首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pluripotent embryonic stem (ES) cells are the most versatile cells, with the potential to differentiate into all types of cell lineages including neural precursor cells (NPCs), which can be expanded in large numbers for significant periods of time to provide a reliable cell source for transplantation in neurodegenerative disorders such as Parkinson’s disease (PD). In the present study, we used the MESPU35 mouse ES cell line, which expresses enhanced green fluorescent protein that enables one to distinguish between transplanted cells and cells of host origin. Embryoid bodies (EBs) were formed and were induced to NPCs in N2 selection medium plus fibronectin. Praxiology and immunohistochemistry methods were used to observe the survival, differentiation, and therapeutic effect of NPCs after grafted into the striatum of PD rats. We found that mouse ESc were differentiated into nestin-positive NPCs 6 days after the EBs formed and cultured in the N2 selection medium. The number of survival NPCs was increased significantly by fibronectin. About 23.76 ± 2.29% of remaining cells were tyrosine hydroxylase (TH)-positive 12 days after NPCs were cultured in N2 selective medium. The survival rates of NPCs were 2.10 ± 0.41% and about 90.90 ± 3.00% of the engrafted NPCs were TH-positive 6 weeks after transplantation into the striatum of PD rats. The rotation of PD rats was relieved 3 weeks after the NPCs transplantation and this effect was kept for at least 6 weeks. It suggests that most of the survival NPCs derived from ES cells differentiated into TH-positive neurons after grafted into the striatum of PD rats, which produces therapeutic effect on PD.  相似文献   

2.
Differentiation of monkey embryonic stem cells into neural lineages   总被引:5,自引:0,他引:5  
Embryonic stem (ES) cells are self-renewing, pluripotent, and capable of differentiating into all of the cell types found in the adult body. Therefore, they have the potential to replace degenerated or damaged cells, including those in the central nervous system. For ES cell-based therapy to become a clinical reality, translational research involving nonhuman primates is essential. Here, we report monkey ES cell differentiation into embryoid bodies (EBs), neural progenitor cells (NPCs), and committed neural phenotypes. The ES cells were aggregated in hanging drops to form EBs. The EBs were then plated onto adhesive surfaces in a serum-free medium to form NPCs and expanded in serum-free medium containing fibroblast growth factor (FGF)-2 before neural differentiation was induced. Cells were characterized at each step by immunocytochemistry for the presence of specific markers. The majority of cells in complex/cystic EBs expressed antigens (alpha-fetal protein, cardiac troponin I, and vimentin) representative of all three embryonic germ layers. Greater than 70% of the expanded cell populations expressed antigenic markers (nestin and musashi1) for NPCs. After removal of FGF-2, approximately 70% of the NPCs differentiated into neuronal phenotypes expressing either microtubule-associated protein-2C (MAP2C) or neuronal nuclear antigen (NeuN), and approximately 28% differentiated into glial cell types expressing glial fibrillary acidic protein. Small populations of MAP2C/NeuN-positive cells also expressed tyrosine hydroxylase (approximately 4%) or choline acetyltransferase (approximately 13%). These results suggest that monkey ES cells spontaneously differentiate into cells of all three germ layers, can be induced and maintained as NPCs, and can be further differentiated into committed neural lineages, including putative neurons and glial cells.  相似文献   

3.
目的探索骨髓间充质干细胞(BMSCs)移植到帕金森病(Parkinson’s disease,PD)大鼠毁损侧黑质内,PD模型大鼠的姿势不对称性和黑质及纹状体内酪氨酸羟化酶(tyrosinehy droxylase,TH)表达的改变,以及BM—SCs在大鼠脑内的存活、分化情况。方法黑质、前脑内侧束两点法注射6一羟多巴胺(6-OHDH)并行为学分析筛选PD模型大鼠。将PD模型大鼠随机分为移植组和对照组。BMSCs移植术后4周和8周,观察大鼠姿势不对称性,免疫组织化学及免疫荧光显色方法检测黑质和纹状体酪氨酸羟化酶(tyrosine hydroxylase,TH)的表达变化以及BMSCs在大鼠体内的存活、迁移及分化情况。结果BMSCs黑质内移植可使PD模型大鼠的转动频率由(10.62±2.97)r/min降至(4.65±1.08)r/min(P〈0.01),显著增加毁损侧黑质TH阳性细胞数量和纹状体内TH阳性纤维密度。BMSCs在大鼠黑质内可以存活至少8周,部分细胞分化为神经干细胞、神经元和神经胶质细胞。结论黑质内移植BMSCs对PD模型大鼠有一定的治疗作用。  相似文献   

