首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most well-known restriction endonucleases recognize palindromic DNA sequences and are classified as Type IIP. Due to the recognition and cleavage symmetry, Type IIP enzymes are usually found to act as homodimers in forming 2-fold symmetric enzyme-DNA complexes. Here we report an asymmetric complex of the Type IIP restriction enzyme MspI in complex with its cognate recognition sequence. Unlike any other Type IIP enzyme reported to date, an MspI monomer and not a dimer binds to a palindromic DNA sequence. The enzyme makes specific contacts with all 4 base pairs in the recognition sequence, by six direct and five water-mediated hydrogen bonds and numerous van der Waal contacts. This MspI-DNA structure represents the first example of asymmetric recognition of a palindromic DNA sequence by two different structural motifs in one polypeptide. A few possible pathways are discussed for MspI to cut both strands of DNA, either as a monomer or dimer.  相似文献   

2.
Type II restriction enzymes generally recognize continuous sequences of 4-8 consecutive base pairs on DNA, but some recognize discontinuous sites where the specified sequence is interrupted by a defined length of nonspecific DNA. To date, a mechanism has been established for only one type II endonuclease with a discontinuous site, SfiI at GGCCNNNNNGGCC (where N is any base). In contrast to orthodox enzymes such as EcoRV, dimeric proteins that act at a single site, SfiI is a tetramer that interacts with two sites before cleaving DNA. BglI has a similar recognition sequence (GCCNNNNNGGC) to SfiI but a crystal structure like EcoRV. BglI and several other endonucleases with discontinuous sites were examined to see if they need two sites for their DNA cleavage reactions. The enzymes included some with sites containing lengthy segments of nonspecific DNA, such as XcmI (CCANNNNNNNNNTGG). In all cases, they acted at individual sites. Elongated recognition sites do not necessitate unusual reaction mechanisms. Other experiments on BglI showed that it bound to and cleaved DNA in the same manner as EcoRV, thus further delineating a distinct group of restriction enzymes with similar structures and a common reaction mechanism.  相似文献   

3.
The crystal structure of EcoRV endonuclease bound to non-cognate DNA at 2.0 angstroms resolution shows that very small structural adaptations are sufficient to ensure the extreme sequence specificity characteristic of restriction enzymes. EcoRV bends its specific GATATC site sharply by 50 degrees into the major groove at the center TA step, generating unusual base-base interactions along each individual DNA strand. In the symmetric non-cognate complex bound to GAATTC, the center step bend is relaxed to avoid steric hindrance caused by the different placement of the exocyclic thymine methyl groups. The decreased base-pair unstacking in turn leads to small conformational rearrangements in the sugar-phosphate backbone, sufficient to destabilize binding of crucial divalent metal ions in the active site. A second crystal structure of EcoRV bound to the base-analog GAAUTC site shows that the 50 degrees center-step bend of the DNA is restored. However, while divalent metals bind at high occupancy in this structure, one metal ion shifts away from binding at the scissile DNA phosphate to a position near the 3'-adjacent phosphate group. This may explain why the 10(4)-fold attenuated cleavage efficiency toward GAATTC is reconstituted by less than tenfold toward GAAUTC. Examination of DNA binding and bending by equilibrium and stopped-flow florescence quenching and fluorescence resonance energy transfer (FRET) methods demonstrates that the capacity of EcoRV to bend the GAATTC non-cognate site is severely limited, but that full bending of GAAUTC is achieved at only a threefold reduced rate compared with the cognate complex. Together, the structural and biochemical data demonstrate the existence of distinct mechanisms for ensuring specificity at the bending and catalytic steps, respectively. The limited conformational rearrangements observed in the EcoRV non-cognate complex provide a sharp contrast to the extensive structural changes found in a non-cognate BamHI-DNA crystal structure, thus demonstrating a diversity of mechanisms by which restriction enzymes are able to achieve specificity.  相似文献   

