首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
It is not known how the Pacific hagfish (Eptatretus stoutii) can survive extended periods of anoxia. The present study used two experimental approaches to examine energy use during and following anoxic exposure periods of different durations (6, 24 and 36 h). By measuring oxygen consumption prior to anoxic exposure, we detected a circadian rhythm, with hagfish being active during night and showing a minimum routine oxygen consumption (RMR) during the daytime. By measuring the excess post-anoxic oxygen consumption (EPAOC) after 6 and 24 h it was possible to mathematically account for RMR being maintained even though heme stores of oxygen would have been depleted by the animal’s metabolism during the first hours of anoxia. However, EPAOC after 36 h of anoxia could not account for RMR being maintained. Measurements of tissue glycogen disappearance and lactate appearance during anoxia showed that the degree of glycolysis and the timing of its activation varied among tissues. Yet, neither measurement could account for the RMR being maintained during even the 6-h anoxic period. Therefore, two independent analyses of the metabolic responses of hagfish to anoxia exposure suggest that hagfish utilize metabolic rate suppression as part of the strategy for longer-term anoxia survival.  相似文献   

3.
The influence of acute temperature change and temperature acclimation on the sensitivity of contracture development to ryanodine were examined in the rainbow trout myocardium using two preparations: in vitro isolated ventricular strips and in situ working perfused hearts. Ryanodine effects in vitro were dependent on test temperature (8 and 18 °C), pacing frequency (0.2–1.5 Hz) and acclimation temperature (8 and 18 °C). At a pacing frequency of 0.2 Hz and a test temperature of 18 °C, ryanodine depressed isometric tension development in ventricular strips both from trout acclimated to 8 and 18 °C but the decrease was significantly greater in strips from 8 °C-acclimated trout. No ryanodine effect was observed in either acclimation group at a test temperature of 8°C. The effect of ryanodine in vitro was reduced or lost at pacing frequencies greater than 0.2 Hz and at 0.6 Hz ryanodine depressed tension development at 18 °C only in strips from 8 °C-acclimated trout. Ryanodine did not affect tension development at stimulation rates above 0.6 Hz in any test group. Likewise, ryanodine did not significantly impair cardiac performance of in situ working perfused heart preparations which operated at intrinsic beat frequencies in excess of 0.6 Hz. These results suggest that the sarcoplamic reticulum calcium release channel of the trout myocardium is expressed but is not functionally involved in beat-to-beat regulation of contractility at either (1) low temperature (8 °C), or (2) at routine physiological heart rate (>0.6 Hz). However, under conditions in which involvement of the sarcoplasmic reticulum is observed (18 °C and a heart rate < 0.6 Hz), prior acclimation to low temperature results in either a greater capacity of the sarcoplasmic reticulum to store releasable calcium or an increase in the amount of calcium that is in releasable form.Abbreviations bm body mass - E-C coupling, excitation-contraction coupling - IVS isometric ventricular strip - SR sarcoplasmic reticulum - TES N-tris[hydroxy-methyl]methyl-2-aminoethane sulfonic acid - WPH in situ working perfused heart  相似文献   

4.
Summary The effects of adrenaline on the development of force under anoxia and hypercapnic acidosis (13% CO2 in 30 mM HCO 3 ) were examined in isolated, electrically stimulated cardiac ventricle strips of rainbow trout and eel.During anoxia or acidosis applied 15 min in advance, the adrenaline concentration of the bathing solution was increased in 5 steps from 0 to 10–4 M with 5 min at each step. Before levelling off the contractile tension increased by 145±42% (mean±SE) in the anoxic, 80±14% in the acidotic and 152±41% in the control trout cardiac strips. Except for the acidotic strips the corresponding values tended to be lower for the eel strips being 46±9%, 57±17% and 57±9%, respectively. The inotropic affinity for adrenaline was lower in the trout than in the eel myocardium. For the trout myocardium it remained unchanged, while it decreased somewhat for the eel myocardium under anoxia or acidosis.Adding to the muscle bath 10–5 M adrenaline resulted in an increase in force development by about 90% for the trout myocardium and 50% for the eel myocardium. 5 min later anoxia or hypercapnic acidosis was applied for 30 min followed by 30 min at control conditions. Relative to the force values recorded just before anoxia or acidosis was applied, the changes in contractile force during these periods were the same with and without adrenaline. Thus adrenaline appears to have a persistent positive inotropic effect in the fish myocardium during and after oxygen lack or acidosis.  相似文献   