4.
The present study investigates the survival and fate of neural stem cells/progenitor cells (NSC/NPCs) homografted into the hippocampus of rats treated with trimethyltin (TMT), a potent neurotoxicant considered a useful tool to obtain a well characterized model of neurodegeneration, to evaluate their possible role in the reparative mechanisms that accompany neurodegenerative events. NSC/NPCs expressing eGFP by lentivirus-mediated infection were stereotaxically grafted into the hippocampus of TMT-treated animals and controls. Two weeks after transplantation surviving NSC/NPCs were detectable in 60% of TMT-treated animals and 30% of controls, while 30 days after transplantation only 40% of TMT-treated animals showed surviving grafted cells, which were undetectable in controls. At both times investigated, while grafted NSC/NPCs differentiated into neurons or astrocytes could be observed in addition to undifferentiated NSC/NPCs, we did not find evidence of structural integration of grafted cells into the main site of hippocampal lesion leading to appreciable repair. Maria Concetta Geloso and Stefano Giannetti contributed equally to this work.  相似文献   

5.
蒋芝华  倪紫美 《生理学报》1997,49(2):141-145
用成年大鼠75只,给右侧黑质区注射6-羟基多巴胺(6-OHDA),损毁黑质多巴胺能神经元,制备偏侧帕金森氏病(PD)鼠模型。四周后,注射阿朴吗啡(APO)诱发大鼠向左侧旋转。旋转数为每分钟7次以上的35只PD鼠作实验用。其中实验组15只,对照组20只。向实验组PD鼠右侧纹状体多点植入含大鼠酪氨酸羟化酶cDNA(THcDNA)的真核表达载体pSVK3-TH和脂质体Lipofectin混合的基因转染复  相似文献   

6.
Human embryonic stem (ES) cells have the capacity for self-renewal and are able to differentiate into any cell type. However, obtaining high-efficient neural differentiation from human ES cells remains a challenge. This study describes an improved 4-stage protocol to induce a human ES cell line derived from a Chinese population to differentiate into neural cells. At the first stage, embryonic bodies (EBs) were formed in a chemically-defined neural inducing medium rather than in traditional serum or serum-replacement medium. At the second stage, rosette-like structures were formed. At the third stage, the rosette-like structures were manually selected rather than enzymatically digested to form floating neurospheres. At the fourth stage, the neurospheres were further differentiated into neurons. The results show that, at the second stage, the rate of the formation of rosette-like structures from EBs induced by noggin was 88+/-6.32%, higher than that of retinoic acid 55+/-5.27%. Immunocytochemistry staining was used to confirm the neural identity of the cells. These results show a major improvement in obtaining efficient neural differentiation of human ES cells.  相似文献   

7.
Monkey embryonic stem (ES) cells have characteristics that are similar to human ES cells, and might be useful as a substitute model for preclinical research. When embryoid bodies (EBs) formed from monkey ES cells were cultured, expression of many hepatocyte-related genes including cytochrome P450 (Cyp) 3a and Cyp7a1 was observed. Hepatocytes were immunocytochemically observed using antibodies against albumin (ALB), cytokeratin-8/18, and α1-antitrypsin in the developing EBs. The in vitro differentiation potential of monkey ES cells into the hepatic lineage prompted us to examine the transplantability of monkey EB cells. As an initial approach to assess the repopulation potential, we transplanted EB cells into immunodeficient urokinase-type plasminogen activator transgenic mice that undergo liver failure. After transplantation, the hepatocyte colonies expressing monkey ALB were observed in the mouse liver. Fluorescence in-situ hybridization revealed that the repopulating hepatocytes arise from cell fusion between transplanted monkey EB cells and recipient mouse hepatocytes. In contrast, neither cell fusion nor repopulation of hepatocytes was observed in the recipient liver after undifferentiated ES cell transplantation. These results indicate that the differentiated cells in developing monkey EBs, but not contaminating ES cells, generate functional hepatocytes by cell fusion with recipient mouse hepatocytes, and repopulate injured mouse liver.  相似文献   

