首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A Monte Carlo simulation is proposed to study the dynamics of helper T-cells (N H) and viral (N V) populations in an immune response model relevant to HIV. Cellular states are binary variables and the interactions are described by logical expressions. Viral population shows a nonmonotonic growth before reaching a constant value while helper T-cells grow to a constant after a relaxation/reaction time. Initially, the population of helper cells grows with time with a power-law, N Ht β, before reaching the steady-state; the growth exponent β increases systematically (β ≈ 1 – 2) with the mutation rate (P mut≈0.1–0.4). The critical recovery time (t c) increases exponentially with the viral mutation, t cAe αP mut , with α=4.52±0.29 in low mutation regime and α=15.21±1.41 in high mutation regime. The equilibrium population of helper T-cell declines slowly with P mut and collapses at ∼ 0.40; the viral population exhibits a reverse trend, i.e., a slow increase before the burst around the same mutation regime.  相似文献   

2.
Osmotically driven water flow, u (cm/s), between two solutions of identical osmolarity, co (300 mM in mammals), has a theoretical isotonic maximum given by u = j/co, where j (moles/cm2/s) is the rate of salt transport. In many experimental studies, transport was found to be indistinguishable from isotonic. The purpose of this work is to investigate the conditions for u to approach isotonic. A necessary condition is that the membrane salt/water permeability ratio, ε, must be small: typical physiological values are ε = 10−3 to 10−5, so ε is generally small but this is not sufficient to guarantee near-isotonic transport. If we consider the simplest model of two series membranes, which secrete a tear or drop of sweat (i.e., there are no externally-imposed boundary conditions on the secretion), diffusion is negligible and the predicted osmolarities are: basal = co, intracellular ≈ (1 + ε)co, secretion ≈ (1 + 2ε)co, and u ≈ (1 − 2ε)j/co. Note that this model is also appropriate when the transported solution is experimentally collected. Thus, in the absence of external boundary conditions, transport is experimentally indistinguishable from isotonic. However, if external boundary conditions set salt concentrations to co on both sides of the epithelium, then fluid transport depends on distributed osmotic gradients in lateral spaces. If lateral spaces are too short and wide, diffusion dominates convection, reduces osmotic gradients and fluid flow is significantly less than isotonic. Moreover, because apical and basolateral membrane water fluxes are linked by the intracellular osmolarity, water flow is maximum when the total water permeability of basolateral membranes equals that of apical membranes. In the context of the renal proximal tubule, data suggest it is transporting at near optimal conditions. Nevertheless, typical physiological values suggest the newly filtered fluid is reabsorbed at a rate u ≈ 0.86 j/co, so a hypertonic solution is being reabsorbed. The osmolarity of the filtrate cF (M) will therefore diminish with distance from the site of filtration (the glomerulus) until the solution being transported is isotonic with the filtrate, u = j/cF.With this steady-state condition, the distributed model becomes approximately equivalent to two membranes in series. The osmolarities are now: cF ≈ (1 − 2ε)j/co, intracellular ≈ (1 − ε)co, lateral spaces ≈ co, and u ≈(1 + 2ε)j/co. The change in cF is predicted to occur with a length constant of about 0.3 cm. Thus, membrane transport tends to adjust transmembrane osmotic gradients toward εco, which induces water flow that is isotonic to within order ε. These findings provide a plausible hypothesis on how the proximal tubule or other epithelia appear to transport an isotonic solution.  相似文献   

3.
A stretch-activated (SA) Cl channel in the plasma membrane of the human mast cell line HMC-1 was identified in outside-out patch-clamp experiments. SA currents, induced by pressure applied to the pipette, exhibited voltage dependence with strong outward rectification (55.1 pS at +100 mV and an about tenfold lower conductance at −100 mV). The probability of the SA channel being open (P o) also showed steep outward rectification and pressure dependence. The open-time distribution was fitted with three components with time constants of τ1o = 755.1 ms, τ2o = 166.4 ms, and τ3o = 16.5 ms at +60 mV. The closed-time distribution also required three components with time constants of τ1c = 661.6 ms, τ2c = 253.2 ms, and τ3c = 5.6 ms at +60 mV. Lowering extracellular Cl concentration reduced the conductance, shifted the reversal potential toward chloride reversal potential, and decreased the P o at positive potentials. The SA Cl currents were reversibly blocked by the chloride channel blocker 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) but not by (Z)-1-(p-dimethylaminoethoxyphenyl)-1,2-diphenyl-1-butene (tamoxifen). Furthermore, in HMC-1 cells swelling due to osmotic stress, DIDS could inhibit the increase in intracellular [Ca2+] and degranulation. We conclude that in the HMC-1 cell line, the SA outward currents are mediated by Cl influx. The SA Cl channel might contribute to mast cell degranulation caused by mechanical stimuli or accelerate membrane fusion during the degranulation process.  相似文献   

