首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grapevine stilbenes, particularly trans‐resveratrol, have a demonstrated pharmacological activity. Other natural stilbenes derived from resveratrol such as pterostilbene or piceatannol, display higher oral bioavailability and bioactivity than the parent compound, but are far less abundant in natural sources. Thus, to efficiently obtain these bioactive resveratrol derivatives, there is a need to develop new bioproduction systems. Grapevine cell cultures are able to produce large amounts of easily recoverable extracellular resveratrol when elicited with methylated cyclodextrins and methyl jasmonate. We devised this system as an interesting starting point of a metabolic engineering‐based strategy to produce resveratrol derivatives using resveratrol‐converting enzymes. Constitutive expression of either Vitis vinifera resveratrol O‐methyltransferase (VvROMT) or human cytochrome P450 hydroxylase 1B1 (HsCYP1B1) led to pterostilbene or piceatannol, respectively, after the engineered cell cultures were treated with the aforementioned elicitors. Functionality of both gene products was first assessed in planta by Nicotiana benthamiana agroinfiltration assays, in which tobacco cells transiently expressed stilbene synthase and VvROMT or HsCYP1B1. Grapevine cell cultures transformed with VvROMT produced pterostilbene, which was detected in both intra‐ and extracellular compartments, at a level of micrograms per litre. Grapevine cell cultures transformed with HsCYP1B1 produced about 20 mg/L culture of piceatannol, displaying a sevenfold increase in relation to wild‐type cultures, and reaching an extracellular distribution of up to 45% of total production. The results obtained demonstrate the feasibility of this novel system for the bioproduction of natural and more bioactive resveratrol derivatives and suggest new ways for the improvement of production yields.  相似文献   

2.
Xu Y  Xu TF  Zhao XC  Zou Y  Li ZQ  Xiang J  Li FJ  Wang YJ 《Protoplasma》2012,249(3):819-833
Plant secondary metabolites, such as stilbenes, have fungicidal potential and have been found in several plant species. Stilbenes in grapevine, such as resveratrol and pterostilbene, have recently attracted much attention, they are not only helping the plant to fight against pathogen attack, but they are also being widely used as ingredients of fungicide, anti-inflammatory drugs, antioxidant, and anti-infective agents. However, resveratrol O-methyltransferase gene, related with the synthesis of pterostilbene from resveratrol, has not been characterized effectively from Chinese wild Vitis pseudoreticulata. In this study, a candidate of resveratrol O-methyltransferase gene designated as VpROMT was isolated from a powdery mildew-resistant Chinese wild V. pseudoreticulata 'Baihe-35-1', and characterization studies were performed. Expression studies showed that VpROMT was predominantly expressed in developing roots yet not found in the leaves, stems, nor tendrils when the plants are not challenged. Results of qRT-PCR showed that VpROMT was rapidly induced by Erysiphe necator in V. pseudoreticulata and by methyl-jasmonate, UV-irradiation in suspension culture cells of Vitis romanetii. The expression level varies in different tissues of grapevine, which MeJA and UV-C treatment significantly upregulated the expression of VpROMT gene while UV-B treatment failed to. Co-expression of VpROMT and grapevine stilbene synthase (VpSTS) gene leads to the accumulation of pterostilbene in leaves of tobacco (Nicotiana tabacum) indicating that VpROMT was able to catalyze the biosynthesis of pterostilbene from resveratrol in over-expression transgenic tobacco plants.  相似文献   

3.
Wang  Yechun  Bhuiya  Mohammad Wadud  Zhou  Rui  Yu  Oliver 《Annals of microbiology》2015,65(2):817-826
Pterostilbene (3,5-dimethoxy-4′-hydroxyl-trans-stilbene)—a derivative of resveratrol—is a natural dietary compound and the primary antioxidant component in berries. Pterostilbene has significant advantages over resveratrol in bioavailability, half-life in the body, cellular uptake, oral absorption and metabolic stability. Here, we expressed the resveratrol O-methyltransferase (ROMT) gene (VvROMT) from grape (Vitis vinifera) in Escherichia coli and Saccharomyces cerevisiae and confirmed its specific ability to catalyze the production of pterostilbene from resveratrol. By co-expressing an additional two genes from the resveratrol biosynthetic pathway—4-coumarate CoA-ligase (4CL) and stilbene synthase (STS)—a large amount of pterostilbene was produced, with a trace amount of pinostilbene detected. To understand the molecular basis of the catalytic activity, four key amino acid residues were identified in a 3D-model of VvROMT and mutagenized and assayed for augmented catalytic activity. Our results demonstrate the potential utility of the engineered microorganisms for pterostilbene production and provide protein engineering targets that will hopefully lead to increased activity of the ROMT enzyme.  相似文献   