8.
Embryonic stem (ES) cells have the potential to develop into any type of tissue and are considered as a promising source of seeding cells for tissue engineering and transplantation therapy. The main catalyst for ES cells differentiation is the growth into embryoid bodies (EBs), which are utilized widely as the trigger of in vitro differentiation. In this study, a novel method for generating EBs from mouse ES cells through culture in collagen/Matrigel scaffolds was successfully established. When single ES cells were seeded in three dimensional collagen/Matrigel scaffolds, they grew into aggregates gradually and formed simple EBs with circular structures. After 7 days' culture,they formed into cystic EBs that would eventually differentiate into the three embryonic germ layers. Evaluation of the EBs in terms of morphology and potential to differentiate indicated that they were typical in structure and could generate various cell types; they were also able to form into tissue-like structures. Moreover, with introduction of ascorbic acid, ES cells differentiated into cardiomyocytes efficiently and started contracting synchronously at day 19. The results demonstrated that collagen/Matrigel scaffolds supported EBs formarion and their subsequent differentiation in a single three dimensional environment.  相似文献   

9.
Hepatic differentiation of mouse ES cells into BE cells in vitro   总被引:1,自引:0,他引:1  
  相似文献   

10.
We report the generation of functional dopaminergic neurons from human embryonic stem cells (hESCs) using a growth factor mediated multistep EB protocol and its therapeutic effects in vivo. Embryoid bodies (EBs) were cultured in insulin-transferrin-selenium fibronectin (ITSFn) media for the selection of neural precursor cells (NPC). The selected cells on exposure to N2 media supplemented with EGF, bFGF initially aggregated to generate spontaneous free floating neurospheres and on exposure to signaling molecules Shh and FGF-8 differentiated into dopaminergic neurons (40% TH+ cells/total neurons). The differentiated NPC expressed dopaminergic specific markers both at cellular and molecular levels. They secreted detectable levels of dopamine into the culture supernatant. The most unique feature of our protocol is the generation of free floating neurospheres which can be expanded for a longer period without losing their capability to differentiate into DA neurons. Further, transplantation of NPCs into the substantia nigra of 6-OHDA lesioned rat model of Parkinson’s disease elicited significant reversal of lesion induced motor deficits which was sustained upto the end of 1 year long study period. Immunohistochemical studies of the grafted area one year post transplantation revealed that transplanted hESC derived neural precursor cells survived, integrated in vivo and differentiated into dopaminergic neurons without teratoma formation.In summary, our results encourage the potential use of hESC derived dopaminergic neurons for future clinical application in Parkinson’s disease.  相似文献   

11.
The purpose of this study was to evaluate the utility of human adipose stem cells derived from the buccal fat pad (hBFP-ASCs) for nerve regeneration. Parkinson’s disease (PD) is a neurodegenerative disorder characterized by progressive death of dopaminergic neurons. PD is a candidate disease for cell replacement therapy because it has no fundamental therapeutic methods. We examined the properties of neural-related cells induced from hBFP-ASCs as a cell source for PD treatment. hBFP-ASCs were cultured in neurogenic differentiation medium for about 2 weeks. After the morphology of hBFP-ASCs changed to neural-like cells, the medium was replaced with neural maintenance medium. Cells differentiated from hBFP-ASCs showed neuron-like structures and expressed neuron markers (β3-tubulin, neurofilament 200, and microtubule-associated protein 2), an astrocyte marker (glial fibrillary acidic protein), or dopaminergic neuron-related marker (tyrosine hydroxylase). Induced neural cells were transplanted into a 6-hydroxydopamine (6-OHDA)-lesioned rat hemi-parkinsonian model. At 4 weeks after transplantation, 6-OHDA-lesioned rats were subjected to apomorphine-induced rotation analysis. The transplanted cells survived in the brain of rats as dopaminergic neural cells. No tumor formation was found after cell transplantation. We demonstrated differentiation of hBFP-ASCs into neural cells, and that transplantation of these neural cells improved the symptoms of model rats. Our results suggest that neurons differentiated from hBFP-ASCs would be applicable to cell replacement therapy of PD.  相似文献   