4.
Isotherms of the EtBr adsorption on native and denatured poly(dA)poly(dT) in the temperature interval 20–70°C were obtained. The EtBr binding constants and the number of binding sites were determined. The thermodynamic parameters of the EtBr intercalation complex upon changes of solution temperature 20–48°C were calculated: 1.0·106 M−1K≤1.4·106 M−1, free energy ΔG o=−8.7±0.3 kcal/mol, enthalpy ΔH o≅0, and entropy ΔS o=28±0.5 cal/(mol deg). UV melting has shown that the melting temperature (T m) of EtBr-poly(dA)poly(dT) complexes (μ=0.022,4.16·10−5 M EtBr) increased by 17°C as compared with the ΔT m of free homopolymer, whereas the half-width of the transition (T m) is not changed. It was shown for the first time that EtBr forms complexes of two types on single-stranded regions of poly(dA)poly(dT) denatured at 70°C: strong (K 1=1.7·105 M−1; ΔG o=−8.10±0.03 kcal/mol) and weak (K 2=2.9·103 M−1; ΔG o=−6.0±0.3 kcal/mol).The ΔG o of the strong and weak complexes was independent of the solution ionic strength, 0.0022≤μ≤0.022. A model of EtBr binding with single-stranded regions of poly(dA)poly(dT) is discussed.  相似文献   

5.
Increasing evidence is now accumulating for the involvement of the cystic fibrosis transmembrane conductance regulator (CFTR) in the control of the outwardly rectifying chloride channel (ORCC). We have examined the sensitivity of ORCC to the sulfonylurea drug glibenclamide in Hi-5 (Trichoplusia ni) insect cells infected with recombinant baculovirus expressing either wild-type CFTR, ΔF508-CFTR or E. coliβ galactosidase cDNA and in control cells either infected with virus alone or uninfected. Iodide efflux and single channel patch-clamp experiments confirmed that forskolin and 1-methyl-3-isobutyl xanthine (IBMX) or 7-methyl-1,3 dipropyl xanthine (DPMX) activate CFTR channels (unitary conductance: 9.1 ± 1.6 pS) only in cells expressing CFTR. In contrast, we identified 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS)-sensitive ORCC in excised membrane patches in any of the cells studied, with similar conductance (22 ± 2.5 pS at −80 mV; 55 ± 4.1 pS at +80 mV) and properties. In the presence of 500 μm SITS, channel open probability (P o ) of ORCC was reversibly reduced to 0.05 ± 0.01 in CFTR-cells, to 0.07 ± 0.02 in non-CFTR expressing cells and to 0.05 ± 0.02 in ΔF508-cells. In Hi-5 cells that did not express CFTR, glibenclamide failed to inhibit ORCC activity even at high concentrations (100 μm), whereas 500 μm SITS reversibly inhibited ORCC. In contrast in cells expressing CFTR or ΔF508, glibenclamide dose dependently (IC50= 17 μm, Hill coefficient 1.2) and reversibly inhibited ORCC. Cytoplasmic application of 100 μm glibenclamide reversibly reduced P o from 0.88 ± 0.03 to 0.09 ± 0.02 (wash: P o = 0.85 ± 0.1) in CFTR cells and from 0.89 ± 0.05 to 0.08 ± 0.05 (wash: P o = 0.87 ± 0.1) in ΔF508 cells. In non-CFTR expressing cells, glibenclamide (100 μm) was without effect on P o (control: P o = 0.89 ± 0.09, glib.: P o = 0.86 ± 0.02; wash: P o = 0.87 ± 0.05). These data strongly suggest that the expression of CFTR confers glibenclamide sensitivity to the ORCC in Hi-5 cells. Received: 23 October 1998/Revised: 29 December 1998  相似文献   

