首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we report that the assembly of interendothelial junctions containing the cell type-specific vascular endothelial cadherin (VE- cadherin or cadherin-5) is a dynamic process which is affected by the functional state of the cells. Immunofluorescence double labeling of endothelial cells (EC) cultures indicated that VE-cadherin, alpha- catenin, and beta-catenin colocalized in areas of cell to cell contact both in sparse and confluent EC monolayers. In contrast, plakoglobin became associated with cell-cell junctions only in tightly confluent cells concomitantly with an increase in its protein and mRNA levels. Furthermore, the amount of plakoglobin coimmunoprecipitated with VE- cadherin, increased in closely packed monolayers. Artificial wounding of confluent EC monolayers resulted in a major reorganization of VE- cadherin, alpha-catenin, beta-catenin, and plakoglobin. All these proteins decreased in intensity at the boundaries of EC migrating into the lesion. In contrast, EC located immediately behind the migrating front retained junctional VE-cadherin, alpha-catenin, and beta-catenin while plakoglobin was absent from these sites. In line with this observation, the amount of plakoglobin coimmunoprecipitated with VE- cadherin decreased in migrating EC. These data suggest that VE- cadherin, alpha-catenin, and beta-catenin are already associated with each other at early stages of intercellular adhesion and become readily organized at nascant cell contacts. Plakoglobin, on the other hand, associates with junctions only when cells approach confluence. When cells migrate, this order is reversed, namely, plakoglobin dissociates first and, then, VE-cadherin, alpha-catenin, and beta-catenin disassemble from the junctions. The late association of plakoglobin with junctions suggests that while VE-cadherin/alpha-catenin/beta- catenin complex can function as an early recognition mechanism between EC, the formation of mature, cytoskeleton-bound junctions requires plakoglobin synthesis and organization.  相似文献   

2.
The vascular endothelial cell cadherin complex (VE-cadherin, alpha-, beta-, and gamma-catenin, and p120/p100) localizes to adherens junctions surrounding vascular endothelial cells and may play a critical role in the transendothelial migration of circulating blood leukocytes. Previously, we have reported that neutrophil adhesion to human umbilical vein endothelial cell (HUVEC) monolayers, under static conditions, results in a dramatic loss of the VE-cadherin complex. Subsequent studies by us and others (Moll, T., E. Dejana, and D. Vestweber. 1998. J. Cell Biol. 140:403-407) suggested that this phenomenon might reflect degradation by neutrophil proteases released during specimen preparation. We postulated that some form of disruption of the VE-cadherin complex might, nonetheless, be a physiological process during leukocyte transmigration. In the present study, the findings demonstrate a specific, localized effect of migrating leukocytes on the VE-cadherin complex in cytokine-activated HUVEC monolayers. Monocytes and in vitro differentiated U937 cells induce focal loss in the staining of VE-cadherin, alpha-catenin, beta-catenin, and plakoglobin during transendothelial migration under physiological flow conditions. These events are inhibited by antibodies that prevent transendothelial migration and are reversed following transmigration. Together, these data suggest that an endothelial-dependent step of transient and focal disruption of the VE-cadherin complex occurs during leukocyte transmigration.  相似文献   

3.
The adherens junction is a multiprotein complex consisting of the transmembrane vascular endothelial cadherin (VEC) and cytoplasmic catenins (p120, beta-catenin, plakoglobin, alpha-catenin) responsible for the maintenance of endothelial barrier function. Junctional disassembly and modifications in cadherin/catenin complex lead to increased paracellular permeability of the endothelial barrier. However, the mechanisms of junctional disassembly remain unclear. In this study, we used the proinflammatory mediator thrombin to compromise the barrier function and test the hypothesis that phosphorylation-induced alterations of VEC, beta-catenin, and p120 regulate junction disassembly and mediate the increased endothelial permeability response. The study showed that thrombin induced dephosphorylation of VEC, which is coupled to disassembly of cell-cell contacts, but VEC remained in aggregates at the plasma membrane. The cytoplasmic catenins dissociated from the VEC cytoplasmic domain in thin membrane projections formed in interendothelial gaps. We also showed that thrombin induced dephosphorylation of beta-catenin and phosphorylation of p120. Thrombin-induced interendothelial gap formation and increased endothelial permeability were blocked by protein kinase C inhibition using chelerythrine and G?-6976 but not by LY-379196. Chelerythrine also prevented thrombin-induced phosphorylation changes of the cadherin/catenin complex. Thus the present study links posttranslational modifications of VEC, beta-catenin, and p120 to the mechanism of thrombin-induced increase in endothelial permeability.  相似文献   