12.
13.
Embryonic stem cells (ESC) transplantation is a potential therapeutic approach for Parkinson's disease (PD). However, one of the main challenges to this therapy is the post-transplantation survival of dopaminergic (DA) neurons. In this study, mouse ESC were differentiated into DA neurons by a modified serum free protocol. These ESC-derived neurons were then transplanted into striatum of 6-OHDA lesioned rat. The viability of grafted DA neurons was decreased, accompanied by activated microglia and high levels of proinflammatory factors, such as TNF-α and iNOS, in the graft niche. This suggested that the local neuroinflammation might be involved in the reduced cells viability. Selenite, the source of essential micronutrient selenium, could inhibit NF-κB p65 nuclear translocation and subsequently reduce iNOS, COX-2 and TNF-α expression in LPS-treated BV2 cells in a dose dependant manner. Before the transplantation of ESC-derived DA neurons, 6-OHDA lesioned rats were intraperitoneally injected with selenite. The expression levels of TNF-α and iNOS were decreased by 30% and 50%, respectively, in selenite treated group. The survival of implanted DA neurons and the rotational behavior of transplanted rats were also remarkably improved by selenite treatment. To sum up, selenite might benefit ESCs transplantation therapy in PD through anti-inflammation effects.  相似文献   

14.
Embryonic stem (ES) cells are pluripotent cells capable of differentiating into cell lineages derived from all primary germ layers including neural cells. In this study we describe an efficient method for differentiating rhesus monkey ES cells to neural lineages and the subsequent isolation of an enriched population of Nestin and Musashi positive neural progenitor (NP) cells. Upon differentiation, these cells exhibit electrophysiological characteristics resembling cultured primary neurons. Embryoid bodies (EBs) were formed in ES growth medium supplemented with 50% MEDII. After 7 days in suspension culture, EBs were transferred to adherent culture and either differentiated in serum containing medium or expanded in serum free medium. Immunocytochemistry on differentiating cells derived from EBs revealed large networks of MAP-2 and NF200 positive neurons. DAPI staining showed that the center of the MEDII-treated EBs was filled with rosettes. NPs isolated from adherent EB cultures expanded in serum free medium were passaged and maintained in an undifferentiated state by culture in serum free N2 with 50% MEDII and bFGF. Differentiating neurons derived from NPs fired action potentials in response to depolarizing current injection and expressed functional ionotropic receptors for the neurotransmitters glutamate and gamma-aminobutyric acid (GABA). NPs derived in this way could serve as models for cellular replacement therapy in primate models of neurodegenerative disease, a source of neural cells for toxicity and drug testing, and as a model of the developing primate nervous system.  相似文献   

