首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.

Background

Proteolytic degradation by plasmin and metalloproteinases is essential for epidermal regeneration in skin wound healing. Plasminogen deficient mice have severely delayed wound closure as have mice simultaneously lacking the two plasminogen activators, urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA). In contrast, individual genetic deficiencies in either uPA or tPA lead to wound healing kinetics with no or only slightly delayed closure of skin wounds.

Methodology/Principal Findings

To evaluate the therapeutic potential in vivo of a murine neutralizing antibody directed against mouse uPA we investigated the efficacy in skin wound healing of tPA-deficient mice. Systemic administration of the anti-mouse uPA monoclonal antibody, mU1, to tPA-deficient mice caused a dose-dependent delay of skin wound closure almost similar to the delayed kinetics observed in uPA;tPA double-deficient mice. Analysis of wound extracts showed diminished levels of plasmin in the mU1-treated tPA-deficent mice. Immunohistochemistry revealed that fibrin accumulated in the wounds of such mU1-treated tPA-deficent mice and that keratinocyte tongues were aberrant. Together these abnormalities lead to compromised epidermal closure.

Conclusions/Significance

Our findings demonstrate that inhibition of uPA activity with a monoclonal antibody in adult tPA-deficient mice mimics the effect of simultaneous genetic ablation of uPA and tPA. Thus, application of the murine inhibitory mU1 antibody provides a new and highly versatile tool to interfere with uPA-activity in vivo in mouse models of disease.  相似文献   

2.
Role of plasminogen activators in peritoneal adhesion formation   总被引:16,自引:0,他引:16  
Intra-abdominal adhesion formation is a major complication of serosal repair following surgery, ischaemia or infection, leading to conditions such as intestinal obstruction and infertility. It has been proposed that the persistence of fibrin, due to impaired plasminogen activator activity, results in the formation of adhesions between damaged serosal surfaces. This study aimed to assess the role of fibrinolysis in adhesion formation using mice deficient in either of the plasminogen activator proteases, tissue-type plasminogen activator (tPA) or urokinase-type plasminogen activator (uPA). We hypothesize that, following serosal injury, mice with decreased peritoneal fibrinolytic activity will be more susceptible to adhesion formation. Adhesion formation was induced in tPA- and uPA-deficient and wild-type mice following either surgical trauma to the serosa with haemorrhage and acute or chronic intraperitoneal inflammation. Adhesion formation was assessed from 1 to 4 weeks post-injury. Mice deficient in tPA were more susceptible to adhesion formation following both a surgical insult and a chronic inflammatory episode compared with uPA-deficient and wild-type mice. In addition, the time of maximal adhesion formation varied depending on the nature of the initial insult. It is proposed that the persistence of fibrin due to decreased tPA activity following surgery or chronic inflammation plays a major role in peritoneal adhesion formation.  相似文献   

3.
It is well established that rat ovarian granulosa cells produce tissue plasminogen activator (tPA). The synthesis and secretion of the enzyme are induced by gonadotropins, and correlate well with the time of follicular rupture in vivo. We have found that in contrast, mouse granulosa cells produce a different form of plasminogen activator, the urokinase-type (uPA). As with tPA synthesis in the rat, uPA production by mouse granulosa cells is induced by gonadotropins, dibutyryl cAMP, and prostaglandin E2. However, dexamethasone, a drug which has no effect on tPA synthesis in rat cells inhibits uPA synthesis in the mouse. Results of these determinations made in cell culture were corroborated by examining follicular fluid, which is secreted in vivo predominantly by granulosa cells, from stimulated rat and mouse ovarian follicles. Rat follicular fluid contained only tPA, and mouse follicular fluid only uPA, indicating that in vivo, granulosa cells from the two species are secreting different enzymes. The difference in the type of plasminogen activator produced by the rat and mouse granulosa cells was confirmed at the messenger RNA level. After hormone stimulation, only tPA mRNA was present in rat cells, whereas only uPA mRNA was found in mouse cells. Furthermore, the regulation of uPA levels in mouse cells occurs via transient modulation of steady-state levels of mRNA, a pattern similar to that seen with tPA in rat cells.  相似文献   

