首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Input data, analytical methods and biogeography of Elegia (Restionaceae)   总被引:1,自引:0,他引:1  
Aim The aim of this paper is to determine the optimal methods for delimiting areas of endemism for Elegia L. (Restionaceae), an endemic genus of the Cape Floristic Region. We assess two methods of scoring the data (presence–absence in regular grids, or in irregular eco‐geographical regions) and three methods for locating biogeographical centres or areas of endemism, and evaluate one method for locating biotic elements. Location The Cape Floristic Region (CFR), South Africa. Methods The distribution of all 48 species of Elegia was mapped as presence–absence data on a quarter‐degree grid and on broad habitat units (eco‐geographical areas). Three methods to delimit areas of endemism were applied: parsimony analysis of endemism (PAE), phenetic cluster analysis, and NDM (‘end em ism’). In addition, we used presence–absence clustering (‘Prabclus’) to delimit biotic elements. The performances of these methods in elucidating the geographical patterns in Elegia were compared, for both types of input data, by evaluating their efficacy in maximizing the proportion of endemics and the number of areas of endemism. Results Eco‐geographical areas perform better than quarter‐degree grids. The eco‐geographical areas are potentially more likely to track the distribution of species. The phenetic approach performed best in terms of its ability to delimit areas of endemism in the study area. The species richness and the richness of range‐restricted species are each highest in the south‐western part of the CFR, decreasing to the north and east. The phytogeographical centres identified in the present study are the northern mountains, the southern mountains (inclusive of the Riviersonderend Mountains and the Cape Peninsula), the Langeberg range, the south coast, the Cape flats, and the west coast. Main conclusions This study demonstrates that (1) eco‐geographical areas should be preferred over a grid overlay in the study of biogeographical patterns, (2) phenetic clustering is the most suitable analytical method for finding areas of endemism, and (3) delimiting biotic elements does not contribute to an understanding of the biogeographical pattern in Elegia. The areas of endemism in Elegia are largely similar to those described in other studies, but there are many detailed differences.  相似文献   

2.
The phylogeny and biogeography of Thamnochortus (Restionaceae)   总被引:1,自引:0,他引:1  
Parsimony analysis of morphological data was used to demonstrate the existence of five groups in Thamnochortus (Restionaceae). Although the most parsimonious trees have a resolved relationship among these groups, there appears to be little support for this resolution. The composition of the terminal groups, and the relationships among the species making up these groups, is more robust. The distribution patterns of Thamnochortus differ only in detail from the general patterns ascribed to the Cape Flora (southern South Africa). Within the Cape Floristic Region four centres can be recognized, and more than half of the Thamnochortus species are endemic to these centres. Embedded in these centres (or phytochoria) are small centres of endemism: in the Cedarberg, Bokkeveld mountains, Cape Peninsula, Overberg, Bredasdorp plain and the Langeberg. These centres are best demonstrated by mapping the distributions of range-restricted species, rather than using parsimony analysis of endemicity. There are two major patterns within the phytogeographical elements: an arid group, which ranges from the West Coast to the Klein Swartberg, and a mesic coastal group. The coastal group can be further subdivided. A cladistic biogeographic analysis indicates that the first division follows the divide between all-year rainfall and summer drought, and the second division suggests greater aridity. This implies that geographical differentiation within the genus has followed climatic patterns, suggesting that some of the speciation may be a consequence of climatic change in southern Africa. Curiously, centres of endemism appear to be defined too narrowly for effective cladistic biogeographic analysis, and more success is obtained using wider areas.  相似文献   