4.
A genetic system was constructed for the mutagenesis of the EcoRV restriction endonuclease and for the overproduction of mutant proteins. The system was used to make two mutants of EcoRV, with Ala in place of either Asn185 or Asn188. In the crystal structure of the EcoRV-DNA complex, both Asn185 and Asn188 contact the DNA within the EcoRV recognition sequence. But neither mutation affected the ability of the protein to bind to DNA. In the absence of metal ion cofactors, the mutants bound DNA with almost the same affinity as that of the wild-type enzyme. In the presence of Mg2+, both mutants retained the ability to cleave DNA specifically at the EcoRV recognition sequence, but their activities were severely depressed relative to that of the wild-type. In contrast, with Mn2+ as the cofactor, the mutant enzymes cleaved the EcoRV recognition site with activities that were close to that of the wild-type. When bound to DNA at the EcoRV recognition site, the mutant proteins bound Mn2+ ions readily, but they had much lower affinities for Mg2+ ions than the wild-type enzyme. This was the reason for their low activities with Mg2+ as the cofactor. The arrangement of the DNA recognition functions, at one location in the EcoRV restriction enzyme, are therefore responsible for organizing the catalytic functions at a separate location in the protein.  相似文献   

5.
Type IIS restriction endonucleases recognize asymmetric DNA sequences and cleave both DNA strands at fixed positions downstream of the recognition site. The restriction endonuclease BpuJI recognizes the asymmetric sequence 5′-CCCGT; however, it cuts at multiple sites in the vicinity of the target sequence. BpuJI consists of two physically separate domains, with catalytic and dimerization functions in the C-terminal domain and DNA recognition functions in the N-terminal domain. Here we report the crystal structure of the BpuJI recognition domain bound to cognate DNA at 1.3-Å resolution. This region folds into two winged-helix subdomains, D1 and D2, interspaced by the DL subdomain. The D1 and D2 subdomains of BpuJI share structural similarity with the similar subdomains of the FokI DNA-binding domain; however, their orientations in protein-DNA complexes are different. Recognition of the 5′-CCCGT target sequence is achieved by BpuJI through the major groove contacts of amino acid residues located on both the helix-turn-helix motifs and the N-terminal arm. The role of these interactions in DNA recognition is also corroborated by mutational analysis.  相似文献   

6.
HinP1I, a type II restriction endonuclease, recognizes and cleaves a palindromic tetranucleotide sequence (G↓CGC) in double-stranded DNA, producing 2 nt 5′ overhanging ends. Here, we report the structure of HinP1I crystallized as one protein monomer in the crystallographic asymmetric unit. HinP1I displays an elongated shape, with a conserved catalytic core domain containing an active-site motif of SDX18QXK and a putative DNA-binding domain. Without significant sequence homology, HinP1I displays striking structural similarity to MspI, an endonuclease that cleaves a similar palindromic DNA sequence (C↓CGG) and binds to that sequence crystallographically as a monomer. Almost all the structural elements of MspI can be matched in HinP1I, including both the DNA recognition and catalytic elements. Examining the protein–protein interactions in the crystal lattice, HinP1I could be dimerized through two helices located on the opposite side of the protein to the active site, generating a molecule with two active sites and two DNA-binding surfaces opposite one another on the outer surfaces of the dimer. A possible functional link between this unusual dimerization mode and the tetrameric restriction enzymes is discussed.  相似文献   

7.
Rare-cutting restriction enzymes are important tools in genome analysis. We report here the crystal structure of SdaI restriction endonuclease, which is specific for the 8 bp sequence CCTGCA/GG ("/" designates the cleavage site). Unlike orthodox Type IIP enzymes, which are single domain proteins, the SdaI monomer is composed of two structural domains. The N domain contains a classical winged helix-turn-helix (wHTH) DNA binding motif, while the C domain shows a typical restriction endonuclease fold. The active site of SdaI is located within the C domain and represents a variant of the canonical PD-(D/E)XK motif. SdaI determinants of sequence specificity are clustered on the recognition helix of the wHTH motif at the N domain. The modular architecture of SdaI, wherein one domain mediates DNA binding while the other domain is predicted to catalyze hydrolysis, distinguishes SdaI from previously characterized restriction enzymes interacting with symmetric recognition sequences.  相似文献   