4.
《The Journal of cell biology》1994,125(6):1341-1352
The cadherin/catenin complex plays important roles in cell adhesion, signal transduction, as well as the initiation and maintenance of structural and functional organization of cells and tissues. In the preceding study, we showed that the assembly of the cadherin/catenin complex is temporally regulated, and that novel combinations of catenin and cadherin complexes are formed in both Triton X-100-soluble and - insoluble fractions; we proposed a model in which pools of catenins are important in regulating assembly of E-cadherin/catenin and catenin complexes. Here, we sought to determine the spatial distributions of E- cadherin, alpha-catenin, beta-catenin, and plakoglobin, and whether different complexes of these proteins accumulate at steady state in polarized Madin-Darby canine kidney cells. Protein distributions were visualized by wide field, optical sectioning, and double immunofluorescence microscopy, followed by reconstruction of three- dimensional images. In cells that were extracted with Triton X-100 and then fixed (Triton X-100-insoluble fraction), more E-cadherin was concentrated at the apical junction relative to other areas of the lateral membrane. alpha-Catenin and beta-catenin colocalize with E- cadherin at the apical junctional complex. There is some overlap in the distribution of these proteins in the lateral membrane, but there are also areas where the distributions are distinct. Plakoglobin is excluded from the apical junctional complex, and its distribution in the lateral membrane is different from that of E-cadherin. Cells were also fixed and then permeabilized to reveal the total cellular pool of each protein (Triton X-100-soluble and -insoluble fractions). This analysis showed lateral membrane localization of alpha-catenin, beta- catenin, and plakoglobin, and it also revealed that they are distributed throughout the cell. Chemical cross-linking of proteins and analysis with specific antibodies confirmed the presence at steady state of E-cadherin/catenin complexes containing either beta-catenin or plakoglobin, and catenin complexes devoid of E-cadherin. Complexes containing E-cadherin/beta-catenin and E-cadherin/alpha-catenin are present in both the Triton X-100-soluble and -insoluble fractions, but E-cadherin/plakoglobin complexes are not detected in the Triton X-100- insoluble fraction. Taken together, these results show that different complexes of cadherin and catenins accumulate in fully polarized epithelial cells, and that they distribute to different sites. We suggest that cadherin/catenin and catenin complexes at different sites have specialized roles in establishing and maintaining the structural and functional organization of polarized epithelial cells.  相似文献   