3.
Aim Bees are the most important pollinators of flowering plants and essential ecological keystone species contributing to the integrity of most terrestrial ecosystems. Here, we examine the potential impact of climate change on bees’ geographic range in a global biodiversity hotspot. Location South Africa with a focus on the Cape Floristic Region (CFR) diversity hotspot. Methods  Geographic ranges of 12 South African bee species representing dominant distribution types were studied, and the climate change impacts upon bees were examined with A2 and B2 climate scenarios of HadCM3 model, using MaxEnt for species distribution modelling. Results The predicted levels of climate change‐induced impacts on species ranges varied from little shifts and range expansion of 5–50% for two species to substantial range contractions between 32% and 99% in another six species. Four species show considerable range shifts. Bees of the winter rainfall area in the west of South Africa generally have smaller range sizes than in the summer rainfall area and generally show eastward range contractions toward the dry interior. Bee species prevalent in summer rainfall regions show a tendency for a south‐easterly shift in geographic range. Main conclusions The bee fauna of the CFR is identified as the most vulnerable to climate change due to the high level of endemism, the small range sizes and the island‐like isolation of the Mediterranean‐type climate region at the SW tip of Africa. For monitoring climate change impact on bees, we suggest to establish observatories in the coastal plains of the west coast that are predicted to be worst affected and areas where persistence of populations is most likely. Likely impacts of climate change on life history traits of bees (phenology, sociality, bee‐host plant synchronization) are discussed but require further investigation.  相似文献   

4.
Geographical affinities of the Cape flora, South Africa   总被引:1,自引:0,他引:1  
Aim The flora characteristic of the Cape Floristic Region (CFR) is dominated by a relatively small number of clades that have been proposed as ‘Cape clades’. These clades have variously been suggested to have African or Austral affinities. Here we evaluate the support for these conflicting hypotheses. In addition, we test the hypothesis that these clades share a common time of differentiation from their geographical neighbours. Location The Cape Floristic Region, South Africa Methods We use both published and unpublished phylogenetic information to investigate the geographical sister areas of the Cape clades as well as the timing and the direction of biogeographical disjunctions. Results Almost half of the Cape clades for which unambiguous sister areas could be established show a trans‐Indian Ocean disjunction. The earliest trans‐Indian Ocean disjunction dates from 80 Ma. Other disjunctions date from various times in the Cenozoic, and we suggest that the process of recruiting lineages into the Cape flora might be ongoing. Relatively few Cape clades show a sister relationship with South America and tropical Africa, despite their relative geographical proximity. Numerous Cape clades contain species also found on tropical African mountains; in all cases tested, these species are shown to be embedded within the Cape clades. While many Cape clades show a relationship with the Eurasian temperate flora, this is complicated by their presence in tropical Africa. The single case study addressing this to date suggests that the Cape clade is nested within a European grade. Main conclusions Although many Cape clades show Austral rather than African relationships, there are numerous other patterns suggestive of a cosmopolitan flora. This spatial variation is echoed in the temporal data, from which, although there is wide variance around the dates of disjunctions, it is clear the Cape flora has been assembled over a long time period. There is no simple hypothesis that can account for the geographical sources of the currently distinctive Cape flora. The phylogenetic positions of Afromontane members of Cape clades suggest a history of dispersal from the CFR, rather than the reverse.  相似文献   

5.
The Austral floristic realm revisited   总被引:1,自引:0,他引:1  
The classification of the Earth's flora into floristic regions has been the major goal of plant geography since the 19th century. A detailed revision of 19th and 20th century classifications is presented herein, with particular emphasis on the delimitation of the Austral floristic realm. A comparison between Chile, New Zealand, and the Cape Floristic Region is made at the genus level. Using the vascular flora of these biogeographical regions, the analysis revises previous attempts to define the Austral realm, while also assessing differences made by changes in taxonomic delimitations from recent molecular phylogenetic studies. The results indicate that the Austral floristic realm can nowadays be better described as a circum-Antarctic generalized track, composed of some 60 genera and 15 families restricted to South America and Australasia, possibly including South Africa.  相似文献   