15.
Embryonic stem (ES) cells have tremendous potential as a cell source for cell-based therapies. Realization of that potential will depend on our ability to understand and manipulate the factors that influence cell fate decisions and to develop scalable methods of cell production. We compared four standard ES cell differentiation culture systems by measuring aspects of embryoid body (EB) formation efficiency and cell proliferation, and by tracking development of a specific differentiated tissue type-blood-using functional (colony-forming cell) and phenotypic (Flk-1 and CD34 expression) assays. We report that individual murine ES cells form EBs with an efficiency of 42 +/- 9%, but this value is rarely obtained because of EB aggregation-a process whereby two or more individual ES cells or EBs fuse to form a single, larger cell aggregate. Regardless of whether EBs were generated from a single ES cell in methylcellulose or liquid suspension culture, or aggregates of ES cells in hanging drop culture, they grew to a similar maximum cell number of 28,000 +/- 9,000 cells per EB. Among the three methods for EB generation in suspension culture there were no differences in the kinetics or frequency of hematopoietic development. Thus, initiating EBs with a single ES cell and preventing EB aggregation should allow for maximum yield of differentiated cells in the EB system. EB differentiation cultures were also compared to attached differentiation culture using the same outputs. Attached colonies were not similarly limited in cell number; however, hematopoietic development in attached culture was impaired. The percentage of early Flk-1 and CD34 expressing cells was dramatically lower than in EBs cultured in suspension, whereas hematopoietic colony formation was almost completely inhibited. These results provide a foundation for development of efficient, scalable bioprocesses for ES cell differentiation, and inform novel methods for the production of hematopoietic tissues.  相似文献   

16.
Embryoid bodies (EBs) are used as in vitro model to study early extraembryonic tissue formation and differentiation. In this study, a novel method using three dimensional extracellular matrices for in vitro generation of EBs from buffalo embryonic stem (ES) cells and its differentiation potential by teratoma formation was successfully established. In vitro derived inner cell masses (ICMs) of hatched buffalo blastocyst were cultured on buffalo fetal fibroblast feeder layer for primary cell colony formation. For generation of EBs, pluripotent ES cells were seeded onto four different types of extracellular matrices viz; collagen-IV, laminin, fibronectin and matrigel using undifferentiating ES cell culture medium. After 5days of culture, ESCs gradually grew into aggregates and formed simple EBs having circular structures. Twenty-six days later, they formed cystic EBs over collagen matrix with higher EBs formation and greater proliferation rate as compared to other extracellular matrices. Studies involving histological observations, fluorescence microscopy and RT-PCR analysis of the in vivo developed teratoma revealed that presence of all the three germ layer derivatives viz. ectoderm (NCAM), mesoderm (Flk-1) and endoderm (AFP). In conclusion, the method described here demonstrates a simple and cost-effective way of generating EBs from buffalo ES cells. Collagen-IV matrix was found cytocompatible as it supported buffalo EBs formation, their subsequent differentiation could prove to be useful as promising candidate for ES cells based therapeutic applications.  相似文献   

17.
Embryonic stem (ES) cells have the potential to differentiate into all cell types and are considered as a valuable source of cells for transplantation therapies. A critical issue, however, is the risk of teratoma formation after transplantation. The effect of the immune response on the tumorigenicity of transplanted cells is poorly understood. We have systematically compared the tumorigenicity of mouse ES cells and in vitro differentiated neuronal cells in various recipients. Subcutaneous injection of 1x10(6) ES or differentiated cells into syngeneic or allogeneic immunodeficient mice resulted in teratomas in about 95% of the recipients. Both cell types did not give rise to tumors in immunocompetent allogeneic mice or xenogeneic rats. However, in 61% of cyclosporine A-treated rats teratomas developed after injection of differentiated cells. Undifferentiated ES cells did not give rise to tumors in these rats. ES cells turned out to be highly susceptible to killing by rat natural killer (NK) cells due to the expression of ligands of the activating NK receptor NKG2D on ES cells. These ligands were down-regulated on differentiated cells. The activity of NK cells which is not suppressed by cyclosporine A might contribute to the prevention of teratomas after injection of ES cells but not after inoculation of differentiated cells. These findings clearly point to the importance of the immune response in this process. Interestingly, the differentiated cells must contain a tumorigenic cell population that is not present among ES cells and which might be resistant to NK cell-mediated killing.  相似文献   