5.
Perfused rainbow trout Oncorhynchus mykiss hearts exposed to simulated exercise conditions (hypoxia, hyperkalemia and acidosis) at 18° C experienced complete failure of maximum cardiac performance at oxygen tensions <5·6 kPa and partial failure at <6·7 kPa. This hypoxic threshold, which occurred in the presence of maximal adrenergic stimulation (500 nM adrenaline), is unusually high compared with previous results at a colder acclimation temperature. Cardiac failure was primarily due to significant decreases ( P < 0·05) in heart rate rather than cardiac stroke volume at all hypoxia levels tested.  相似文献   

6.
Most vertebrates die within minutes when deprived of molecular oxygen (anoxia), in part because of cardiac failure, which can be traced to an inadequate matching of cardiac ATP supply to ATP demand. Cardiac power output (PO; estimated from the product of cardiac output and central arterial pressure and an indirect measure of cardiac ATP demand) is directly related to cardiac ATP supply up to some maximal level during both normoxia (ATP supply estimated from myocardial O(2) consumption) and anoxia (ATP supply estimated from lactate production rates). Thus, steady state PO provides an excellent means to examine anoxia tolerance strategies among ectothermic vertebrates by indicating a matching of cardiac glycolytic ATP supply and demand. Here, we summarize in vitro measurements of PO data from rainbow trout, freshwater turtles and hagfishes to provide a reasonable benchmark PO of 0.7 mW g(-1) for maximum glycolytic potential of ectothermic hearts at 15 degrees C, which corresponds to a glycolytic ATP turnover rate of about 70 nmol ATP g(-1) s(-1). Using this benchmark to evaluate in vivo PO data for hagfishes, carps and turtles, we identify two cardiac survival strategies, which in conjunction with creative waste management techniques to reduce waste accumulation, allow for long-term cardiac survival during anoxia in these anoxia-tolerant species. Hagfish and crucian carp exemplify a strategy of evolving such a low routine PO that routine cardiac ATP demand lies within the range of the maximum cardiac glycolytic potential. Common carp and freshwater turtles exemplify an active strategy of temporarily and substantially decreasing cardiac and whole body metabolism so that PO is below maximum cardiac glycolytic potential during chronic anoxia despite being quite close to this potential under normoxia.  相似文献   

7.
Heat shock proteins (HSPs) may play a cardioprotective role during hypoxia or ischemia. We hypothesized that cardiac tissue from hypoxia-tolerant animals might have high levels of specific HSPs. We measured myocardial HSP60 and HSP72/73 in painted and softshell turtles during normoxia and anoxia (12 h) and after recovery (12 or 24 h). We also measured myocardial HSPs in normoxic rats and rabbits. During normoxia, hearts from the most highly anoxia-tolerant species, the painted turtle, expressed the highest levels of HSP60 (22.6+/-2.0 mg/g total protein) followed by softshells (11.5+/-0.8 mg/g), rabbits (6.8+/-0.9 mg/g), and rats (4.5+/-0.5 mg/g). HSP72/73 levels, however, were not significantly different. HSP60 levels in hearts from both painted and softshell turtles did not deviate significantly from control values after either 12 h of anoxia or 12 or 24 h of recovery. The pattern of changes observed in HSP72/73 was quite different in the two turtle species. In painted turtles anoxia induced a significant increase in myocardial HSP72/73 (from 2.8+/-0.1 mg/g normoxic to 3.9+/-0.2 mg/g anoxic, P<0.05). By 12 h of recovery, HSP72/73 had returned to control levels (2.7+/-0.1 mg/g) and remained there through 24 h (2.6+/-0.2 mg/g). In softshell turtles, HSP72/73 decreased significantly after 12 h of anoxia (from 2.4+/-0.4 mg/g normoxic to 1.3+/-0.2 mg/g anoxic, P<0.05). HSP72/73 levels were still slightly below control after 12 h of recovery (2.1+/-0.1 mg/g) and then rose to significantly above control after 24 h of recovery (4.1+/-0.7 mg/g, P<0.05). We also conclude that anoxia-tolerant and anoxia-sensitive turtles exhibit different patterns of myocardial HSP changes during anoxia and recovery. Whether these changes correlate with their relative degrees of anoxia tolerance remains to be determined.  相似文献   