4.
Resveratrol and related stilbenes are thought to play important roles in defence responses in several plant species and have also generated considerable interest as nutraceuticals owing to their diverse health-promoting properties. Pterostilbene, a 3,5-dimethylether derivative of resveratrol, possesses properties similar to its parent compound and, additionally, exhibits significantly higher fungicidal activity in vitro and superior pharmacokinetic properties in vivo. Recombinant enzyme studies carried out using a previously characterized O-methyltransferase sequence from Sorghum bicolor (SbOMT3) demonstrated its ability to catalyse the A ring-specific 3,5-bis-O-methylation of resveratrol, yielding pterostilbene. A binary vector was constructed for the constitutive co-expression of SbOMT3 with a stilbene synthase sequence from peanut (AhSTS3) and used for the generation of stably transformed tobacco and Arabidopsis plants, resulting in the accumulation of pterostilbene in both species. A reduced floral pigmentation phenotype observed in multiple tobacco transformants was further investigated by reversed-phase HPLC analysis, revealing substantial decreases in both dihydroquercetin-derived flavonoids and phenylpropanoid-conjugated polyamines in pterostilbene-producing SbOMT3/AhSTS3 events. These results demonstrate the potential utility of this strategy for the generation of pterostilbene-producing crops and also underscore the need for the development of additional approaches for minimizing concomitant reductions in key phenylpropanoid-derived metabolites.  相似文献   

5.
Downy mildew (DM), one of the most devastating grape diseases worldwide, is caused by the biotrophic oomycete Plasmopara viticola (Pv). In general, grapevine responds to Pv infection with the accumulation of phytoalexins as part of the innate immune system, and diverse phytoalexins are induced on grapevines with different DM-resistance levels in response to Pv invasion. However, the regulation of phytoalexin biosynthesis during grapevine against Pv is still unclear. Herein, we detected stilbenes by UPLC-ESI-MS/MS and found that resveratrol was accumulated to higher level and earlier in the DM-immune Muscadinia rotundifolia ‘Noble’ than that in the DM-susceptible Vitis vinifera ‘Thompson Seedless’ after Pv inoculation. Additionally, a considerable amount of pterostilbene and ε-viniferin was found in ‘Noble’, while a little was detected in ‘Thompson Seedless’. Resveratrol was glycosylated into piceid both in ‘Noble’ and ‘Thompson Seedless’ after Pv inoculation. The qPCR analysis of gene expression indicated that the resveratrol-synthesis gene (STS) was induced by Pv inoculation earlier in ‘Noble’ than that in ‘Thompson Seedless’, while the pterostilbene-synthesis gene (ROMT) was induced in ‘Noble’ but not in ‘Thompson Seedless’ at all. The piceid-synthesis gene (GT) was generally up-regulated in both cultivars. Sequence analysis of STS, ROMT, and GT promoters revealed that they contained cis-regulatory elements responsive to phytohormones and pathogens. Following Pv inoculation, the level of SA, MeJA, and ABA was found to be consistently higher in ‘Noble’ than those in ‘Thompson Seedless’. The results of exogenous hormone elicitation further demonstrated that the accumulation of stilbenes was regulated by phytohormones. The earlier and higher accumulation of phytohormones and consequent induction of stilbene synthesis may play an important role in grapevine defense against downy mildew disease.  相似文献   

6.
7.
采用核基质结合区(MARs)来提高转芪合酶基因(STS)烟草(Nicotianatabacum L.)中白藜芦醇产物的含量.MARs是细胞中能与核基质特异紧密结合的DNA片段,体外结合实验表明克隆自酵母的MARs序列能特异地与烟草核基质结合.芪合酶是白藜芦醇生物合成中的关键酶,用RT-PCR方法从川鄂爬山虎(Parthenocissus henryana(Hemsl.)Diels et Gilg)中克隆了与葡萄芪合酶基因有较高同源性的芪合酶编码区,将其置于CaMV35SΩ强启动子下,分别构建两侧带有MARs及不含MARs序列的表达载体,通过农杆菌介导转化烟草.Northern blot及HPLC等分析表明STS基因已整合至烟草染色体中并正常转录,且表达的外源芪合酶在烟草中可催化其底物合成白藜芦醇产物.与对照相比,MARs的存在使转芪合酶基因烟草中白藜芦醇的含量平均提高了约一倍.MARs在转芪合酶基因植物中的应用也为获得抗病性更强、白藜芦醇含量更高、更保健的转基因果蔬的研究奠定了基础.  相似文献   