6.
An amiloride-sensitive, Ca2+-activated nonselective cation (NSC) channel in the apical membrane of fetal rat alveolar epithelium plays an important role in stimulation of Na+ transport by a beta adrenergic agonist (beta agonist). We studied whether Ca2+ has an essential role in the stimulation of the NSC channel by beta agonists. In cell-attached patches formed on the epithelium, terbutaline, a beta agonist, increased the open probability (P o ) of the NSC channel to 0.62 ± 0.07 from 0.03 ± 0.01 (mean ±se; n= 8) 30 min after application of terbutaline in a solution containing 1 mm Ca2+. The P o of the terbutaline-stimulated NSC channel was diminished in the absence of extracellular Ca2+ to 0.26 ± 0.05 (n= 8). The cytosolic Ca2+ concentration ([Ca2+] c ) in the presence and absence of extracellular Ca2+ was, respectively, 100 ± 6 and 20 ± 2 nm (n= 7) 30 min after application of terbutaline. The cytosolic Cl concentration ([Cl] c ) in the presence and absence of extracellular Ca2+ was, respectively, 20 ± 1 and 40 ± 2 mm (n= 7) 30 min after application of terbutaline. The diminution of [Ca2+] c from 100 to 20 nm itself had no significant effects on the P o if the [Cl] c was reduced to 20 mm; the P o was 0.58 ± 0.10 at 100 nm [Ca2+] c and 0.55 ± 0.09 at 20 nm [Ca2+] c (n= 8) with 20 mm [Cl] c in inside-out patches. On the other hand, the P o (0.28 ± 0.10) at 20 nm [Ca2+] c with 40 mm [Cl] c was significantly lower than that (0.58 ± 0.10; P < 0.01; n= 8) at 100 nm [Ca2+] c with 20 mm [Cl] c , suggesting that reduction of [Cl] c is an important factor stimulating the NSC channel. These observations indicate that the extracellular Ca2+ plays an important role in the stimulatory action of beta agonist on the NSC channel via reduction of [Cl] c . Received: 11 August 2000/Revised: 4 December 2000  相似文献   

7.
Experimental study of a glow discharge with electrostatic confinement of electrons is carried out in the vacuum chamber volume V ≈ 0.12 m3 of a technological system “Bulat-6” in argon pressure range 0.005–5 Pa. The chamber is used as a hollow cathode of the discharge with the inner surface area S ≈ 1.5 m2. It is equipped with two feedthroughs, which make it possible to immerse in the discharge plasma interchangeable anodes with surface area S a ranging from ∼0.001 to ∼0.1 m2, as well as floating electrodes isolated from both the chamber and the anode. Dependences of the cathode fall U c = 0.4−3 kV on the pressure p at a constant discharge current in the range I = 0.2−2 A proved that aperture of the electron escape out of the electrostatic trap is equal to the sum S o = S a + S f of the anode surface S a and the floating electrode surface S f . The sum S o defines the lower limit p o of the pressure range, in which U c is independent of p. At p < p o the cathode fall U c grows up dramatically, when the pressure decreases, and the pressure p tends to the limit p ex, which is in fact the discharge extinction pressure. At pp ex electrons emitted by the cathode and the first generation of fast electrons produced in the cathode sheath spend almost all their energy up to 3 keV on heating the anode and the floating electrode up to 600–800°C and higher. In this case the gas in the chamber is being ionized by the next generations of electrons produced in the cathode sheath, their energy being one order of magnitude lower. When S a < (2m/M)1/2 S, where m is the electron mass and M is the ion mass, the anode may be additionally heated by plasma electrons accelerated by the anode fall of potential U a up to 0.5 kV.  相似文献   