8.
Isolated Langendorff-perfused rat hearts after 10 minutes preperfusion, were subjected to a substrate-free anoxic perfusion (20 minutes) followed by 20 minutes reperfusion with a glucose-containing oxygen-balanced medium. Under the same perfusion conditions, the effect of exogenous 5mM fructose-1, 6-bisphosphate has been investigated. The xanthine dehydrogenase to xanthine oxidase ratio, concentrations of high-energy phosphates and the TBA-reactive material (TBARS) were determined at the end of each perfusion period in both control and fructose-1, 6-bisphosphate-treated hearts. Results indicate that anoxia induces the irreversible transformation of xanthine dehydrogenase into oxidase as a consequence of the sharp decrease of the myocardial energy metabolism. This finding is supported by the protective effect exerted by exogenous fructose-1, 6-bisphosphate which is able to maintain the correct xanthine dehydrogenase/oxidase ratio by preventing the depletion of phosphorylated compounds during anoxia. Moreover, in control hearts, the release oflactate dehydrogenase during reperfusion, is paralleled by a 50% increase in the concentration of tissue TBARS. On the contrary, in fructose-1, 6-bisphosphate-treated hearts this concentration does not significantly change after reoxygenation, while a slight but significant increase of lactate dehydrogenase activity in the perfusates is observed.

On the whole these data indicate a direct contribution of oxygen-derived free radicals to the worsening of post-anoxic hearts. A hypothesis on the mechanism of action of fructose-1, 6-bisphosphate in anoxic and reperfused rat heart and its possible application in the clinical therapy of myocardial infarction are presented.  相似文献   

9.
The maximum values for heart rate ( f H), stroke volume ( V H), cardiac output ( Q ) and myocardial power output, measured in vitro with a perfused heart preparation, as well as the isometric force-frequency relationship for atrial and ventricular muscle strips, in triploid brown trout Salmo trutta were all comparable with established information for diploid rainbow trout Oncorhynchus mykiss . Therefore, it was concluded that triploidy is not associated with a major deficiency in maximum cardiac performance. However, a heightened sensitivity to ryanodine was discovered, which indicated an enhanced role for the sarcoplasmic reticulum in excitation-contraction coupling in these triploid fish. It is suspected that the enhanced role of the ryanodine receptor may be a cellular compensation related to larger cardiac myocytes. It was also clearly established that there was a plateau in maximum cardiac performance between 14 and 18° C and this plateau might be a contributing factor to the reduced factorial aerobic scope and increased fish mortality observed at 18° C.  相似文献   

10.
Studies with the isolated perfused working rat heart were carried out to investigate factors that may enable the heart to recover after periods of anoxia. It was found that the presence of glucose in the perfusion fluid during anoxia was essential for complete post-anoxic recovery and the presence of a high concentration of K(+) increased not only the rate of recovery but also the final extent of recovery. In an attempt to clarify the roles played by glucose and K(+) in aiding the survival and recovery of the anoxic myocardium the concentrations of parameters associated with energy liberation and anaerobic glycolysis (ATP, ADP, AMP, P(i), creatine phosphate, glycogen and lactate) were measured in the presence and absence of glucose during the anoxic phase. Determinations of these parameters were carried out during the working aerobic control period, the anoxic period (K(+) arrest) and the recovery period. The results demonstrated that glucose acted as an energy source during anoxia and thus maintained myocardial concentrations of high-energy phosphates, particularly ATP. These studies have also shown a direct relationship between the ability of the heart to recover and the concentration of myocardial ATP at the time of reoxygenation.  相似文献   

11.
The crucian carp (Carassius carassius) seems unique among vertebrates in its ability to maintain cardiac performance during prolonged anoxia. We investigated whether this phenomenon arises in part from a myocardium tolerant to severe acidosis or because the anoxic crucian carp heart may not experience a severe extracellular acidosis due to the fish's ability to convert lactate to ethanol. Spontaneously contracting heart preparations from cold-acclimated (6-8°C) carp were exposed (at 6.5°C) to graded or ungraded levels of acidosis under normoxic or anoxic conditions and intrinsic contractile performance was assessed. Our results clearly show that the carp heart is tolerant of acidosis as long as oxygen is available. However, heart rate and contraction kinetics of anoxic hearts were severely impaired when extracellular pH was decreased below 7.4. Nevertheless, the crucian carp heart was capable of recovering intrinsic contractile performance upon reoxygenation regardless of the severity of the anoxic + acidotic insult. Finally, we show that increased adrenergic stimulation can ameliorate, to a degree, the negative effects of severe acidosis on the intrinsic contractile properties of the anoxic crucian carp heart. Combined, these findings indicate an avoidance of severe extracellular acidosis and adrenergic stimulation are two important factors protecting the intrinsic contractile properties of the crucian carp heart during prolonged anoxia, and thus likely facilitate the ability of the anoxic crucian carp to maintain cardiac pumping.  相似文献   