5.
《The Journal of cell biology》1994,125(6):1327-1340
Calcium-dependent cell-cell adhesion is mediated by the cadherin family of cell adhesion proteins. Transduction of cadherin adhesion into cellular reorganization is regulated by cytosolic proteins, termed alpha-, beta-, and gamma-catenin (plakoglobin), that bind to the cytoplasmic domain of cadherins and link them to the cytoskeleton. Previous studies of cadherin/catenin complex assembly and organization relied on the coimmunoprecipitation of the complex with cadherin antibodies, and were limited to the analysis of the Triton X-100 (TX- 100)-soluble fraction of these proteins. These studies concluded that only one complex exists which contains cadherin and all of the catenins. We raised antibodies specific for each catenin to analyze each protein independent of its association with E-cadherin. Extracts of Madin-Darby canine kidney epithelial cells were sequentially immunoprecipitated and immunoblotted with each antibody, and the results showed that there were complexes of E-cadherin/alpha-catenin, and either beta-catenin or plakoglobin in the TX-100-soluble fraction. We analyzed the assembly of cadherin/catenin complexes in the TX-100- soluble fraction by [35S]methionine pulse-chase labeling, followed by sucrose density gradient fractionation of proteins. Immediately after synthesis, E-cadherin, beta-catenin, and plakoglobin cosedimented as complexes. alpha-Catenin was not associated with these complexes after synthesis, but a subpopulation of alpha-catenin joined the complex at a time coincident with the arrival of E-cadherin at the plasma membrane. The arrival of E-cadherin at the plasma membrane coincided with an increase in its insolubility in TX-100, but extraction of this insoluble pool with 1% SDS disrupted the cadherin/catenin complex. Therefore, to examine protein complex assembly in both the TX-100- soluble and -insoluble fractions, we used [35S]methionine labeling followed by chemical cross-linking before cell extraction. Analysis of cross-linked complexes from cells labeled to steady state indicates that, in addition to cadherin/catenin complexes, there were cadherin- independent pools of catenins present in both the TX-100-soluble and - insoluble fractions. Metabolic labeling followed by chase showed that immediately after synthesis, cadherin/beta-catenin, and cadherin/plakoglobin complexes were present in the TX-100-soluble fraction. Approximately 50% of complexes were titrated into the TX-100- insoluble fraction coincident with the arrival of the complexes at the plasma membrane and the assembly of alpha-catenin. Subsequently, > 90% of labeled cadherin, but no additional labeled catenin complexes, entered the TX-100-insoluble fraction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
F9 teratocarcinoma cells in which beta-catenin and/or plakoglobin genes are knocked-out were generated and investigated in an effort to define the role of beta-catenin and plakoglobin in cell adhesion. Loss of beta-catenin expression only did not affect cadherin-mediated cell adhesion activity. Loss of both beta-catenin and plakoglobin expression, however, severely affected the strong cell adhesion activity of cadherin. In beta-catenin-deficient cells, the amount of plakoglobin associated with E-cadherin dramatically increased. In beta-catenin/plakoglobin-deficient cells, the level of E-cadherin and alpha-catenin markedly decreased. In these cells, E-cadherin formed large aggregates in cytoplasm and membrane localization of alpha-catenin was barely detected. These data confirmed that beta-catenin or plakoglobin is required for alpha-catenin to form complex with E-cadherin. It was also demonstrated that plakoglobin can compensate for the absence of beta-catenin. Moreover it was suggested that beta-catenin or plakoglobin is required not only for the cell adhesion activity but also for the stable expression and cell surface localization of E-cadherin.  相似文献   

7.
8.
Cadherins are Ca(2+)-dependent, cell surface glycoproteins involved in cell-cell adhesion. Extracellularly, transmembrane cadherins such as E- , P-, and N-cadherin self-associate, while intracellularly they interact indirectly with the actin-based cytoskeleton. Several intracellular proteins termed catenins, including alpha-catenin, beta- catenin, and plakoglobin, are tightly associated with these cadherins and serve to link them to the cytoskeleton. Here, we present evidence that in fibroblasts alpha-actinin, but not vinculin, colocalizes extensively with the N-cadherin/catenin complex. This is in contrast to epithelial cells where both cytoskeletal proteins colocalize extensively with E-cadherin and catenins. We further show that alpha- actinin, but not vinculin, coimmunoprecipitates specifically with alpha- and beta-catenin from N- and E-cadherin-expressing cells, but only if alpha-catenin is present. Moreover, we show that alpha-actinin coimmunoprecipitates with the N-cadherin/catenin complex in an actin- independent manner. We therefore propose that cadherin/catenin complexes are linked to the actin cytoskeleton via a direct association between alpha-actinin and alpha-catenin.  相似文献   