8.
Zhang Z  Jia Y  Gao H  Zhang L  Li H  Meng Q 《Planta》2011,234(5):883-889
By simultaneously analyzing the chlorophyll a fluorescence transient and light absorbance at 820 nm as well as chlorophyll fluorescence quenching, we investigated the effects of different photon flux densities (0, 15, 200 μmol m−2 s−1) with or without 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the repair process of cucumber (Cucumis sativus L.) leaves after treatment with low temperature (6°C) combined with moderate photon flux density (200 μmol m−2 s−1) for 6 h. Both the maximal photochemical efficiency of Photosystem II (PSII) (F v/F m) and the content of active P700 (ΔI/I o) significantly decreased after chilling treatment under 200 μmol m−2 s−1 light. After the leaves were transferred to 25°C, F v/F m recovered quickly under both 200 and 15 μmol m−2 s−1 light. ΔI/I o recovered quickly under 15 μmol m−2 s−1 light, but the recovery rate of ΔI/I o was slower than that of F v/F m. The cyclic electron transport was inhibited by chilling-light treatment obviously. The recovery of ΔI/I o was severely suppressed by 200 μmol m−2 s−1 light, whereas a pretreatment with DCMU effectively relieved this suppression. The cyclic electron transport around PSI recovered in a similar way as the active P700 content did, and the recovery of them was both accelerated by pretreatment with DCMU. The results indicate that limiting electron transport from PSII to PSI protected PSI from further photoinhibition, accelerating the recovery of PSI. Under a given photon flux density, faster recovery of PSII compared to PSI was detrimental to the recovery of PSI or even to the whole photosystem.  相似文献   

9.
The Australian Yabby, Cherax destructor, inhabits occasionally hypoxic water. The respiratory gas, acid-base, metabolite and energetic status of this crayfish was assessed during progressive hypoxia and during 3 h at a water PO2 of 1.33 kPa. The O2 affinity of haemocyanin from C. destructor was increased by lactate (Δlog P 50/Δlog[lactate] = −0.111) and by Ca (Δlog P 50/Δlog[Ca] = −0.62) but not by urate. While the non-bicarbonate buffering capacity was low (Δ[HCO3 ]/ ΔpH=−4.89) the haemocyanin had a low sensitivity to pH changes (ϕ = −0.33). The crayfish showed a compensatory hyperventilation, which induced a respiratory alkalosis, until the water O2 partial pressure declined below 2.67 kPa, after which the O2 uptake rate was approximately 10% of normoxic rates. The high haemocyanin-O2 affinity maintained haemolymph O2 content during progressive hypoxia despite the normally low arterial O2 partial pressure of C. destructor. During severe hypoxia, pH decreased but increased lactate aided in maintaining haemocyanin-O2 saturation. The importance of regulated haemocyanin-O2 affinity in hypoxic C. destructor was reduced by lowered metabolism, including reduced cardiac output, and the consequent reduction in O2 requirement. Anaerobiosis became important only at very low PO2 but thereafter proceeded rapidly, supported by a marked hyperglycaemia. There was no depletion of adenylates, even after 3 h of severe hypoxia. The tail muscle of C. destructor held small amounts of glycogen which would sustain anaerobiosis for a only a few hours. Hypometabolism seems an important hypoxic response but severe hypoxia may encourage the crayfish to breathe air. Accepted: 26 February 1998  相似文献   

10.
This study was designed to determine how changes in oxygen uptake (O2) and heart rate (HR) during submaximal cycle ergometry were determined by changes in cycle geometry and/or lower-limb kinematics. Fourteen trained cyclists [Mean (SD): age, 25.5 (6.4) years; body mass 74.4 (8.8) kg; peak O2, 4.76 (0.79) l. min−1 peak] were tested at three seat-tube angles (70°, 80°, 90°) at each of three trunk angles (10°, 20°, 30°) using a modified Monark cycle ergometer. All conditions were tested at a power output corresponding to 95% of the O2 at each subject's ventilatory threshold while pedalling at 90 rpm and using aerodynamic handlebars. Sagittal-view kinematics for the hip, knee, and ankle joints were also recorded for all conditions and for the subjects' preferred positioning on their own bicycles. No combination of seat-tube and trunk angle could be considered optimal since many of the nine conditions elicited statistically similar mean O2 and HR values. Mean hip angle (HA) was the only kinematic variable that changed consistently across conditions. A regression relationship was not observed between mean O2 or HR and mean hip angle values (P > 0.45). Significant curvilinear relationships were observed, however, between ΔO2 (O2 − minimum O2) and ΔHA (mean HA − preferred HA) using the data from all subjects (R = 0.45, SEE = 0.13 l . min−1) and using group mean values (R = 0.93, SEE = 0.03 l . min−1). In both cases ΔO2 minimized at ΔHA = 0, which corresponded to the subjects' preferred HA from their own bicycles. Thus, subjects optimized their O2 cost at cycle geometries that elicited similar lower-limb kinematics as the preferred geometries from their own bicycles. Accepted: 3 July 1996  相似文献   