6.
The Cape Floristic Region (CFR) displays high levels of plant diversity and endemism, and has received focused botanical systematic attention. In contrast, fungal diversity patterns and co-evolutionary processes in this region have barely been investigated. Here we reconstruct molecular phylogenies using the ITS and beta-tubulin gene regions of the ophiostomatoid fungi Gondwanamyces and Ophiostoma associated with southern African Protea species. Results indicate that they evolved in close association with Protea. In contrast to Protea, Ophiostoma species migrated to the CFR from tropical and subtropical Africa, where they underwent subsequent radiation. In both Gondwanamyces and Ophiostoma vector arthropods probably facilitated long-distance migration and shorter-distance dispersal. Although ecological parameters shaped most associations between ophiostomatoid fungi and Protea, there is congruence between fungal-host-associations and the systematic classification of Protea. These results confirm that the entire biotic environment must be considered in order to understand diversity and evolution in the CFR as a whole.  相似文献   

7.
The Cape mediterranean region, part of South Africa’s Cape Floristic Realm (CFR), is recognised for its rich diversity and high degree of endemism of terrestrial vegetation. We review the biodiversity of the aquatic flora and fauna using literature sources and museum data. Geological, palaeohistorical and climate data are examined in relation to the formation of the winter-rainfall regime. Prehistoric humans had minimal impact on the aquatic biotas. Patterns and processes relating to the present-day climate, ecosystem status, distribution and diversity of plants, invertebrates and vertebrates in the CFR are reviewed. The proportion of endemic CFR species relative to the total number of species known from southern Africa is estimated. Observed distribution patterns are evaluated against temperate Gondwana vicariance, old African migrations, the role of the ancient Cape fold mountains and Pangaea. The lack of Pleistocene glaciations in Africa, the oligotrophic nature of the river systems and the palaeohistorical origin and distribution of taxa are considered when assessing reasons for disjunct distribution patterns. Impacts of anthropogenic interference with aquatic ecosystems are evaluated. Fragmented jurisdiction of nature conservation authorities is seen as a problem for attaining adequate conservation of CFR aquatic ecosystems. Systematic conservation planning is under way for the region.  相似文献   

8.
The Nuweveldberge forms the central and most arid component to the southern Great Escarpment in South Africa. Situated between the Sneeuberg in the east and the Hantam-Roggeveld in the west, the Nuweveldberge has elements of both the Succulent Karoo and Grassland Biomes. The Nuweveldberge has low endemism (0.5%) compared to the adjacent Sneeuberg (2.3%) and Roggeveldberge (ca. 8%). Following an extensive floristic survey of the Nuweveldberge, a contribution of 473 taxa is provided. Together with the flora by Rubin et al., 2001 for the Karoo National Park this provides a total flora of 1139 taxa for the Nuweveldberge. Numerous range extensions of (previous) Sneeuberg endemics and Drakensberg near-endemics onto the Nuweveldberge are recorded. Although the Nuweveldberge may have been a corridor facilitating the movement of species from the Cape Floristic Region via the Komsberg through the Nuweveldberge onto the Sneeuberg (and of Drakensberg elements westwards from the Sneeuberg) there is currently little evidence of such connectivity. This is postulated to be due to aridification of the Nuweveldberge since the Last Glacial Maximum, and also likely explains the low endemism on the Nuweveldberge.  相似文献   

9.
The enormous species richness in the Cape Floristic Region (CFR) of Southern Africa is the result of numerous radiations, but the temporal progression and possible mechanisms of these radiations are still poorly understood. Here, we explore the macroevolutionary dynamics of the Restionaceae, which include 340 species that are found in all vegetation types in the Cape flora and are ecologically dominant in fynbos. Using an almost complete (i.e., 98%) species‐level time calibrated phylogeny and models of diversification dynamics, we show that species diversification is constant through the Cenozoic, with no evidence of an acceleration with the onset of the modern winter‐wet climate, or a recent density‐dependent slowdown. Contrary to expectation, species inhabiting the oldest (montane) and most extensive (drylands) habitats did not undergo higher diversification rates than species in the younger (lowlands) and more restricted (wetland) habitats. We show that the rate of habitat transitions is more closely related to the speciation rate than to time, and that more than a quarter of all speciation events are associated with habitat transitions. This suggests that the unbounded Restionaceae diversification resulted from numerous, parallel, habitat shifts, rather than persistence in a habitat stimulating speciation. We speculate that this could be one of the mechanisms resulting in the hyperdiverse Cape flora.  相似文献   