4.
Plasmin(ogen) acquisition is critical for invasive disease initiation by Streptococcus pyogenes (GAS). Host urokinase plasminogen activator (uPA) plays a role in mediating plasminogen activation for GAS dissemination, however the contribution of tissue-type plasminogen activator (tPA) to GAS virulence is unknown. Using novel tPA-deficient ALBPLG1 mice, our study revealed no difference in mouse survival, bacterial dissemination or the pathology of GAS infection in the absence of tPA in AlbPLG1/tPA?/? mice compared to AlbPLG1 mice. This study suggests that tPA has a limited role in this humanized model of GAS infection, further highlighting the importance of its counterpart uPA in GAS disease.  相似文献   

5.
Rapid fibrovascularization is a prerequisite for successful biomaterial engraftment. In addition to their well-known roles in fibrinolysis, urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA) or their inhibitor plasminogen activator inhibitor-1 (PAI-1) have recently been implicated as individual mediators in non-fibrinolytic processes, including cell adhesion, migration, and proliferation. Since these events are critical for fibrovascularization of biomaterial, we hypothesized that the components of the plasminogen activation system contribute to biomaterial engraftment. Employing in vivo and ex vivo microscopy techniques, vessel and collagen network formation within porous polyethylene (PPE) implants engrafted into dorsal skinfold chambers were found to be significantly impaired in uPA-, tPA-, or PAI-1-deficient mice. Consequently, the force required for mechanical disintegration of the implants out of the host tissue was significantly lower in the mutant mice than in wild-type controls. Conversely, surface coating with recombinant uPA, tPA, non-catalytic uPA, or PAI-1, but not with non-catalytic tPA, accelerated implant vascularization in wild-type mice. Thus, uPA, tPA, and PAI-1 contribute to the fibrovascularization of PPE implants through common and distinct effects. As clinical perspective, surface coating with recombinant uPA, tPA, or PAI-1 might provide a novel strategy for accelerating the vascularization of this biomaterial.  相似文献   

6.
The urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA) are very similar serine proteases with the same physiological function, the activation of plasminogen. An increased amount or activity of uPA but not tPA has been detected in human cancers. The PAs are weak proteolytic enzymes, but they activate plasminogen to plasmin, a strong proteolytic enzyme largely responsible for the malignant properties of cancers. It has been shown recently that the administration of uPA inhibitors can reduce tumor size. Inhibitors of uPA could therefore be used as anti-cancer and anti-angiogenesis agents. It has been found that amiloride competitively inhibits the catalytic activity of uPA but not tPA. Modification of this chemical could therefore produce a new class of uPA specific inhibitors and a new class of anti-cancer agents. The X-ray structure of the uPA complex with amiloride is not known. There are structural differences in the specificity pocket of uPA and tPA. However, the potential energy of binding amiloride is lower outside this cavity in the case of tPA. A region responsible for binding amiloride to tPA has been proposed as the loop B93-B101, reached in negatively charged amino acids present in tPA but not uPA.  相似文献   

7.
Urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP9, gelatinase B) have separately been recognized to play important roles in various tissue remodeling processes. In this study, we demonstrate that deficiency for MMP9 in combination with ablation of either uPA- or tissue-type plasminogen activator (tPA)-catalyzed plasminogen activation is critical to accomplish normal gestation in mice. Gestation was also affected by simultaneous lack of MMP9 and the uPA receptor (uPAR). Interestingly, uPA-deficiency additionally exacerbated the effect of MMP9-deficiency on bone growth and an additive effect caused by combined lack in MMP9 and uPA was observed during healing of cutaneous wounds. By comparison, MMP9-deficiency combined with absence of either tPA or uPAR resulted in no significant effect on wound healing, indicating that the role of uPA during wound healing is independent of uPAR, when MMP9 is absent. Notably, compensatory upregulation of uPA activity was seen in wounds from MMP9-deficient mice. Taken together, these studies reveal essential functional dependency between MMP9 and uPA during gestation and tissue repair.  相似文献   