11.
Four temperature treatments were studied in the climate controlled growth chambers of the Georgia Envirotron: 25/20, 30/25, 35/30, and 40/35 °C during 14/10 h light/dark cycle. For the first growth stage (V3-5), the highest net photosynthetic rate (P N) of sweet corn was found for the lowest temperature of 28–34 μmol m−2 s−1 while the P N for the highest temperature treatment was 50–60 % lower. We detected a gradual decline of about 1 P N unit per 1 °C increase in temperature. Maximum transpiration rate (E) fluctuated between 0.36 and 0.54 mm h−1 (≈5.0–6.5 mm d−1) for the high temperature treatment and the minimum E fluctuated between 0.25 and 0.36 mm h−1 (≈3.5–5.0 mm d−1) for the low temperature treatment. Cumulative CO2 fixation of the 40/35 °C treatment was 33.7 g m−2 d−1 and it increased by about 50 % as temperature declined. The corresponding water use efficiency (WUE) decreased from 14 to 5 g(CO2) kg−1(H2O) for the lowest and highest temperature treatments, respectively. Three main factors affected WUE, P N, and E of Zea: the high temperature which reduced P N, vapor pressure deficit (VPD) that was directly related to E but did not affect P N, and quasi stem conductance (QC) that was directly related to P N but did not affect E. As a result, WUE of the 25/20 °C temperature treatment was almost three times larger than that of 40/35 °C temperature treatment.  相似文献   

12.
Haemoglobin components were analysed for nine species of New Zealand triplefins and their isoelectric points (pI) ranged from 5.1 to 7.0. The number of well-expressed isohaemoglobins was larger in shallow-water and tidal pool species, ranging from four in Grahamina signata to eight in Grahamina capito, and were relatively cathodal. Two strongly anodal isohaemoglobins were expressed in the mid-depth species Ruanoho decemdigitatus and Ruanoho whero, and one in the deeper water species Karalepis stewarti and Forsterygion malcolmi. The red blood cell oxygen-binding properties were determined at 15 °C and 25 °C in the pH range 6.7–7.9 for the shallow-water species G. capito, the shallow to mid-depth species Forsterygion varium, and the deep-water species F. malcolmi. Oxygen affinity was highest for G. capito and the magnitude of the Bohr effect lower (Δlog P 50/ΔpH = −0.37 at 25 °C, where P 50 is the half-saturation coefficient) compared to the two Forsterygion species (Δlog P 50/ΔpH = −0.52 to −0.59). Further, the cooperativity factor, n 50, was lower in G. capito thus maintaining oxygen transport over a wide range of environmental oxygen pressures. Oxygen binding was similarly influenced by temperature in both G. capito and F. malcolmi (maximum heat of oxygenation ΔHmax = −27 kJ mol−1 and −37 kJ mol−1, respectively). Thus, triplefin fishes living in shallow, thermally unstable habitats possess a greater number of cathodally migrating isohaemoglobins, and their red blood cells have a higher oxygen affinity and reduced cooperativity which is less sensitive to changes in pH than do species occurring in more stable, deeper water habitats. Our analysis of an assemblage of closely related species circumvents some of the difficulties inherent in studies where interpretation of experimental results is confounded by phylogeny. Accepted: 18 March 1999  相似文献   