12.
We compared effects of a critical neonatal anoxia, applied in Wistar rats at body temperatures of 33, 37 and 39 °C, on memory performance in adulthood. Because hyperthermic–anoxic neonates suffer from hyperferremia an additional group of rats, exposed to anoxia at 39 °C, was injected with deferoxamine, a chelator of iron. At the age of 4 and 12 months all rats were examined in hole board, typical maze and Morris maze.  相似文献   

13.
Aquatic oligochaetes are well known for their ability to resist prolonged periods of anoxia. In fact, the observed mortality is more likely to result from laboratory stress (unnatural sediment, starvation, accumulation of toxic substances) than from lack of oxygen per se. Lumbriculus variegatus feeds under anoxia at 6°C at a low rate and survives more than 40 days. A sudden transfer into anoxic water, however, results in a cessation of defaecation before the gut is half emptied, whereas the gut is completely emptied under aerobic conditions within 8–10 hours (11°C).Anoxic heat dissipation as measured by direct calorimetry is reduced by up to 80% relative to aerobic rates. The basal rate of oxygen uptake is independent of PO2 above 3 kPa (15% air saturation), but the active rate shows a high degree of oxygen conformity. Whereas the theoretical oxycaloric equivalent yields an accurate estimation of aerobic heat dissipation in Lumbriculus, anoxic catabolism of glycogen explains only up to 60% of the directly measured rates of anoxic heat dissipation in Lumbriculus and Tubifex. Since unknown bioenergetic processes may be important under anoxia, direct calorimetry is required to assess total rates of energy expenditure in anoxic oligochaetes.  相似文献   

14.
Recent investigations concentrate on the correlation between the myocardial expression of the inducible 70-kDa heat shock protein (HSP70i) by different stress conditions and its possible protective effects. Only few studies have focused on the involvement of small heat shock proteins in this process. We analyzed the location of the small heat shock protein HSP25 in isolated cardiomyocytes as well as its location and induction in isolated perfused hearts of rats. By immunofluorescence microscopy HSP25 was found to colocalize with actin in the I-band of myofibrils in cardiomyocytes of isolated perfused hearts as well as in isolated neonatal and adult cardiomyocytes. Hyperthermic perfusion of isolated hearts for 45 min resulted in modulation of different parameters of heart function and in induction of HSP25 and HSP70i. Temperatures higher than 43°C (44–46°C) were lethal with respect to the contractile function of the hearts. Compared to control hearts perfused at 37°C, significant increases during hyperthermic perfusion at 42°C and 43°C were obtained for heart rate, contraction velocity and relaxation velocity. In response to hyperthermia at 43°C and after subsequent normothermic perfusion for 135 min at 37°C, left ventricular pressure, contraction velocity and relaxation velocity remained significantly elevated. However, heart rate returned to control values immediately after the period of heat treatment. HSP25 is constitutively expressed even in normothermic perfused hearts as shown by Western blotting. Hyperthermia increased the content of HSP25 only in the left ventricular tissue. In contrast, HSP70i was strongly induced in all analyzed parts of the myocardium (left ventricle, right ventricle, septum). Our findings suggest a differential regulation of HSP25 and HSP70i expression in response to hyperthermia in isolated perfused hearts. The constitutively expressed HSP25 seems to be located adjacent to the myofibrils which implies a specific role of this protein even under unstressed conditions for the contractile function of the myocardium.  相似文献   

15.
Encysted embryos of the brine shrimp, Artemia franciscana, exhibit extraordinary longevity when exposed to continuous anoxia. To explore the metabolic basis of this ability, the post-anoxic respiration of embryos exposed to anoxia for periods exceeding 1 year was measured. Since anoxic metabolism might result in the accumulation of metabolic end products, an O2 debt would be expected. Contrary to that expectation, post-anoxic embryos exhibited a marked depression in respiration rate whether embryos were hydrated under anoxic conditions or were exposed to a previous aerobic incubation and then placed under anoxia. These results, and those of previous studies, suggest that extended anoxia may bring the metabolism of these embryos to a reversible standstill.  相似文献   