8.
We have used delayed-type hypersensitivity (DTH) responses to probe the mechanisms of drug-induced cardiac allograft acceptance in mice. DBA/2-->C57BL/6 cardiac allograft recipients treated transiently with gallium nitrate accept their grafts for >90 days and fail to display DBA/2-reactive DTH responses. These DTH responses are restored when anti-TGF-beta Abs are included at the challenge site, and cell depletion studies showed that this DTH inhibition is mediated by CD4+ cells. Real-time PCR analysis revealed that allograft acceptor mice produce no more than background levels of TGF-beta mRNA at DTH challenge sites. This suggests that DTH regulation in allograft acceptor mice may involve TGF-beta activation, rather than TGF-beta production. The protease, plasmin, can activate TGF-beta, and activated T cells can express a receptor for the plasmin-producing enzyme urokinase-type plasminogen activator (uPA), and can also produce both uPA and tissue-type plasminogen activator (tPA). We observed that Abs to tPA or uPA can replace anti-TGF-beta mAb for the restoration of donor-reactive DTH responses in allograft acceptor mice. Histologic analysis revealed that accepted cardiac allografts express uPA, tPA, and active TGF-beta, whereas accepted cardiac isografts express only tPA, but not uPA or activated TGF-beta. These data demonstrate that local tPA and uPA contribute to DTH regulation in allograft acceptor mice and suggest that these elements of the fibrinolytic pathway are used to control donor-reactive cell-mediated immunity in allograft acceptor mice.  相似文献   

9.
Gene products present in mouse oocytes direct development until the two-cell stage and may be important in later development. Here, we demonstrate that expression of a specific maternal protein can be disrupted in mouse oocytes using transgenic antisense RNA technology. An oocyte-specific promoter (mZP3) was utilized to express antisense RNA directed against maternal mRNA encoding tissue-type plasminogen activator (tPA). Antisense expression results in reduced levels of tPA mRNA and enzyme activity in mouse oocytes. We also provide evidence for a novel mechanism of antisense-mediated translational inhibition, whereby the cytoplasmic polyadenylation of maternal tPA mRNA is altered. This strategy should prove applicable to functional studies of other murine maternal mRNAs in an in vivo environment.  相似文献   

10.
Pemphigus is an autoimmune blistering disease of the skin and mucous membranes. It is caused by autoantibodies directed against desmosomes, which are the principal adhesion structures between epidermal keratinocytes. Binding of autoantibodies leads to the destruction of desmosomes resulting in the loss of cell-cell adhesion (acantholysis) and epidermal blisters. The plasminogen activator system has been implicated as a proteolytic effector in pemphigus. We have tested inhibitors of the plasminogen activator system with regard to their potential to prevent pemphigus-induced cutaneous pathology. In a human split skin culture system, IgG preparations of sera from pemphigus vulgaris patients caused histopathologic changes (acantholysis) similar to those observed in the original pemphigus disease. All inhibitors that were tested (active site inhibitors directed against uPA, tPA, and/or plasmin; antibodies neutralizing the enzymatic activity of uPA or tPA; substances interfering with the binding of uPA to its specific cell surface receptor uPAR) failed to prevent pemphigus vulgaris IgG-mediated acantholysis. Plasminogen-mediated acantholysis, however, was effectively antagonized by the synthetic active site serine protease inhibitor WX-UK1 or by p-aminomethylbenzoic acid. Our data argue against applying anti-plasminogen activator/anti-plasmin strategies in the management of pemphigus.  相似文献   