13.
Sullivan PF  Welker JM 《Oecologia》2007,151(3):372-386
Leaf carbon isotope discrimination (Δ13C) varies with the balance between net photosynthesis (A) and stomatal conductance (g s ). Inferences that can be made with Δ13C are limited, as changes could reflect variation in A and/or g s . Investigators have suggested that leaf δ18O enrichment above source water (Δ18O) may enable differentiation between sources of variation in Δ13C, as leaf Δ18O varies with transpiration rate (E), which is closely correlated with g s when leaves experience similar leaf to air vapor pressure differences. We examined leaf gas exchange of Salix arctica at eight sites with similar air temperatures and relative humidities but divergent soil temperatures and soil water contents near Pituffik, Greenland (76°N, 38°W). We found negative correlations at the site level between g s and Δ18O in bulk leaf tissue (r 2 = 0.62, slope = −17.9‰/mol H2O m−2 s−1, P = 0.02) and leaf α-cellulose (r 2 = 0.83, slope = −11.5‰ mol H2O m−2 s−1, P < 0.01), consistent with the notion that leaf water enrichment declines with increasing E. We also found negative correlations at the site-level between intrinsic water-use efficiency (iWUE) and Δ13C in bulk leaf tissue (r 2 = 0.65, slope = −0.08‰/μmol CO2 /mol H2O, P = 0.02) and leaf α-cellulose (r 2 = 0.50, slope = −0.05 ‰/[μmol CO2 /mol H2O], P = 0.05). When increasing Δ13C was driven by increasing g s alone, we found negative slopes between Δ13C and Δ18O for bulk leaf tissue (−0.664) and leaf α-cellulose (−1.135). When both g s and A max increased, we found steeper negative slopes between Δ13C and Δ18O for bulk leaf tissue (−2.307) and leaf α-cellulose (−1.296). Our results suggest that the dual isotope approach is capable of revealing the qualitative contributions of g s and A max to Δ13C at the site level. In our study, bulk leaf tissue was a better medium than leaf α-cellulose for application of the dual isotope approach.  相似文献   

14.
A large conductance, Ca2+-activated K+ channel of the BK type was examined in cultured pituitary melanotrophs obtained from adult male rats. In cell-attached recordings the slope conductance for the BK channel was ≈190 pS and the probability (P o ) of finding the channel in the open state at the resting membrane potential was low (<<0.1). Channels in inside-out patches and in symmetrical 150 mm K+ had a conductance of ≈260 pS. The lower conductance in the cell-attached recordings is provisionally attributed to an intracellular K+ concentration of ≈113 mm. The permeability sequence, relative to K+, was K+ > Rb+ (0.87) > NH+ 4 (0.17) > Cs+≥ Na+ (≤0.02). The slope conductance for Rb+ was much less than for K+. Neither Na+ nor Cs+ carried measurable currents and 150 mm internal Cs+ caused a flickery block of the channel. Internal tetraethylammonium ions (TEA+) produced a fast block for which the dissociation constant at 0 mV (K D (0 mV)) was 50 mm. The K D (0 mV) for external TEA+ was much lower, 0.25 mm, and the blocking reaction was slower as evidenced by flickery open channel currents. With both internal and external TEA+ the blocking reaction was bimolecular and weakly voltage dependent. External charybdotoxin (40 nm) caused a large and reversible decrease of P o . The P o was increased by depolarization and/or by increasing the concentration of internal Ca2+. In 0.1 μm Ca2+ the half-maximal P o occurred at ≈100 mV; increasing Ca2+ to 1 μm shifted the voltage for the half-maximal P o to −75 mV. The Ca2+ dependence of the gating was approximated by a fourth power relationship suggesting the presence of four Ca2+ binding sites on the BK channel. Received: 23 October/Revised: 15 December 1995  相似文献   

15.
Resumé A partir de la souche deR. meliloti Ve 26 mobile et chimiotactique, un mutant non mobile (mob) et un mutant hyper-mobile (mob+) ont été isolés. L'importance du r?le de la mobilité dans les phénomènes d'infection et de nodulation lors d'inoculations mixtes réalisées en miniserre expérimentale, est montrée: le mutant Ve 26 mob+ forme 86% et 48% de nodules respectivement quand il est inoculé en mélange avec le mutant Ve 26 mob ou avec la souche 2011 (non mobile par rapport au mutant Ve 26 mob+). L'inoculation mixte avec le mutant Ve 26 mob et la souche 2011 deR. meliloti, en utilisant différents rapports de concentrations, a permis de montrer qu'il existe entre ces souches un effet antagoniste pour l'infection.   相似文献   