9.
p120 was originally identified as a substrate of pp60src and several receptor tyrosine kinases, but its function is not known. Recent studies revealed that this protein shows homology to a group of proteins, beta-catenin/Armadillo and plakoglobin (gamma-catenin), which are associated with the cell adhesion molecules cadherins. In this study, we examined whether p120 is associated with E-cadherin using the human carcinoma cell line HT29, as well as other cell lines, which express both of these proteins. When proteins that copurified with E- cadherin were analyzed, not only alpha-catenin, beta-catenin, and plakoglobin but also p120 were detected. Conversely, immunoprecipitates of p120 contained E-cadherin and all the catenins, although a large subpopulation of p120 was not associated with E-cadherin. Analysis of these immunoprecipitates suggests that 20% or less of the extractable E- cadherin is associated with p120. When p120 immunoprecipitation was performed with cell lysates depleted of E-cadherin, beta-catenin was no longer coprecipitated, and the amount of plakoglobin copurified was greatly reduced. This finding suggests that there are various forms of p120 complexes, including p120/E-cadherin/beta-catenin and p120/E- cadherin/plakoglobin complexes; this association profile contrasts with the mutually exclusive association of beta-catenin and plakoglobin with cadherins. When the COOH-terminal catenin binding site was truncated from E-cadherin, not only beta-catenin but also p120 did not coprecipitate with this mutated E-cadherin. Immunocytological studies showed that p120 colocalized with E-cadherin at cell-cell contact sites, even after non-ionic detergent extraction. Treatment of cells with hepatocyte growth factor/scatter factor altered the level of tyrosine phosphorylation of p120 as well as of beta-catenin and plakoglobin. These results suggest that p120 associates with E-cadherin at its COOH-terminal region, but the mechanism for this association differs from that for the association of beta-catenin and plakoglobin with E-cadherin, and thus, that p120, whose function could be modulated by growth factors, may play a unique role in regulation of the cadherin- catenin adhesion system.  相似文献   

10.
The tyrosine kinase substrate p120cas (CAS), which is structurally similar to the cell adhesion proteins beta-catenin and plakoglobin, was recently shown to associate with the E-cadherin-catenin cell adhesion complex. beta-catenin, plakoglobin, and CAS all have an Arm domain that consists of 10 to 13 repeats of a 42-amino-acid motif originally described in the Drosophila Armadillo protein. To determine if the association of CAS with the cadherin cell adhesion machinery is similar to that of beta-catenin and plakoglobin, we examined the CAS-cadherin-catenin interactions in a number of cell lines and in the yeast two-hybrid system. In the prostate carcinoma cell line PC3, CAS associated normally with cadherin complexes despite the specific absence of alpha-catenin in these cells. However, in the colon carcinoma cell line SW480, which has negligible E-cadherin expression, CAS did not associate with beta-catenin, plakoglobin, or alpha-catenin, suggesting that E-cadherin is the protein which bridges CAS to the rest of the complex. In addition, CAS did not associate with the adenomatous polyposis coli (APC) tumor suppressor protein in any of the cell lines analyzed. Interestingly, expression of the various CAS isoforms was quite heterogeneous in these tumor cell lines, and in the colon carcinoma cell line HCT116, which expresses normal levels of E-cadherin and the catenins, the CAS1 isoforms were completely absent. By using the yeast two-hybrid system, we confirmed the direct interaction between CAS and E-cadherin and determined that CAS Arm repeats 1 to 10 are necessary and sufficient for this interaction. Hence, like beta-catenin and plakoglobin, CAS interacts directly with E-cadherin in vivo; however, unlike beta-catenin and plakoglobin, CAS does not interact with APC or alpha-catenin.  相似文献   

11.
The integrity of the vascular endothelium is mainly dependent upon the organization of interendothelial adherens junctions (AJ). These junctions are formed by the homotypic interaction of a transmembrane protein, vascular endothelial cadherin (VE-cadherin), which is complexed to an intracellular protein network including α-, β-, and γ-catenin. Additional proteins such as vinculin and α-actinin have been suggested to link the VE-cadherin/catenin complex to the actin-based cytoskeleton. During the process of hematogenous metastasis, circulating tumor cells must disrupt these intercellular junctions in order to extravasate. In the present study, we have investigated the influence of tumor cell–endothelial cell interaction upon interendothelial AJ. We show that human breast adenocarcinoma cells (MCF-7), but not normal human mammary epithelial cells, induce a rapid endothelial cell (EC) dissociation which correlates with the loss of VE-cadherin expression at the site of tumor cell–EC contact and with profound changes in vinculin distribution and organization. This process could not be inhibited by metalloproteinase nor serine protease inhibitors. Immunoprecipitations and Western blot analysis demonstrate that the overall expression of VE-cadherin and vinculin as well as the composition of the VE-cadherin/catenins complex are not affected by tumor cells while the tyrosine phosphorylation status of proteins within the complex is significantly altered. Our data suggest that tumor cells modulate AJ protein distribution and phosphorylation in EC and may, thereby, facilitate EC dissociation.  相似文献   

