent genes on chromosomes 2 and 17 and one gonad-independent gene control resistance to mousepox virus infection, that males and females share gonad-dependent genes, and that the gonad-independent gene is fully protective.  相似文献   

16.
Most inbred strains of mice, including DBA/2 (D2), are highly susceptible to the lethal effects of ectromelia virus, but C57BL/6 (B6) mice are innately resistant. Resistance is controlled by multiple, unlinked, autosomal dominant genes. Of 101 male (B6 x D2)F1 x D2 backcrossed (N2) mice, 18 died after ectromelia virus challenge and all were homozygous for the D2 allele at the proline-rich protein (Prp) locus on distal chromosome 6 (P < 0.001). This association was suggested by the patterns of susceptibility to lethal mousepox in recombinant inbred strains derived from B6 and D2 mice (D. G. Brownstein, P. N. Bhatt, L. Gras, and R. O. Jacoby, J. Virol. 65:1946-1951, 1991). The association between the Prp locus and susceptibility to lethal mousepox also held for N2 male mice that were castrated as neonates, which increased the percentage that were susceptible to 40. Spleen virus titers were significantly augmented in B6 (NK1.1+) mice depleted of asialo GM1+ or NK1.1+ cells, whereas spleen virus titers were unaffected in D2 (NK1.1-) mice depleted of asialo GM1+ cells. These results suggest that a gene or genes within the natural killer gene complex, adjacent to the Prp locus, determine strain variations in resistance to lethal ectromelia virus infection.  相似文献   

17.
Three monospecific antisera to the major 35 kD (p35) surface protein of vaccinia and ectromelia viruses have been obtained. Two of them are obtained to p35 protein isolated by electrophoresis in the presence of sodium dodecylsulfate from the protein fractions of vaccinia virus, soluble in NP40 and NP40 with dithiothreitol (NP40 and DTT-fractions). The third serum is obtained to NP40-fraction of ectromelia virus, containing practically only p35 protein. The obtained antisera were compared in the reactions with the different fractions of viral proteins in two versions of solid phase radioimmunoassay. The effect of such reagents as sodium dodecylsulfate, NP40, 2-mercaptoethanol, ethanol on the antigenic properties of p35 protein from vaccinia virus is discussed.  相似文献   

18.
Poxviruses encode a number of secreted virulence factors that modulate the host immune response. The vaccinia virus A41 protein is an immunomodulatory protein with amino acid sequence similarity to the 35-kDa chemokine binding protein, but the host immune molecules targeted by A41 have not been identified. We report here that the vaccinia virus A41 ortholog encoded by ectromelia virus, a poxvirus pathogen of mice, named E163 in the ectromelia virus Naval strain, is a secreted 31-kDa glycoprotein that selectively binds a limited number of CC and CXC chemokines with high affinity. A detailed characterization of the interaction of ectromelia virus E163 with mutant forms of the chemokines CXCL10 and CXCL12α indicated that E163 binds to the glycosaminoglycan binding site of the chemokines. This suggests that E163 inhibits the interaction of chemokines with glycosaminoglycans and provides a mechanism by which E163 prevents chemokine-induced leukocyte migration to the sites of infection. In addition to interacting with chemokines, E163 can interact with high affinity with glycosaminoglycan molecules, enabling E163 to attach to cell surfaces and to remain in the vicinity of the sites of viral infection. These findings identify E163 as a new chemokine binding protein in poxviruses and provide a molecular mechanism for the immunomodulatory activity previously reported for the vaccinia virus A41 ortholog. The results reported here also suggest that the cell surface and extracellular matrix are important targeting sites for secreted poxvirus immune modulators.  相似文献   

19.
A technique for direct determination of cells infected with mouse ectromelia virus was elaborated using the indirect immunofluorescence method and heterologous rabbit antiserum against vaccinia virus. The proposed method can be performed in laboratories with simple equipment and does not require special virological laboratory.  相似文献   

20.
Erythromelagia is a condition characterized by attacks of burning pain and inflammation in the extremeties. An epidemic form of this syndrome occurs in secondary students in rural China and a virus referred to as erythromelalgia-associated poxvirus (ERPV) was reported to have been recovered from throat swabs in 1987. Studies performed at the time suggested that ERPV belongs to the orthopoxvirus genus and has similarities with ectromelia virus, the causative agent of mousepox. We have determined the complete genome sequence of ERPV and demonstrated that it has 99.8% identity to the Naval strain of ectromelia virus and a slighly lower identity to the Moscow strain. Small DNA deletions in the Naval genome that are absent from ERPV may suggest that the sequenced strain of Naval was not the immediate progenitor of ERPV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号