10.
The Cape Floristic Region and the Succulent Karoo in southwestern Africa are both noted for their plant species richness and high levels of endemism. The southwestern tip of Africa is one of the world's five Mediterranean-type climate regions. The biodiversity in the Cape Floristic Region and Succulent Karoo is thought to be at least partly due to changes to the climate of these regions that have occurred since the middle Miocene. Annual species are usually a significant proportion of local flora in Mediterranean-type climate regions. Previous studies of species radiations in the Cape Floristic Region have concentrated on genera that predominantly contain perennial species. Nemesia (Scrophulariaceae) comprises c. 65 species of annual and perennial herbs and sub-shrubs that are native to southern and tropical Africa. Annuals make up a significant proportion (~75%) of Nemesia species. We have reconstructed a phylogeny of 23 Nemesia species using nucleotide sequences of the ITS, ETS and trnL-spacer regions. Species were grouped into five clades, two composed of annual species, one that contained two annual and one perennial species, one that contained one annual and two perennial species, and one that was predominantly composed of perennial species. Phylogenetic dating of the ITS + ETS based phylogenetic tree using penalised likelihood suggested the genus evolved during the Miocene, and that the majority of extant Nemesia species studied radiated during the Pliocene. Ancestral state reconstruction supports at least three separate origins of the annual habit from plants with a perennial life history. One origin can be traced to the late Miocene while the other two transitions occurred more recently during the Pliocene. The transition from perennial to annual life-histories in Nemesia may have been a response to climate change.  相似文献   

11.
Aim Vicariance has played a major role in the evolution of the southern rock agama, Agama atra (Reptilia: Agamidae), and it is hypothesized that habitat shifts will affect small‐scale patterns of gene flow. The Cape Floristic Region (CFR) is known for high levels of diversity and endemism; thus we set out to investigate whether genetic structuring of CFR populations of A. atra corresponds to regional environmental shifts. Location Cape Fold Mountains and the Cape Floristic Region of South Africa. Methods The phylogeographical structure of 116 individuals of A. atra was determined by making use of 988 characters derived from two mitochondrial DNA fragments (control region and the NADH dehydrogenase subunit 2 coding region, ND2). Most animals originated from the CFR, but to gain a better understanding of the processes and patterns of dispersal within the species, 17 additional specimens from outside the CFR were also included and analysed in a phylogenetic context. Results Parsimony and Bayesian analyses revealed four distinct CFR clades (Cape clades) associated with geography. Phylogenetic analyses suggest that populations of A. atra in the CFR region are not entirely isolated from other populations, because some individuals from outside the CFR were nested within the four main Cape clades. The combined mitochondrial DNA data set revealed 59 distinct haplotypes in the CFR. Analysis of molecular variance (amova ) confirmed the high degree of genetic structure among the Cape clades, with more than 75% of the genetic variation found among the geographical areas. A spatial amova suggested that a ‘central clade’ originally defined as one of the four Cape clades may contain several additional populations. The main cladogenesis of A. atra within the CFR is estimated to have taken place c. 0.64–2.36 Ma. Main conclusions Agama atra shows at least four distinct genetic provinces within the CFR region, which highlights the conservation importance of this biologically diverse area. The dates of separation among the clades coincide well with the documented Pleistocene climate fluctuations, which might have contributed towards the isolation among lineages; the congruent genetic structure of A. atra with other CFR taxa further supports vicariance as a main isolating factor.  相似文献   