8.
An inducible antifungal compound in grapevine leaves (Vitis vinifera L., cv Cabernet-Sauvignon) has been identified as trans-pterostilbene (3,5-dimethoxy-4′-hydroxy stilbene). It is only a minor component of the phytoalexin response of V. vinifera but its antifungal activity is relatively high by comparison with resveratrol and the viniferins, stress metabolites which have been identified previously in grapevine. Methods for the quantitative analysis of pterostilbene, resveratrol, ε- and α-viniferins by HPLC are described.  相似文献   

9.
The phenolic phytoalexin resveratrol is well known for its health-promoting and anticancer properties. Its potential benefits are, however, limited due to its low bioavailability. Pterostilbene, a natural dimethoxylated analog of resveratrol, presents higher anticancer activity than resveratrol. The mechanisms by which this polyphenol acts against cancer cells are, however, unclear. Here, we show that pterostilbene effectively inhibits cancer cell growth and stimulates apoptosis and autophagosome accumulation in cancer cells of various origins. However, these mechanisms are not determinant in cell demise. Pterostilbene promotes cancer cell death via a mechanism involving lysosomal membrane permeabilization. Different grades of susceptibility were observed among the different cancer cells depending on their lysosomal heat shock protein 70 (HSP70) content, a known stabilizer of lysosomal membranes. A375 melanoma and A549 lung cancer cells with low levels of HSP70 showed high susceptibility to pterostilbene, whereas HT29 colon and MCF7 breast cancer cells with higher levels of HSP70 were more resistant. Inhibition of HSP70 expression increased susceptibility of HT29 colon and MCF7 breast cancer cells to pterostilbene. Our data indicate that lysosomal membrane permeabilization is the main cell death pathway triggered by pterostilbene.  相似文献   

10.
The gene encoding stilbene synthase (STS) plays a central role in many biochemical and physiological actions, and its metabolite resveratrol possesses broad-spectrum resistance to pathogens, as well as diverse pharmacological properties, notably an anticancer effect. Here, we report the expression analysis of the gene encoding STS and its promoter function from a powdery mildew (PM)-resistant Chinese wild Vitis pseudoreticulata, and compare it with two PM-susceptible cultivated grapevines, Vitis vinifera cvs. Carignane and Thompson Seedless. We show an unusual expression pattern of STS in V. pseudoreticulata, which differs markedly from that of the cultivated species. Sequence comparisons reveal that the genomic DNA sequences encoding STS in the three grapevines are highly conserved, but a novel residue mutation within the key motif of STS is solely present in V. pseudoreticulata. Moreover, the STS promoter in V. pseudoreticulata displays a significantly different structure from that found in the two V. vinifera. The three promoter-driven GUS differential expression patterns in transformed tobacco plants induced with Alternaria alternata, methyl jasmonate, and wounding indicated that the structurally different STS promoter of V. pseudoreticulata is responsible for its specific regulatory function. We also demonstrate that the expression of STS genes from their native promoters are functional in transformed tobacco and retain pathogen inducibility. Importantly, the genomic DNA-2 of V. pseudoreticulata under its native promoter shows good induction and the maximum level of resveratrol content. These findings further our understanding of the regulation of STS expression in a resistant grapevine and provide a new pathogen-inducible promoter system for the genetic improvement of plant disease resistance.  相似文献   

11.
12.
13.
Resveratrol is a major phytoalexin in grapevine but its synthesis in response to phytopathogen attack decreases with grape berry ripening. A chimeric gene combining an alfalfa PR 10 promoter and Vst1 (Vitis stilbene synthase 1) gene was introduced into the genome of 41B rootstock. Transgenic plants were analysed for resveratrol production in leaves infected with Botrytis using an in vitro test. Among the 50 transgenic lines analysed, some exhibited a production lower than the non-transgenic control, but others accumulated resveratrol from 5-100-fold. Moreover, in the latter clones, symptoms were highly reduced in response to infection. These results were a good indication that the combination of a pathogen-inducible promoter and a defence gene may increase tolerance against fungi in grapevine. The efficacy of this approach should be further tested by experiments conducted in the vineyard.  相似文献   