8.
Crystal structures of Type II restriction endonucleases demonstrate a conserved common core and active site residues but diverse structural elements involved in DNA sequence discrimination. Comparative structural analysis of restriction enzymes recognizing the same nucleotide sequence might therefore contribute to our understanding of the structural diversity of specificity determinants within restriction enzymes. We have solved the crystal structure of the Bacillus stearothermophilus restriction endonuclease Bse634I by the multiple isomorphous replacement technique to 2.17 Å resolution. Bse634I is an isoschisomer of the Cfr10I restriction enzyme whose crystal structure has been reported previously. Comparative structural analysis of the first pair of isoschisomeric enzymes revealed conserved structural determinants of sequence recognition and catalysis. However, conformations of the N-terminal subdomains differed between Bse634I/Cfr10I, suggesting a rigid body movement that might couple DNA recognition and catalysis. Structural similarities extend to the quaternary structure level: crystal contacts suggest that Bse634I similarly to Cfr10I is arranged as a tetramer. Kinetic analysis reveals that Bse634I is able to interact simultaneously with two recognition sites supporting the tetrameric architecture of the protein. Thus, restriction enzymes Bse634I, Cfr10I and NgoMIV, recognizing overlapping nucleotide sequences, exhibit a conserved tetrameric architecture that is of functional importance.  相似文献   

9.
Relaxed specificity of the EcoRV restriction endonuclease   总被引:6,自引:0,他引:6  
S E Halford  B M Lovelady  S A McCallum 《Gene》1986,41(2-3):173-181
The EcoRV restriction endonuclease normally shows a high specificity for its recognition site on DNA, GATATC. In standard reactions, it cleaves DNA at this site several orders of magnitude more readily than at any alternative sequence. But in the presence of dimethyl sulphoxide and at high pH, the EcoRV enzyme cleaves DNA at several sites that differ from its recognition site by one nucleotide. Of the 18 (3 X 6) possible sequences that differ from GATATC by one base, all were cleaved readily except for the following 4 sites: TATATC, CATATC, GATATA and GATATG. However, two of the sites that could be cleaved by EcoRV in the presence of dimethyl sulphoxide, GAGATC and GATCTC, were only cleaved on DNA that lacked dam methylation: both contain the sequence GATC, the recognition site for the dam methylase of Escherichia coli.  相似文献   

10.
Mutational analysis of amino acids at the periphery of the EcoRV endonuclease active site suggests that moderate-range electrostatic effects play a significant role in modulating the efficiency of phosphoryl transfer. Asp36 and Lys38 located on minor-groove binding surface loops approach within 7-9 A of the scissile phosphates of the DNA. While the rates of single-site mutations removing the carboxylate or amine moieties at these positions are decreased 10(3)-10(5)-fold compared to that of wild-type EcoRV, we find that double mutants which rebalance the charge improve catalysis by up to 500-fold. Mutational analysis also suggests that catalytic efficiency is influenced by Lys173, which is buried at the base of a deep depression penetrating from a distal surface of the enzyme. The Lys173 amine group lies just 6 A from the amine group of the conserved essential Lys92 side chain in the active site. Kinetic and crystallographic analyses of the EcoRV E45A mutant enzyme further show that the Glu45 carboxylate group facilitates an extensive set of conformational transitions which occur upon DNA binding. The crystal structure of E45A bound to DNA and Mn2+ ions reveals significant conformational alterations in a small alpha-helical portion of the dimer interface located adjacent to the DNA minor groove. This leads to a tertiary reorientation of the two monomers as well as shifting of the key major-groove binding recognition loops. Because the Glu45 side chain does not appear to play a direct structural role in maintaining the active site, these rearrangements may instead originate in an altered electrostatic potential caused by removal of the negative charge. A Mn2+ binding site on the scissile phosphate is also disrupted in the E45A structure such that inner-sphere metal interactions made by the scissile DNA phosphate and conserved Asp90 carboxylate are each replaced with water molecules in the mutant. These findings argue against a proposed role for Asp36 as the general base in EcoRV catalysis, and reveal that the induced-fit conformational changes necessary for active site assembly and metal binding are significantly modulated by the electrostatic potential in this region.  相似文献   