16.
The Ca2+-activated maxi K+ channel was found in the apical membrane of everted rabbit connecting tubule (CNT) with a patch-clamp technique. The mean number of open channels (NP o ) was markedly increased from 0.007 ± 0.004 to 0.189 ± 0.039 (n= 7) by stretching the patch membrane in a cell-attached configuration. This activation was suggested to be coupled with the stretch-activation of Ca2+-permeable cation channels, because the maxi K+ channel was not stretch-activated in both the cell-attached configuration using Ca2+-free pipette and in the inside-out one in the presence of 10 mm EGTA in the cytoplasmic side. The maxi K+ channel was completely blocked by extracellular 1 μm charybdotoxin (CTX), but was not by cytoplasmic 33 μm arachidonic acid (AA). On the other hand, the low-conductance K+ channel, which was also found in the same membrane, was completely inhibited by 11 μm AA, but not by 1 μm CTX. The apical K+ conductance in the CNT was estimated by the deflection of transepithelial voltage (ΔV t ) when luminal K+ concentration was increased from 5 to 15 mEq. When the tubule was perfused with hydraulic pressure of 0.5 KPa, the ΔV t was only −0.7 ± 0.4 mV. However, an increase in luminal fluid flow by increasing perfusion pressure to 1.5 KPa markedly enhanced ΔV t to −9.4 ± 0.9 mV. Luminal application of 1 μm CTX reduced the ΔV t to −1.3 ± 0.6 mV significantly in 6 tubules, whereas no significant change of ΔV t was recorded by applying 33 μm AA into the lumen of 5 tubules (ΔV t =−7.2 ± 0.5 mV in control vs.ΔV t =−6.7 ± 0.6 mV in AA). These results suggest that the Ca2+-activated maxi K+ channel is responsible for flow-dependent K+ secretion by coupling with the stretch-activated Ca2+-permeable cation channel in the rabbit CNT. Received: 21 August 1997/Revised: 20 March 1998  相似文献   

17.
A group of 12 healthy non-smoking men [mean age 22.3 (SD 1.1) years], performed an incremental exercise test. The test started at 30 W, followed by increases in power output (P) of 30 W every 3 min, until exhaustion. Blood samples were taken from an antecubital vein for determination of plasma concentration lactate [La]pl and acid-base balance variables. Below the lactate threshold (LT) defined in this study as the highest P above which a sustained increase in [La]pl was observed (at least 0.5 mmol · l−1 within 3 min), the pulmonary oxygen uptake (O2) measured breath-by-breath, showed a linear relationship with P. However, at P above LT [in this study 135 (SD 30) W] there was an additional accumulating increase in O2 above that expected from the increase in P alone. The magnitude of this effect was illustrated by the difference in the final P observed at maximal oxygen uptake (O2max) during the incremental exercise test (P max,obs at O2max) and the expected power output at O2max(P max,exp at O2max) predicted from the linear O2-P relationship derived from the data collected below LT. The P max,obs at O2max amounting to 270 (SD 19) W was 65.1 (SD 35) W (19%) lower (P<0.01) than the P max,exp at O2max . The mean value of O2max reached at P max,obs amounted to 3555 (SD 226) ml · min−1 which was 572 (SD 269) ml · min−1 higher (P<0.01) than the O2 expected at this P, calculated from the linear relationship between O2 and P derived from the data collected below LT. This fall in locomotory efficiency expressed by the additional increase in O2, amounting to 572 (SD 269) ml O2 · min−1, was accompanied by a significant increase in [La]pl amounting to 7.04 (SD 2.2) mmol · l−1, a significant increase in blood hydrogen ion concentration ([H+]b) to 7.4 (SD 3) nmol · l−1 and a significant fall in blood bicarbonate concentration to 5.78 (SD 1.7) mmol · l−1, in relation to the values measured at the P of the LT. We also correlated the individual values of the additional O2 with the increases (Δ) in variables [La]pl and Δ[H+]b. The Δ values for [La]pl and Δ[H+]b were expressed as the differences between values reached at the P max,obs at O2max and the values at LT. No significant correlations between the additional O2 and Δ[La]pl on [H+]b were found. In conclusion, when performing an incremental exercise test, exceeding P corresponding to LT was accompanied by a significant additional increase in O2 above that expected from the linear relationship between O2 and P occurring at lower P. However, the magnitude of the additional increase in O2 did not correlate with the magnitude of the increases in [La]pl and [H+]b reached in the final stages of the incremental test. Accepted: 30 October 1997  相似文献   