12.
The majority of the leukocytes cross the endothelial lining of the vessels through cell-cell junctions. The junctional protein Vascular Endothelial (VE)-cadherin is transiently re-distributed from sites of cell-cell contacts during passage of leukocytes. VE-cadherin is part of a protein complex comprising p120-catenin and beta-catenin as intracellular partners. Beta-catenin connects VE-cadherin to alpha-catenin. This VE-cadherin-catenin complex is believed to dynamically control endothelial cell-cell junctions and to regulate the passage of leukocytes, although not much is known about the role of alpha- and beta-catenin during the process of transendothelial migration (TEM). In order to study the importance of the interaction between alpha- and beta-catenin in TEM, we used a cell-permeable version of the peptide encoding the binding site of alpha-catenin for beta-catenin (S27D). The data show that S27D interferes with the interaction between alpha- and beta-catenin and induces a reversible decrease in electrical resistance of the endothelial monolayer. In addition, S27D co-localized with beta-catenin at cell-cell junctions. Surprisingly, transmigration of neutrophils across endothelial monolayers was blocked in the presence of S27D. In conclusion, our results show for the first time that the association of alpha-catenin with the cadherin-catenin complex is required for efficient leukocyte TEM.  相似文献   

13.
Endothelial cells exposed to shear stress realigned and elongated in the direction of flow through the coordinated remodeling of their adherens junctions and actin cytoskeleton. The elaborate networks of VE-cadherin complexes in static cultures became more uniform and compact in response to shear. In contrast, the cortical actin present in static cultures was reorganized into numerous stress fiber bundles distributed parallel to the direction of flow. Exposure to shear did not significantly alter the expression of the junctional proteins VE-cadherin, beta-catenin, and alpha-catenin, but the composition of the junctional complexes did change. We detected a marked decrease in the alpha-catenin associated with VE-cadherin complexes in endothelial monolayers subjected to shear. This loss of alpha-catenin, the protein that links beta-catenin-bound cadherin to the actin cytoskeleton, was not due to decreased quantities of beta-catenin associated with VE-cadherin. Instead, the loss of alpha-catenin from the junctional complexes coincided with the increased tyrosine phosphorylation of beta-catenin associated with VE-cadherin. The change in beta-catenin phosphorylation closely correlated with the shear-induced loss of the protein tyrosine phosphatase SHP-2 from VE-cadherin complexes. Thus, the functional interaction of alpha-catenin with VE-cadherin-bound beta-catenin is regulated by the extent of tyrosine phosphorylation of beta-catenin. This, concomitantly, is regulated by SHP-2 associated with VE-cadherin complexes.  相似文献   

14.
It has been recently proposed that adhesion of polymorphonuclear cells (PMNs) to human umbilical vein endothelial cells leads to the disorganization of the vascular endothelial cadherin–dependent endothelial adherens junctions. Combined immunofluorescence and biochemical data suggested that after adhesion of PMNs to the endothelial cell surface, β-catenin, as well as plakoglobin was lost from the cadherin/catenin complex and from total cell lysates. In this study we present data that strongly suggest that the adhesion-dependent disappearance of endothelial catenins is not mediated by a leukocyte to endothelium signaling event, but is due to the activity of a neutrophil protease that is released upon detergent lysis of the cells.  相似文献   