11.
Simultaneous ablation of the two known activators of plasminogen (Plg), urokinase-type (uPA) and the tissue-type (tPA), results in a substantial delay in skin wound healing. However, wound closure and epidermal re-epithelialization are significantly less impaired in uPA;tPA double-deficient mice than in Plg-deficient mice. Skin wounds in uPA;tPA-deficient mice treated with the broad-spectrum matrix metalloproteinase (MMP) inhibitor galardin (N-[(2R)-2-(hydroxamido-carbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide) eventually heal, whereas skin wounds in galardin-treated Plg-deficient mice do not heal. Furthermore, plasmin is biochemically detectable in wound extracts from uPA;tPA double-deficient mice. In vivo administration of a plasma kallikrein (pKal)-selective form of the serine protease inhibitor ecotin exacerbates the healing impairment of uPA;tPA double-deficient wounds to a degree indistinguishable from that observed in Plg-deficient mice, and completely blocks the activity of pKal, but not uPA and tPA in wound extracts. These findings demonstrate that an additional plasminogen activator provides sufficient plasmin activity to sustain the healing process albeit at decreased speed in the absence of uPA, tPA and galardin-sensitive MMPs and suggest that pKal plays a role in plasmin generation.  相似文献   

12.
This study evaluates the contribution of two types of plasminogen activators (PAs; tissue-type PA (tPA) versus urokinase-type PA (uPA) toward the invasiveness of human melanoma cells in a novel in vitro assay. We identified two human melanoma cell lines, MelJuso and MeWo, expressing uPA or tPA as shown at mRNA, protein, and enzyme activity level. MelJuso cells produced uPA as well as plasminogen activator inhibitor-1 (PAI-1). The latter was, however, not sufficient to neutralize the cell-associated or secreted uPA activity. MeWo cells secreted tPA, but the enzyme was not found to be cell-associated. PAI-1 production by these cells was not detectable. Plasminogen activation and fibrinolytic capacity of both cell lines were reduced by anticatalytic monoclonal antibodies specific for the respective type of PA or by aprotinin. In a novel in vitro invasion assay, antibodies to PA as well as aprotinin decreased the invasiveness of both cell lines into a fibrin gel, Matrigel, or intact extracellular matrix. Our results confirm the importance of uPA-catalyzed plasminogen activation in tumor cell invasiveness. Furthermore, we provide evidence that tPA, beyond its key role in thrombolysis, can also be involved in in vitro invasion of human melanoma cells.  相似文献   

13.
The influence of angiostatin K1-4.5--a fragment of the heavy chain of plasmin and a powerful inhibitor of angiogenesis--on kinetic parameters (k(Pg) and K(Pg)) of human Glu-plasminogen activation under the action of urokinase (uPA) not having affinity for fibrin and fibrin-specific tissue plasminogen activator (tPA) was investigated. Angiostatin does not affect the k(Pg) value, but increases the value K(Pg) urokinase plasminogen activation. A decrease in the k(Pg) value and an increase in the K(Pg) value were found for fibrin-stimulated plasminogen activation by tPA with increasing concentrations of angiostatin. The obtained results show that angiostatin is competitive inhibitor of the uPA activator activity, while it inhibits the activator activity of tPA by mixed type. Such an influence ofangiostatin on the kinetic constants ofthe urokinase plasminogen activation suggests that angiostatin dose dependent manner replaces plasminogen in the binary enzyme-substrate complex uPA-Pg. In case of fibrin-stimulated plasminogen activation by tPA, both zymogen and tPA are bound to fibrin with formation of the effective triple tPA-Pg-fibrin complex. Angiostatin replaces plasminogen both from the fibrin surface and from the enzyme-substrate tPA-Pg complex that leads to a decrease in k(Pg) and an increase in K(Pg) of plasminogen activation. Inhibition constants by angioststin (Ki) of plasminogen-activator activities of uPA and tPA determined by Dixon method were found to be 0.59 +/- 0.04 and 0.12 +/- 0.05 microM, respectively.  相似文献   