14.
15.
Resveratrol (3,5,4′-trihydroxystilbene) is of interest due to its role in prevention and therapy of degenerative diseases as cancer and aging. However, depending on its concentration and cell type studied, resveratrol activity appears conflicting. It exerts antioxidant action, as a scavenger of free radicals and as promoter of antioxidant enzyme activity, but resveratrol acts also as a pro-oxidant. Here we present experimental and theoretical studies for resveratrol and two methoxy-derivatives found in plants, pterostilbene and 3,5,4′-trimethoxystilbene. We show that both methoxy-derivatives induce less DNA damage than resveratrol. The protective effects of the three molecules against oxidative DNA damage induced by hydrogen peroxide treatment were analyzed on mammalian cells in vitro. Our data show for the first time that methoxylated derivatives of resveratrol are very efficient in reducing DNA damage: using the same concentration of the three molecules we obtain a relative reduction of 85.5% (pterostilbene), 43.7% (trimethoxystilbene) and 21.1% (resveratrol). Analysis of the crystal structures of pterostilbene and 3,5,4′-trimethoxystilbene, compared to resveratrol, show fewer intermolecular interactions and a lack of planarity, due to packing forces, which is confirmed by density functional theory (DFT) calculations. We also describe the results of DFT calculations (including water solvent effects) in which the three stilbene species scavenge the hydroxyl radical (associated with the H2O2 insult).  相似文献   

16.
17.
The antifungal effect of three furyl compounds closely related to resveratrol, (E)-3,4,5-trimethoxy-β-(2-furyl)-styrene (1), (E)-4-methoxy-β-(2-furyl)-styrene (2) and (E)-3,5-dimethoxy-β-(2-furyl)-styrene (3) against Botrytis cinerea was analyzed. The inhibitory effect, at 100 μg ml(-1) of compounds 1, 2, 3 and resveratrol on conidia germination, was determined to be about 70%, while at the same concentration pterostilbene (a dimethoxyl derivative of resveratrol) produced complete inhibition. The title compounds were more fungitoxic towards in vitro mycelial growth than resveratrol and pterostilbene. Compound 3 was the most active and a potential explanation of this feature is given using density functional theory (DFT) calculations on the demethoxylation/demethylation process. Compound 3 was further evaluated for its effects on laccase production, oxygen consumption and membrane integrity of B. cinerea. An increase of the laccase activity was observed in the presence of compound 3 and, using Sytox Green nucleic acid stain, it was demonstrated that this compound altered B. cinerea membrane. Finally, compound 3 partially affected conidia respiration.  相似文献   

18.
With the prevalence of novel strains and drug-resistant influenza viruses, there is an urgent need to develop effective and low-toxicity anti-influenza therapeutics. Regulation of the type I interferon antiviral response is considered an attractive therapeutic strategy for viral infection. Pterostilbene, a 3,5-dimethoxy analog of resveratrol, is known for its remarkable pharmacological activity. Here, we found that pterostilbene effectively inhibited influenza A virus infection and mainly affected the late stages of viral replication. A mechanistic study showed that the antiviral activity of pterostilbene might promote the induction of antiviral type I interferon and expression of its downstream interferon-stimulated genes during viral infection. The same effect of pterostilbene was also observed in the condition of polyinosinic-polycytidylic acid (poly I:C) transfection. Further study showed that pterostilbene interacted with influenza non-structural 1 (NS1) protein, inhibited ubiquitination mediated degradation of RIG-I and activated the downstream antiviral pathway, orchestrating an antiviral state against influenza virus in the cell. Taken together, pterostilbene could be a promising anti-influenza agent for future antiviral drug exploitation and compounds with similar structures may provide new options for the development of novel inhibitors against influenza A virus (IAV).  相似文献   

19.
20.
BACKGROUND: Recent data showing that glucan elicited defense responses in grapevine and induced protection via induction of resveratrol production led us to evaluate the possible synergetic effects of glucan and resveratrol complex on immune reactions. METHODS: We measured phagocytosis using HEMA particles, expression of cell surface markers via fl ow cytometry, expression of cytokines using ELISA, recovery after fluorouracil-induced leucopenia and effects on gene expression via RT-PCR. RESULTS: Our results showed that both glucan and resveratrol complex stimulated phagocytosis of blood leukocytes, caused increase in surface expression of CD(+) splenocytes and showed higher restoration of spleen recovery after experimentally induced leucopenia. In all these cases, strong synergetic effects were observed. When we measured the effects of these substances on expression level of NF-kappaB2, Cdc42 and Bcl-2 in breast cancer cells, upregulation of Cdc42 expression was evident only using both immunomodulators in combination. CONCLUSIONS: In conclusion, our data suggest significant synergy in stimulation of immune reactions and support further studies of these natural immunomodulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号