15.
p120cas is a tyrosine kinase substrate implicated in ligand-induced receptor signaling through the epidermal growth factor, platelet-derived growth factor, and colony-stimulating factor receptors and in cell transformation by Src. Here we report that p120 associates with a complex containing E-cadherin, alpha-catenin, beta-catenin, and plakoglobin. Furthermore, p120 precisely colocalizes with E-cadherin and catenins in vivo in both normal and Src-transformed MDCK cells. Unlike beta-catenin and plakoglobin, p120 has at least four isoforms which are differentially expressed in a variety of cell types, suggesting novel means of modulating cadherin activities in cells. In Src-transformed MDCK cells, p120, beta-catenin, and plakoglobin were heavily phosphorylated on tyrosine, but the physical associations between these proteins were not disrupted. Association of p120 with the cadherin machinery indicates that both Src and receptor tyrosine kinases cross talk with proteins important for cadherin-mediated cell adhesion. These results also strongly suggest a role for p120 in cell adhesion.  相似文献   

16.
17.
《The Journal of cell biology》1996,134(6):1519-1529
Cadherins are calcium-dependent cell adhesion molecules that play fundamental roles in embryonic development, tissue morphogenesis, and cancer. A prerequisite for their function is association with the actin cytoskeleton via the catenins. Tyrosine phosphorylation of beta- catenin, which correlates with a reduction in cadherin-dependent cell adhesion, may provide cells with a mechanism to regulate cadherin activity. Here we report that beta-catenin immune precipitates from PC12 cells contain tyrosine phosphatase activity which dephosphorylates beta-catenin in vitro. In addition, we show that a member of the leukocyte antigen-related protein (LAR)-related transmembrane tyrosine phosphatase family (LAR-PTP) associates with the cadherin-catenin complex. This association required the amino-terminal domain of beta- catenin but does not require the armadillo repeats, which mediate association with cadherins. The interaction also is detected in PC9 cells, which lack alpha-catenin. Thus, the association is not mediated by alpha-catenin or by cadherins. Interestingly, LAR-PTPs are phosphorylated on tyrosine in a TrkA-dependent manner, and their association with the cadherin-catenin complex is reduced in cells treated with NGF. We propose that changes in tyrosine phosphorylation of beta-catenin mediated by TrkA and LAR-PTPs control cadherin adhesive function during processes such as neurite outgrowth.  相似文献   

18.
Cadherins are cell adhesion receptors that play important roles in embryogenesis and tissue homoeostasis. Endothelial cells express various members of the cadherin superfamily, in particular vascular endothelial (VE-) cadherin, which is the main adhesion receptor of endothelial adherens junctions and neural (N-) cadherin, which is normally localized outside the junctions and may mediate adhesion between endothelial cells and non-endothelial cells. Dysregulation of cadherin expression has been implicated in tumor progression, in particular the loss of epithelial (E-) cadherin expression or function and the gain of N-cadherin. Moreover, more recently, aberrant expression of VE-cadherin was observed in certain cancer types. In breast carcinoma, VE-cadherin was shown to promote tumor cell proliferation and invasion through enhancing TGF-β signaling. Thus, in breast cancer, the cadherin switch involves another player, vascular endothelial cadherin, which is part of an intricate interplay of classical cadherins in breast cancer progression.  相似文献   

19.
20.
Thrombin-mediated changes in endothelial cell adherens junctions modulate vascular permeability. We demonstrate that the nonreceptor protein-tyrosine phosphatase SHP2 co-precipitates with VE-cadherin complexes in confluent, quiescent human umbilical vein endothelial cells. Ligand-binding blots using a SHP2-glutathione S-transferase fusion peptide established that SHP2 associates selectively with beta-catenin in VE-cadherin complexes. Thrombin treatment of human umbilical vein endothelial cells promotes SHP2 tyrosine phosphorylation and dissociation from VE-cadherin complexes. The loss of SHP2 from the cadherin complexes correlates with a dramatic increase in the tyrosine phosphorylation of beta-catenin, gamma-catenin, and p120-catenin complexed with VE-cadherin. We propose that thrombin regulates the tyrosine phosphorylation of VE-cadherin-associated beta-catenin, gamma-catenin, and p120-catenin by modulating the quantity of SHP2 associated with VE-cadherin complexes. Such changes in adherens junction complex composition likely underlie thrombin-elicited alterations in endothelial monolayer permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号