14.
Alveolar type II (ATII) cell apoptosis and depressed fibrinolysis that promotes alveolar fibrin deposition are associated with acute lung injury (ALI) and the development of pulmonary fibrosis (PF). We therefore sought to determine whether p53-mediated inhibition of urokinase-type plasminogen activator (uPA) and induction of plasminogen activator inhibitor-1 (PAI-1) contribute to ATII cell apoptosis that precedes the development of PF. We also sought to determine whether caveolin-1 scaffolding domain peptide (CSP) reverses these changes to protect against ALI and PF. Tissues as well as isolated ATII cells from the lungs of wild-type (WT) mice with BLM injury show increased apoptosis, p53, and PAI-1, and reciprocal suppression of uPA and uPA receptor (uPAR) protein expression. Treatment of WT mice with CSP reverses these effects and protects ATII cells against bleomycin (BLM)-induced apoptosis whereas CSP fails to attenuate ATII cell apoptosis or decrease p53 or PAI-1 in uPA-deficient mice. These mice demonstrate more severe PF. Thus p53 is increased and inhibits expression of uPA and uPAR while increasing PAI-1, changes that promote ATII cell apoptosis in mice with BLM-induced ALI. We show that CSP, an intervention targeting this pathway, protects the lung epithelium from apoptosis and prevents PF in BLM-induced lung injury via uPA-mediated inhibition of p53 and PAI-1.  相似文献   

15.
12-O-Tetradecanoylphorbol-13-acetate (TPA) suppresses the proliferation of the human breast epithelial cell line MCF10A-Neo by initiating proteolytic processes that activate latent transforming growth factor (TGF)-beta in the serum used to supplement culture medium. Within 1 h of treatment, cultures accumulated an extracellular activity capable of cleaving a substrate for urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA). This activity was inhibited by plasminogen activator inhibitor-1 or antibodies to uPA but not tPA. Pro-uPA activation was preceded by dramatic changes in lysosome trafficking and the extracellular appearance of cathepsin B and beta-hexosaminidase but not cathepsins D or L. Co-treatment of cultures with the cathepsin B inhibitors CA-074 or Z-FA-FMK suppressed the cytostatic effects of TPA and activation of pro-uPA. In the absence of TPA, exogenously added cathepsin B activated pro-uPA and suppressed MCF10A-Neo proliferation. The cytostatic effects of both TPA and cathepsin B were suppressed in cells cultured in medium depleted of plasminogen/plasmin or supplemented with neutralizing TGF-beta antibody. Pretreatment with cycloheximide did not suppress the exocytosis of cathepsin B or the activation of pro-uPA. Hence, TPA activates signaling processes that trigger the exocytosis of a subpopulation of lysosomes/endosomes containing cathepsin B. Subsequently, extracellular cathepsin B initiates a proteolytic cascade involving uPA, plasminogen, and plasmin that activates serum-derived latent TGF-beta.  相似文献   

16.
Wang H  Zhang Y  Heuckeroth RO 《FEBS letters》2007,581(16):3098-3104
Plasminogen activator inhibitor-1 (PAI-1) increases injury in several liver, lung and kidney disease models. The objective of this investigation was to assess the effect of PAI-1 deficiency on cholestatic liver fibrosis and determine PAI-1 influenced fibrogenic mechanisms. We found that PAI-1(-/-) mice had less fibrosis than wild type (WT) mice after bile duct ligation. This change correlated with increased tissue-type plasminogen activator (tPA) activity, and increased matrix metalloproteinase-9 (MMP-9), but not MMP-2 activity. Furthermore, there was increased activation of the tPA substrate hepatocyte growth factor (HGF), a known anti-fibrogenic protein. In contrast, there was no difference in hepatic urokinase plasminogen activator (uPA) or plasmin activities between PAI-1(-/-) and WT mice. There was also no difference in the level of transforming growth factor beta 1 (TGF-beta1), stellate cell activation or collagen production between WT and PAI-1(-/-) animals. In conclusion, PAI-1 deficiency reduces hepatic fibrosis after bile duct obstruction mainly through the activation of tPA and HGF.  相似文献   