18.
Effects of intracellular Mg2+ on a native Ca2+-and voltage-sensitive large-conductance K+ channel in cultured human renal proximal tubule cells were examined with the patch-clamp technique in the inside-out mode. At an intracellular concentration of Ca2+ ([Ca2+]i) of 10−5–10−4 M, addition of 1–10 mM Mg2+ increased the open probability (Po) of the channel, which shifted the Po –membrane potential (Vm) relationship to the negative voltage direction without causing an appreciable change in the gating charge (Boltzmann constant). However, the Mg2+-induced increase in Po was suppressed at a relatively low [Ca2+]i (10−5.5–10−6 M). Dwell-time histograms have revealed that addition of Mg2+ mainly increased Po by extending open times at 10−5 M Ca2+ and extending both open and closed times simultaneously at 10−5.5 M Ca2+. Since our data showed that raising the [Ca2+]i from 10−5 to 10−4 M increased Po mainly by shortening the closed time, extension of the closed time at 10−5.5 M Ca2+ would result from the Mg2+-inhibited Ca2+-dependent activation. At a constant Vm, adding Mg2+ enhanced the sigmoidicity of the Po–[Ca2+]i relationship with an increase in the Hill coefficient. These results suggest that the major action of Mg2+ on this channel is to elevate Po by lengthening the open time, while extension of the closed time at a relatively low [Ca2+]i results from a lowering of the sensitivity to Ca2+ of the channel by Mg2+, which causes the increase in the Hill coefficient. M. Kubokawa and Y. Sohma contributed equally to this work.  相似文献   

19.
The biodegradation of phenol by a pure culture of Pseudomonas putida was investigated in a continuously fed stirred-tank reactor, under aerobic conditions. The dilution rate was varied between 0.0174 h−1 and 0.278 h−1, covering a wide range of dissolved oxygen and the inhibition region of phenol. Through non-linear analysis of the data, a dual-substrate growth kinetics, Haldane kinetics for phenol and Monod kinetics for oxygen, was derived with high correlation coefficients. Respective biokinetic parameters were evaluated as μm = 0.569 h−1, K p = 18.539 mg/l, K i = 99.374 mg/l, K o = 0.048 mg/l, Y x/p = 0.521 g microorganism/g phenol and Y x/o = 0.338 g microorganism/g oxygen, being in good agreement with other studies in the literature. Maintenance factors for both phenol and oxygen were calculated for the first time for P. putida while the saturation coefficient for oxygen, K o, was genuinely evaluated from the constructed model, not imported or adapted from other studies as reported in the literature. All pertinent biokinetic parameters for P. putida have been calculated from continuous system data, which are most appropriate for use in continuous bioprocess applications. Received: 29 July 1996 / Received revision: 18 November 1996 / Accepted: 23 November 1996  相似文献   

20.
Desert plants have unique strategies for survival and growth to cope with the limited water availability in arid regions. The stable carbon isotope (δ 13C) provides an integrated measurement of internal plant physiological and external environmental properties affecting photosynthetic gas exchange and water use efficiency. The δ 13C values of 84 species in the Junggar Basin were categorized into two groups (ranged from −30.1 to −23.3‰ for C3 and −14.9 to −9.9‰ for C4 species, respectively). No life form differences in δ 13C values were detected in C3 (p = 0.78) and C4 plants (p = 0.63). Small differences among life forms were observed in δ 13C values in C4 species with shrubs slightly depleted (−13.3‰) relative to perennials (−13.1‰) and annuals (−12.5‰). These differences suggested that δ 13C value could not represent a plant functional group classification based on life forms in C4 plants in extremely arid regions. Ephemerals are all using C3 photosynthetic pathway and no significant differences (p = 0.92) in δ 13C values were observed between annuals (−26.5‰) and perennials (−26.4‰). The δ 13C values of Tulipa iliensis (an important ephemeral species distributed widely in the Junggar Basin) among nine natural populations were positively correlated with leaf (r 2 = 0.46, p = 0.046) and soil (r 2 = 0.67, p = 0.007) total nitrogen content, and negatively correlated with leaf (r 2 = 0.48, p = 0.039) and soil (r 2 = 0.79, p = 0.001) water content. This indicated that the variation in δ 13C values of T. iliensis was probably caused by both water availability associated stomatal openness and nitrogen availability associated photosynthetic capacity. T. iliensis is very sensitive to water and nitrogen availability in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号