18.
Definitive mesoderm arises from a bipotent mesendodermal population, and to study processes controlling its development at this stage, embryonic stem (ES) cells can be employed. SHB (Src homology 2 protein in beta-cells) is an adapter protein previously found to be involved in ES cell differentiation to mesoderm. To further study the role of SHB in this context, we have established ES cell lines deficient for one (SHB+/-) or both SHB alleles (SHB-/-). Differentiating embryoid bodies (EBs) derived from these ES cell lines were used for gene expression analysis. Alternatively, EBs were stained for the blood vessel marker CD31. For hematopoietic differentiation, EBs were differentiated in methylcellulose. SHB-/- EBs exhibited delayed down-regulation of the early mesodermal marker Brachyury. Later mesodermal markers relatively specific for the hematopoietic, vascular, and cardiac lineages were expressed at lower levels on day 6 or 8 of differentiation in EBs lacking SHB. The expression of vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 was also reduced in SHB-/- EBs. SHB-/- EBs demonstrated impaired blood vessel formation after vascular endothelial growth factor stimulation. In addition, the SHB-/- ES cells formed fewer blood cell colonies than SHB+/+ ES cells. It is concluded that SHB is required for appropriate hematopoietic and vascular differentiation and that delayed down-regulation of Brachyury expression may play a role in this context.  相似文献   

19.
骨髓间充质干细胞源神经细胞移植治疗帕金森病大鼠模型   总被引:1,自引:0,他引:1  
目的探讨骨髓间充质干细胞(mesenchymal stemcells,MSCs)源神经细胞脑内移植对帕金森病(Parkinson s disease,PD)大鼠的治疗作用。方法贴壁培养法分离、培养大鼠骨髓MSCs,脑匀浆上清诱导第3代MSCs向神经细胞分化,采用免疫细胞化学法鉴定诱导分化后细胞的性质,激光共聚焦显微镜检测诱导前后细胞Ca2+浓度变化,6只PD大鼠行纹状体内MSCs源神经细胞移植作为细胞移植组,6只PD大鼠作为对照组。细胞移植术后4周检测PD大鼠的行为变化,观察移植细胞在脑内的分布情况。结果倒置显微镜下可见MSCs呈纺锤形和多角形,有1~2个核仁,MSCs经脑匀浆上清诱导后其胞体折光性增强,发出数个细长突起,互相交织成网,有的似轴突。诱导后细胞表达神经元特异性标志物神经元特异性烯醇化酶(NSE)和神经丝蛋白(NF),胞质Ca2+荧光强度显著增强,可推测诱导后的细胞为MSCs源神经细胞,将BrdU标记的MSCs源神经细胞移植到PD大鼠纹状体治疗4周后,可见细胞散在分布于注射侧脑组织,有少量细胞可迁移到对侧脑组织,PD大鼠的旋转行为得到显著改善。结论MSCs源神经细胞移植治疗帕金森病大鼠可使其旋转行为得到改善。  相似文献   

20.
Dr. Robert K. Yu’s research showed for the first time that the composition of glycosphingolipids is tightly regulated during embryo development. Studies in our group showed that the glycosphingolipid precursor ceramide is also critical for stem cell differentiation and apoptosis. Our new studies suggest that ceramide and its derivative, sphingosine-1-phosphate (S1P), act synergistically on embryonic stem (ES) cell differentiation. When using neural precursor cells (NPCs) derived from ES cells for transplantation, residual pluripotent stem (rPS) cells pose a significant risk of tumor formation after stem cell transplantation. We show here that rPS cells did not express the S1P receptor S1P1, which left them vulnerable to ceramide or ceramide analog (N-oleoyl serinol or S18)-induced apoptosis. In contrast, ES cell-derived NPCs expressed S1P1 and were protected in the presence of S1P or its pro-drug analog FTY720. Consistent with previous studies, FTY720-treated NPCs differentiated predominantly toward oligodendroglial lineage as tested by the expression of the oligodendrocyte precursor cell (OPC) markers Olig2 and O4. As the consequence, a combined administration of S18 and FTY720 to differentiating ES cells eliminated rPS cells and promoted oligodendroglial differentiation. In addition, we show that this combination promoted differentiation of ES cell-derived NPCs toward oligodendroglial lineage in vivo after transplantation into mouse brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号