12.
The Cape Floristic Region (CFR) is one of the most plant-species-rich regions in the world. It is also a warm temperate region and hypothetically should have high gall-insect species richness, making it interesting to investigate the relationship between the insects of the region and the rich flora. The relationship between gall-insect species richness (GSR) and plant richness was investigated for the Fynbos and for representatives of vegetation of the whole CFR. Samples (of up to 600 plants per transect for Fynbos) of woody shrubs were investigated for the presence of galls. The species richness of these insects was quantified, as well as plant species richness for each transect. GSR for Fynbos was compared to global figures for GSR. Fynbos harboured significantly more gall-insect species than other CFR vegetation types. GSR was positively correlated with CFR plant richness. GSR also closely tracked plant richness in Fynbos. GSR was not significantly influenced by other variables (elevation and aspect), suggesting that plant richness per se was an important factor in generating GSR. Fynbos GSR is comparable to other sclerophyllous regions of high GSR globally, corroborating that this vegetation type is conducive to gall-insect diversification. There is likely to be a high percentage of gall-insect endemism in the Fynbos, as might be expected from the high host fidelity of this insect group. Received: 22 September 1997 / Accepted: 16 February 1998  相似文献   

13.
Aim The genus Kniphofia contains 71 species with an African–Malagasy distribution, including one species from Yemen. The genus has a general Afromontane distribution. Here we explore whether Kniphofia is a floristic indicator of the Afromontane centre of endemism and diversity. The South Africa Centre of diversity and endemism was explored in greater detail to understand biogeographical patterns. Location Africa, Afromontane Region, southern Africa, Madagascar and Yemen. Methods Diversity and endemism for the genus were examined at the continental scale using a chorological approach. Biogeographical patterns and endemism in the South Africa Centre were examined in greater detail using chorology, phenetics, parsimony analysis of endemicity (PAE) and mapping of range‐restricted taxa. Results Six centres of diversity were recovered, five of which are also centres of endemism. Eight subcentres of diversity are proposed, of which only two are considered subcentres of endemism. The South Africa Centre is the most species‐rich region and the largest centre of endemism for Kniphofia. The phenetic analysis of the South Africa Centre at the full degree square scale recovered three biogeographical areas that correspond with the subcentres obtained from the chorological analysis. The PAE (at the full degree square scale) and the mapping of range‐restricted taxa recovered two and six areas of endemism (AOEs), respectively. These latter two approaches produced results of limited value, possibly as a result of inadequate collecting of Kniphofia species. Only two AOEs were identified by PAE and these are embedded within two of the six AOEs recovered by the mapping of range‐restricted taxa. All the above AOEs are within the three subcentres found by chorological and phenetic analysis (at the full degree square scale) for the South Africa Centre. Main conclusions The centres for Kniphofia broadly correspond to the Afromontane regional mountain systems, but with some notable differences. We regard Kniphofia as a floristic indicator of the Afromontane Region sensu lato. In southern Africa, the phenetic approach at the full‐degree scale retrieved areas that correlate well with those obtained by the chorological approach.  相似文献   

14.
Taxonomie and biological aspects of endemism and Red Data Book status were studied amongst the limestone endemics of the lowland fynbos in the Cape Floristic Region, South Africa. Of the 110 limestone endemics, 1.8% are widely distributed in the Cape Floristic Region and 56.4% are regional endemics. Relative to flora of non-limestone lowland fynbos (n=538 species), the families which were overrepresented in terms of limestone endemics included the Ericaceae, Fabaceae, Polygalaceae, Rutaceae and Sterculiaceae. The Restionaceae was the only underrepresented family. The local limestone endemics were not significantly different from regional endemics in terms of their biological attributes. An analysis of the frequency of the biological traits associated with the limestone-endemic flora established a biological profile for a limestone endemic: a dwarf-to-low shrub with soil-stored seeds which are ant or wind dispersed. In terms of the species richness of limestone endemics, the De Hoop Nature Reserve was the hotspot within the region. Relative to the total species richness, the Hagelkraal and Stilbaai areas contained higher-than-predicted numbers of rare species. These areas require urgent attention if the unique floral diversity associated with limestone substrata within the Bredasdorp-Riversdale centre of endemism is to be conserved.  相似文献   