16.
Summary The blood oxygen binding properties and gill secondary lamellar structure of rainbow trout acclimated to several temperatures were studied. The blood oxygen carrying capacity decreased as acclimation temperature increased from 2 to 15 °C; the decrease was probably caused by an increase in plasma volume. Also the blood oxygen affinity decreased as the acclimation temperature increased from 2 to 15 °C. This change had no effect on the oxygen loading in gills, since the efferent arterial oxygen tension was adequate for approximately 100% erythrocytic O2 saturation at all acclimation temperatures, but facilitated the oxygen unloading in tissues. At the highest acclimation temperature (18 °C) the oxygen loading in gills was facilitated by the changes in the secondary lamellar structure; the proportion of erythrocytes in the secondary lamellar capillaries was higher than at the other acclimation temperatures (2 and 10 °C).  相似文献   

17.
The glycolytic pathway seems to be coupled to the aerobic performance in mammalian cardiac muscle. Because many conditions are different in ectotherms, its influence on twitch force and resting force was recorded at 15 degrees C in isometric ventricular preparations from rainbow trout. To reduce glycolytic activity, preparations were exposed to 0.4 mmol l(-1) iodoacetate for 35 min or alternatively to 120 min anoxia in a glucose-free solution containing 10 &mgr;mol l(-1) adrenaline in an attempt to remove glycolytic substrates. The anoxic period was followed by recovery in an oxygenated solution containing aerobic substrates but no glucose. Control experiments indicated that this treatment, like iodoacetate, inhibits glycolysis, although glycogen was reduced by one half only. In fully oxygenated preparations with access to mitochondrial substrates, both attempts to reduce glycolytic activity tended to increase both resting force and the reductions in twitch force during high activity imposed by high stimulation rates and exposure to 10 &mgr;mol l(-1) adrenaline. Thus, the glycolytic pathway appears to be of specific importance under aerobic conditions also in the heart of ectotherms. J. Exp. Zool. 293:360-367, 2002.  相似文献   

18.
Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/reperfusion injury. Recently, mitochondrial BK channels (mitoBKs) in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mitoBKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK−/− cardiomyocytes. Transmission electron microscopy of BK−/− ventricular muscles fibres showed normal ultra-structures and matrix dimension, but oxidative phosphorylation capacities at normoxia and upon re-oxygenation after anoxia were significantly attenuated in BK−/− permeabilized cardiomyocytes. In the absence of BK, post-anoxic reactive oxygen species (ROS) production from cardiomyocyte mitochondria was elevated indicating that mitoBK fine-tune the oxidative state at hypoxia and re-oxygenation. Because ROS and the capacity of the myocardium for oxidative metabolism are important determinants of cellular survival, we tested BK−/− hearts for their response in an ex-vivo model of ischemia/reperfusion (I/R) injury. Infarct areas, coronary flow and heart rates were not different between wild-type and BK−/− hearts upon I/R injury in the absence of ischemic pre-conditioning (IP), but differed upon IP. While the area of infarction comprised 28±3% of the area at risk in wild-type, it was increased to 58±5% in BK−/− hearts suggesting that BK mediates the beneficial effects of IP. These findings suggest that cardiac BK channels are important for proper oxidative energy supply of cardiomyocytes at normoxia and upon re-oxygenation after prolonged anoxia and that IP might indeed favor survival of the myocardium upon I/R injury in a BK-dependent mode stemming from both mitochondrial post-anoxic ROS modulation and non-mitochondrial localizations.  相似文献   

19.

Background  

The soil nematode C. elegans survives oxygen-deprived conditions (anoxia; <.001 kPa O2) by entering into a state of suspended animation in which cell cycle progression reversibly arrests. The majority of blastomeres of embryos exposed to anoxia arrest at interphase, prophase and metaphase. The spindle checkpoint proteins SAN-1 and MDF-2 are required for embryos to survive 24 hours of anoxia. To further investigate the mechanism of cell-cycle arrest we examined and compared sub-nuclear changes such as chromatin localization pattern, post-translational modification of histone H3, spindle microtubules, and localization of the spindle checkpoint protein SAN-1 with respect to various anoxia exposure time points. To ensure analysis of embryos exposed to anoxia and not post-anoxic recovery we fixed all embryos in an anoxia glove box chamber.  相似文献   

20.
K E Nielsen  H Gesser 《Life sciences》1983,32(13):1437-1442
Electrically paced atrial strips of hearts from rat and rainbow trout were exposed to increasing extracellular Ca2+ concentration, [Ca2+]o. This resulted in increases in the peak force in oxygenated atria from both species. During anoxia this response was suppressed for the rat, but accentuated for trout atrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号