17.
Using immunocytochemical and biochemical techniques, we have demonstrated that cultured human epidermal keratinocytes contain both urokinase and tissue type plasminogen activators. In subconfluent colonies the distribution of the two enzymes differed. Tissue type plasminogen activator (tPA) was distributed evenly throughout the colony, while, as we have demonstrated previously, urokinase type plasminogen activator (uPA) was preferentially localized at the migrating edges of the colony. Using zymographic analyses, both tPA and uPA activities were detected in cell extracts. Depending on the procedure used to prepare cell extracts, tPA was detected either as free enzyme or in complex with PA inhibitor type 1. PA inhibitor type 1 was deposited onto the extracellular matrix of the keratinocyte cultures and formed a complex with cell-associated tPA when cells and matrix were extracted together. The most differentiated keratinocytes in the culture, which were spontaneously shed from the culture surface, also contained both tPA and uPA. However, these spontaneously shed cells had a higher ratio of tPA:uPA than did the less differentiated cells from the same culture. In conjunction with our previous studies, these results demonstrate the complex nature of the plasminogen activator system, including enzymes and inhibitors, that is present in human keratinocytes. In addition, our data suggest that the relative amounts of uPA and tPA in epidermal cells vary with differentiation state.  相似文献   

18.
19.
When F9 teratocarcinoma cells are treated with retinoic acid plus cyclic AMP (RACF9) they differentiate into parietal endoderm. Differentiation is accompanied by the acquisition of substrate adhesion sites and a change in the pattern of gene expression, including the synthesis of tissue-type plasminogen activator (tPA). We demonstrate here that dihydrocytochalasin B (DHCB) treatment of differentiating F9 cells prevents the assembly of a structured actin cytoskeleton and generates a more rounded and stellate cell morphology. This morphological change is accompanied by the accumulation of the usually visceral endoderm-specific marker urokinase-type plasminogen activator (uPA) and an increase in tPA levels in comparison to untreated RACF9 controls. The increase in tPA accumulation is preceded by an increase in tPA mRNA levels. These effects are reversible, with a lag, when DHCB is removed, and PA accumulation can be stimulated within 24 h when differentiated cells are exposed to DHCB. Exposure to the microtubule disrupting agent colchicine has no effect on uPA or tPA accumulation. In addition, antibody directed against the beta 1 integrin subunit can also specifically elicit increased PA production. Thus disturbing the cytoskeleton and cytoskeleton associated substrate adhesions promotes PA accumulation.  相似文献   

20.
Urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are extracellular proteases that play a role in synaptic plasticity and remodeling. Psychostimulants induce both tPA and uPA in acute and chronic drug delivery, but cocaine induces preferentially uPA, whereas morphine and amphetamine induce preferentially tPA. Specific doxycline-regulatable lentiviruses expressing these extracellular proteases have been prepared and stereotaxically injected into the nucleus accumbens. We show that tPA-overexpressing animals show greater locomotor activity and behavioral sensitization upon morphine and amphetamine treatments. These effects could be fully suppressed by doxycycline or when tPA had been silenced using small interfering RNAs (siRNAs)-expressing lentiviruses. Furthermore, animals infected with lentiviruses expressing uPA show enhanced conditional place preference for cocaine compared with tPA-overexpressing animals. In contrast, tPA-overexpressing animals when administered amphetamine or morphine showed greater place preference compared with uPA-overexpressing animals. The effects are suppressed when tPA has been silenced using specific siRNAs-expressing vectors. Tissue-type plasminogen activator and uPA possibly induce distinct behaviors, which may be interpreted according to their differential pattern of activation and downstream targets. Taken together, these data add further evidence for a significant function of extracellular proteases tPA and uPA in addiction and suggest a differential role of plasminogen activators in this context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号