15.
Aim To examine how current and historical environmental gradients affect patterns of millipede (Diplopoda) endemism and species turnover in a global hotspot of floristic diversity, and to identify regions of high endemism and taxonomic distinctness for conservation management. Location South‐western Australia. Methods Museum database records of millipedes (subclasses Pentazonia and Helminthomorpha), supplemented with extensive fieldwork, were used to map species richness, species turnover (β‐diversity), weighted endemism, average taxonomic distinctness and variation in taxonomic distinctness in half‐degree grid squares (c. 2500 km2). Generalized linear models were used to examine relationships between these parameters with rainfall (present day and historical), topography and human disturbance (clearing for agriculture and urbanization). Results Millipede species richness, particularly within the order Spirostreptida, and millipede endemism were positively associated with large within‐cell differences in elevation (mountainous regions). Large variation in taxonomic distinctness (unevenness in the taxonomic tree) in higher‐rainfall areas was mainly due to speciation within the Spirostreptida genus Atelomastix. Hotspots of millipede endemism and taxonomic distinctness were identified within three categories of importance: primary (Stirling Range East, Cape Le Grand, Cape Arid, Walpole, Porongurups), secondary (Mount Manypeaks, Bremer Bay, Stirling Range West, Duke of Orleans Bay, Ravensthorpe, Albany, Busselton) and tertiary (Nornalup). A species turnover boundary was positively associated with rainfall, broadly located in the transition zone of 300–600 mm year?1. Main conclusions The current lack of knowledge on the endemism of invertebrates hampers their incorporation into conservation planning. With this knowledge we can identify global biodiversity hotspots and, at a smaller scale, significant conservation areas within a region. Here we have shown that weighted endemism and taxonomic distinctness are useful tools in identifying centres of high endemism and speciation for millipedes within the south‐west Australian hotspot. Moreover, it is unlikely that either vertebrates or vascular plants will be useful surrogates for identifying significant areas for invertebrate conservation. While other workers have shown that vascular plants, mammals and frogs have different centres of endemism within south‐west Australia, our results show that centres of endemism for millipedes encompass all of these plus other areas.  相似文献   

16.
Two new species of Gazania Gaert. (Asteraceae, tribe Arctotideae) from the Greater Cape Floristic Region of South Africa are described. Gazania lanata Magee & Boatwr., a local endemic of dolomite lenses near Robertson, is distinguished by the spatulate to sublyrate, simple or weakly pinnatilobed leaves, the bristle-like hairs along the inflorescence and the densely lanate vestiture of the young growth and involucre. Gazania splendidissima Mucina, Magee & Boatwr. from the arid Namaqualand coast between Port Nolloth and Hondeklipbaai, is distinguished by the suffrutescent habit, semi-succulent leaves with a densely mealy uppermost surface, and prominently maculate involucre. An updated key to the now 18 recognised Gazania species is provided to facilitate identification of these and existing taxa in the genus.  相似文献   

17.
The Fynbos Biome or Cape Floristic Region is well‐known for its plant diversity. This diversity does not seem to carry over at higher trophic levels, and in particular in birds. Here, we analyzed the passerine bird assemblages of the Fynbos Biome at the quarter degree resolution with occupancy models and citizen science data. Multivariate analysis of distribution summary metrics revealed a gradient of specialist to generalist species, in which range‐restricted, specialist species responded positively to increases in number of competing species and included ancient lineages. Wide‐ranging, generalist species exhibited stronger affinities for the arid Karoo Biomes than for the other neighboring biome (Albany Thicket) and for the other mesic biomes in South Africa. Both results are explained by the Quaternary legacy hypothesis: the combined effects of habitat filtering, isolation by distance, and limited in situ diversification, acting throughout the Quaternary, and caused by the contrasting winter‐rainfall regime of the region and the low phylogenetic diversity and original adaptations of the plant assemblages.  相似文献   