11.
Type III restriction enzymes have been demonstrated to require two unmethylated asymmetric recognition sites oriented head-to-head to elicit double-strand break 25–27 bp downstream of one of the two sites. The proposed DNA cleavage mechanism involves ATP-dependent DNA translocation. The sequence context of the recognition site was suggested to influence the site of DNA cleavage by the enzyme. In this investigation, we demonstrate that the cleavage site of the R.EcoP15I restriction enzyme does not depend on the sequence context of the recognition site. Strikingly, this study demonstrates that the enzyme can cleave linear DNA having either recognition sites in the same orientation or a single recognition site. Cleavage occurs predominantly at a site proximal to the DNA end in the case of multiple site substrates. Such cleavage can be abolished by the binding of Lac repressor downstream (3′ side) but not upstream (5′ side) of the recognition site. Binding of HU protein has also been observed to interfere with R.EcoP15I cleavage activity. In accordance with a mechanism requiring two enzyme molecules cooperating to elicit double-strand break on DNA, our results convincingly demonstrate that the enzyme translocates on DNA in a 5′ to 3′ direction from its recognition site and indicate a switch in the direction of enzyme motion at the DNA ends. This study demonstrates a new facet in the mode of action of these restriction enzymes.  相似文献   

12.
Structure of PvuII endonuclease with cognate DNA.   总被引:11,自引:2,他引:9       下载免费PDF全文
We have determined the structure of PvuII endonuclease complexed with cognate DNA by X-ray crystallography. The DNA substrate is bound with a single homodimeric protein, each subunit of which reveals three structural regions. The catalytic region strongly resembles structures of other restriction endonucleases, even though these regions have dissimilar primary sequences. Comparison of the active site with those of EcoRV and EcoRI endonucleases reveals a conserved triplet sequence close to the reactive phosphodiester group and a conserved acidic pair that may represent the ligands for the catalytic cofactor Mg2+. The DNA duplex is not significantly bent and maintains a B-DNA-like conformation. The subunit interface region of the homodimeric protein consists of a pseudo-three-helix bundle. Direct contacts between the protein and the base pairs of the PvuII recognition site occur exclusively in the major groove through two antiparallel beta strands from the sequence recognition region of the protein. Water-mediated contacts are made in the minor grooves to central bases of the site. If restriction enzymes do share a common ancestor, as has been proposed, their catalytic regions have been very strongly conserved, while their subunit interfaces and DNA sequence recognition regions have undergone remarkable structural variation.  相似文献   

13.
Type III restriction enzymes are multifunctional heterooligomeric enzymes that cleave DNA at a fixed position downstream of a non-symmetric recognition site. For effective DNA cleavage these restriction enzymes need the presence of two unmethylated, inversely oriented recognition sites in the DNA molecule. DNA cleavage was proposed to result from ATP-dependent DNA translocation, which is expected to induce DNA loop formation, and collision of two enzyme-DNA complexes. We used scanning force microscopy to visualise the protein interaction with linear DNA molecules containing two EcoP15I recognition sites in inverse orientation. In the presence of the cofactors ATP and Mg(2+), EcoP15I molecules were shown to bind specifically to the recognition sites and to form DNA loop structures. One of the origins of the protein-clipped DNA loops was shown to be located at an EcoP15I recognition site, the other origin had an unspecific position in between the two EcoP15I recognition sites. The data demonstrate for the first time DNA translocation by the Type III restriction enzyme EcoP15I using scanning force microscopy. Moreover, our study revealed differences in the DNA-translocation processes mediated by Type I and Type III restriction enzymes.  相似文献   

14.
Most restriction endonucleases bridge two target sites before cleaving DNA: examples include all of the translocating Type I and Type III systems, and many Type II nucleases acting at their sites. A subset of Type II enzymes, the IIB systems, recognise bipartite sequences, like Type I sites, but cut specified phosphodiester bonds near their sites, like Type IIS enzymes. However, they make two double-strand breaks, one either side of the site, to release the recognition sequence on a short DNA fragment; 34 bp long in the case of the archetype, BcgI. It has been suggested that BcgI needs to interact with two recognition sites to cleave DNA but whether this is a general requirement for Type IIB enzymes had yet to be established. Ten Type IIB nucleases were tested against DNA substrates with one or two copies of the requisite sequences. With one exception, they all bridged two sites before cutting the DNA, usually in concerted reactions at both sites. The sites were ideally positioned in cis rather than in trans and were bridged through 3-D space, like Type II enzymes, rather than along the 1-D contour of the DNA, as seen with Type I enzymes. The standard mode of action for the restriction enzymes that excise their recognition sites from DNA thus involves concurrent action at two DNA sites.  相似文献   

15.
Etzkorn C  Horton NC 《Biochemistry》2004,43(42):13256-13270
The 2.8 A crystal structure of the type II restriction endonuclease HincII bound to Ca(2+) and cognate DNA containing GTCGAC is presented. The DNA is uncleaved, and one calcium ion is bound per active site, in a position previously described as site I in the related blunt cutting type II restriction endonuclease EcoRV [Horton, N. C., Newberry, K. J., and Perona, J. J. (1998) Proc. Natl. Acad. Sci. U.S.A. 95 (23), 13489-13494], as well as that found in other related enzymes. Unlike the site I metal in EcoRV, but similar to that of PvuII, NgoMIV, BamHI, BglII, and BglI, the observed calcium cation is directly ligated to the pro-S(p) oxygen of the scissile phosphate. A calcium ion-ligated water molecule is well positioned to act as the nucleophile in the phosphodiester bond cleavage reaction, and is within hydrogen bonding distance of the conserved active site lysine (Lys 129), as well as the pro-R(p) oxygen of the phosphate group 3' of the scissile phosphate, suggesting possible roles for these groups in the catalytic mechanism. Kinetic data consistent with an important role for the 3'-phosphate group in DNA cleavage by HincII are presented. The previously observed sodium ion [Horton, N. C., Dorner, L. F., and Perona, J. J. (2002) Nat. Struct. Biol. 9, 42-47] persists in the active sites of the Ca(2+)-bound structure; however, kinetic data show little effect on the single-turnover rate of DNA cleavage in the absence of Na(+) ions.  相似文献   

16.
The EcoRV restriction/modification system consists of two enzymes that recognize the DNA sequence GATATC. The EcoRV restriction endonuclease cleaves DNA at this site, but the DNA of Escherichia coli carrying the EcoRV system is protected from this reaction by the EcoRV methyltransferase. However, in vitro, the EcoRV nuclease also cleaves DNA at most sites that differ from the recognition sequence by one base pair. Though the reaction of the nuclease at these sites is much slower than that at the cognate site, it still appears to be fast enough to cleave the chromosome of the cell into many fragments. The possibility that the EcoRV methyltransferase also protects the noncognate sites on the chromosome was examined. The modification enzyme methylated alternate sites in vivo, but these were not the same as the alternate sites for the nuclease. The excess methylation was found at GATC sequences, which are also the targets for the dam methyltransferase of E. coli, a protein that is homologous to the EcoRV methyltransferase. Methylation at these sites gave virtually no protection against the EcoRV nuclease: even when the EcoRV methyltransferase had been overproduced, the cellular DNA remained sensitive to the EcoRV nuclease at its noncognate sites. The viability of E. coli carrying the EcoRV restriction/modification system was found instead to depend on the activity of DNA ligase. Ligase appears to proofread the EcoRV R/M system in vivo: DNA, cut initially in one strand at a noncognate site for the nuclease, is presumably repaired by ligase before the scission of the second strand.  相似文献   

17.
Guided by the X-ray structure analysis of a crystalline EcoRV-d(GGGATATCCC) complex (Winkler, in preparation), we have begun to identify functionally important amino acid residues of EcoRV. We show here that Asn70, Asp74, Ser183, Asn185, Thr186, and Asn188 are most likely involved in the binding and/or cleavage of the DNA, because their conservative substitution leads to mutants of no or strongly reduced activity. In addition, C-terminal amino acid residues of EcoRV seem to be important for its activity, since their deletion inactivates the enzyme. Following the identification of three functionally important regions, we have inspected the sequences of other restriction and modification enzymes for homologous regions. It was found that two restriction enzymes that recognize similar sequences as EcoRV (DpnII and HincII), as well as two modification enzymes (M.DpnII and, in a less apparent form, M.EcoRV), have the sequence motif -SerGlyXXXAsnIleXSer- in common, which in EcoRV contains the essential Ser183 and Asn188 residues. Furthermore, the C-terminal region, shown to be essential for EcoRV, is highly homologous to a similar region in the restriction endonuclease SmaI. On the basis of these findings we propose that these restriction enzymes and to a certain extent also some of their corresponding modification enzymes interact with DNA in a similar manner.  相似文献   