18.
The Hantam-Tanqua-Roggeveld subregion is part of the Succulent Karoo hotspot of biodiversity which stretches along the southwestern side of South Africa and Namibia. Forty Whittaker plots were surveyed in the spring of 2005, in eight vegetation associations, to gather diversity data for the Hantam, Tanqua Karoo and Roggeveld areas. Seven plot sizes were used to construct species–area curves using three different models namely: the untransformed linear function, the power function and the exponential function. In general, the power and exponential functions produced a more significant fit to the data than the untransformed linear function. Linear regressions using environmental parameters indicated that altitude, mean annual precipitation and mean annual temperature were significant predictors of species richness at the 1, 10, 100 and 1000 m2 scales. To illustrate the variation in species–area curves and species richness across the landscape, a transect through the study area is discussed. The transect stretches eastwards from the Tanqua Karoo across the escarpment into the Roggeveld and crosses five different vegetation associations. Differences between associations were found in species richness in the 1000 m2 plots. Each association also produced species–area curves with their own characteristics. Slope values for the samples within an association did not differ significantly, although the intercept value often did. Comparisons between associations along the transect revealed significant differences in the slope value between the associations, except for the Dicerothamnus rhinocerotis Mountain Renosterveld which did not differ significantly from the associations bordering it on either side.  相似文献   

19.
Summary. Nuytsia floribunda (Labill.) R.Br. ex G.Don, a monotypic arborescent root hemiparasite endemic to the Southwest Australian Floristic Region, sister to all other showy mistletoes, is described and illustrated. A review is provided of its mythological and practical use by Noongar Aborigines, its discovery and early documentation by Europeans, and its phylogeny, biology, ecology and systematics. Experiences with its cultivation and propagation before and after it was discovered to be parasitic are discussed. Nuytsia provides a useful case study for testing many hypotheses developed in OCBIL theory, which aims to explain the evolution and ecology of, and best conservation practices for, biota on very old, climatically buffered, infertile landscapes (i.e. OCBILs), found especially in regions such as the Southwest Australian Floristic Region, the Greater Cape of South Africa and the Pantepui of Venezuela.  相似文献   

20.
The radiation of the Cape flora, southern Africa   总被引:4,自引:0,他引:4  
The flora of the south-western tip of southern Africa, the Cape flora, with some 9000 species in an area of 90,000 km2 is much more speciose than can be expected from its area or latitude, and is comparable to that expected from the most diverse equatorial areas. The endemism of almost 70%, on the other hand, is comparable to that found on islands. This high endemism is accounted for by the ecological and geographical isolation of the Cape Floristic Region, but explanations for the high species richness are not so easily found. The high species richness is accentuated when its taxonomic distribution is investigated: almost half of the total species richness of the area is accounted for by 33 'Cape floral clades'. These are clades which may have initially diversified in the region, and of which at least half the species are still found in the Cape Floristic Region. Such a high contribution by a very small number of clades is typical of island floras, not of mainland floras. The start of the radiation of these clades has been dated by molecular clock techniques to between 18 million years ago (Mya) (Pelargonium) and 8 Mya (Phylica), but only six radiations have been dated to date. The fossil evidence for the dating of the radiation is shown to be largely speculative. The Cenozoic environmental history of southern Africa is reviewed in search of possible triggers for the radiations, climatic changes emerge as the most likely candidate. Due to a very poor fossil record, the climatic history has to be inferred from larger scale patterns, these suggest large-scale fluctuations between summer wet (Palaeocene, Early Miocene) and summer dry climates (Oligocene, Middle Miocene to present). The massive speciation in the Cape flora might be accounted for by the diverse limitations to gene flow (dissected landscapes, pollinator specialisation, long flowering times allowing much phenological specialisation), as well as a richly complex environment providing a diversity of selective forces (geographically variable climate, much altitude variation, different soil types, rocky terrain providing many micro-niches, and regular fires providing both intermediate disturbances, as well as different ways of surviving the fires). However, much of this is based on correlation, and there is a great need for (a) experimental testing of the proposed speciation mechanisms, (b) more molecular clock estimates of the age and pattern of the radiations, and (c) more fossil evidence bearing on the past climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号