18.
The restriction endonuclease EcoRV has been characterized in structural and functional terms in great detail. Based on this detailed information we employed a structure-guided approach to engineer variants of EcoRV that should be able to discriminate between differently flanked EcoRV recognition sites. In crystal structures of EcoRV complexed with d(CGGGATATCCC)(2) and d(AAAGATATCTT)(2), Lys104 and Ala181 closely approach the two base pairs flanking the GATATC recognition site and thus were proposed to be a reasonable starting point for the rational extension of site specificity in EcoRV [Horton,N.C. and Perona,J.J. (1998) J. Biol. Chem., 273, 21721-21729]. To test this proposal, several single (K104R, A181E, A181K) and double mutants of EcoRV (K104R/A181E, K104R/A181K) were generated. A detailed characterization of all variants examined shows that only the substitution of Ala181 by Glu leads to a considerably altered selectivity with both oligodeoxynucleotide and macromolecular DNA substrates, but not the predicted one, as these variants prefer cleavage of a TA flanked site over all other sites, under all conditions tested. The substitution of Lys104 by Arg, in contrast, which appeared to be very promising on the basis of the crystallographic analysis, does not lead to variants which differ very much from the EcoRV wild-type enzyme with respect to the flanking sequence preferences. The K104R/A181E and K104R/A181K double mutants show nearly the same preferences as the A181E and A181K single mutants. We conclude that even for the very well characterized restriction enzyme EcoRV, properties that determine specificity and selectivity are difficult to model on the basis of the available structural information.  相似文献   

19.
C L Vermote  S E Halford 《Biochemistry》1992,31(26):6082-6089
In the absence of magnesium ions, the EcoRV restriction endonuclease binds all DNA sequences with equal affinity but cannot cleave DNA. In the presence of Mg2+, the EcoRV endonuclease cleaves DNA at one particular sequence, GATATC, at least a million times more readily than any other sequence. To elucidate the role of the metal ion, the reactions of the EcoRV restriction enzyme were studied in the presence of MnCl2 instead of MgCl2. The reaction at the EcoRV recognition site was slower with Mn2+. This was caused partly by reduced rates for phosphodiester hydrolysis but also by the translocation of the enzyme along the DNA after cleaving it in one strand. In contrast, alternative sites that differ from the recognition site by one base pair were cleaved faster in the presence of Mn2+ relative to Mg2+. When located at an alternative site on the DNA, the EcoRV enzyme bound Mn2+ ions readily but had a very low affinity for Mg2+. The EcoRV nuclease is thus restrained from cleaving DNA at alternate sites in the presence of Mg2+, but the restraint fails to operate with Mn2+. A discrimination factor, which measures the ratio of the activity of the EcoRV nuclease at its recognition site over that at an alternative site, had values of 3 x 10(5) in MgCl2 and 6 in MnCl2.  相似文献   

20.
The crystal structure of the type II restriction endonuclease BglI bound to DNA containing its specific recognition sequence has been determined at 2.2 A resolution. This is the first structure of a restriction endonuclease that recognizes and cleaves an interrupted DNA sequence, producing 3' overhanging ends. BglI is a homodimer that binds its specific DNA sequence with the minor groove facing the protein. Parts of the enzyme reach into both the major and minor grooves to contact the edges of the bases within the recognition half-sites. The arrangement of active site residues is strikingly similar to other restriction endonucleases, but the co-ordination of two calcium ions at the active site gives new insight into the catalytic mechanism. Surprisingly, the core of a BglI subunit displays a striking similarity to subunits of EcoRV and PvuII, but the dimer structure is dramatically different. The BglI-DNA complex demonstrates, for the first time, that a conserved subunit fold can dimerize in more than one way, resulting in different DNA cleavage patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号