首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Wnt signaling on neural progenitor cells have been controversial. Activation of the canonical Wnt signaling pathway either promotes neural progenitor cell proliferation or accelerates their differentiation into postmitotic neurons. This study demonstrates that activation of the Wnt signaling pathway by itself induces neural progenitor cell proliferation but does not directly affect neuronal differentiation processes. To investigate whether Wnt signaling promotes expansion and/or differentiation of neural progenitor cells in the developing hippocampus, we prepared primary mouse hippocampal progenitors and treated them with Wnt3a in a chemically defined culture medium. Wnt3a increased the total number of cells, including the numbers of Ki67+ proliferating cells and Tuj1+ differentiated neurons. This result verified that Wnt3a promoted neural progenitor cell proliferation. Meanwhile, Wnt3a did not appear to actively enhance the neuronal differentiation process itself, because (1) the ratio of Tuj1+ cells to the total cells, and (2) the ratio of BrdU+ Tuj1+ cells to the total BrdU+ cells, were both comparable between cultures with or without Wnt3a. Indeed, Wnt3a caused no significant change in either cell survival or the proportion of symmetric and asymmetric cell divisions that directly affected neuron production. We finally demonstrated that the Wnt3a treatment simply shortened cell cycle duration of neural progenitor cells by 2.9 h. The accelerated cell cycle progression without affecting the ratio of symmetric/asymmetric cell divisions explains how Wnt signaling per se leads to the expansion of both proliferative cell population and differentiated neuronal cell population.  相似文献   

2.
The structure and projection patterns of adult mesodiencephalic dopaminergic (DA) neurons are one of the best characterized systems in the vertebrate brain. However, the early organization and development of these nuclei remain poorly understood. The induction of midbrain DA neurons requires sonic hedgehog (Shh) from the floor plate and fibroblast growth factor 8 (FGF8) from the isthmic organizer, but the way in which FGF8 regulates DA neuron development is unclear. We show that, during early embryogenesis, mesodiencephalic neurons consist of two distinct populations: a diencephalic domain, which is probably independent of isthmic FGFs; and a midbrain domain, which is dependent on FGFs. Within these domains, DA progenitors and precursors use partly different genetic programs. Furthermore, the diencephalic DA domain forms a distinct cell population, which also contains non-DA Pou4f1(+) cells. FGF signaling operates in proliferative midbrain DA progenitors, but is absent in postmitotic DA precursors. The loss of FGFR1/2-mediated signaling results in a maturation failure of the midbrain DA neurons and altered patterning of the midbrain floor. In FGFR mutants, the DA domain adopts characteristics that are typical for embryonic diencephalon, including the presence of Pou4f1(+) cells among TH(+) cells, and downregulation of genes typical of midbrain DA precursors. Finally, analyses of chimeric embryos indicate that FGF signaling regulates the development of the ventral midbrain cell autonomously.  相似文献   

3.
A complete account of the whole developmental process of neurogenesis involves understanding a number of complex underlying molecular processes. Among them, those that govern the crucial transition from proliferative (self-replicating) to neurogenic neural progenitor (NP) cells remain largely unknown. Due to its sequential rostro-caudal gradients of proliferation and neurogenesis, the prospective spinal cord of the chick embryo is a good experimental system to study this issue. We report that the NOTCH ligand DELTA-1 is expressed in scattered cycling NP cells in the prospective chick spinal cord preceding the onset of neurogenesis. These Delta-1-expressing progenitors are placed in between the proliferating caudal neural plate (stem zone) and the rostral neurogenic zone (NZ) where neurons are born. Thus, these Delta-1-expressing progenitors define a proliferation to neurogenesis transition zone (PNTZ). Gain and loss of function experiments carried by electroporation demonstrate that the expression of Delta-1 in individual progenitors of the PNTZ is necessary and sufficient to induce neuronal generation. The activation of NOTCH signalling by DELTA-1 in the adjacent progenitors inhibits neurogenesis and is required to maintain proliferation. However, rather than inducing cell cycle exit and neuronal differentiation by a typical lateral inhibition mechanism as in the NZ, DELTA-1/NOTCH signalling functions in a distinct manner in the PNTZ. Thus, the inhibition of NOTCH signalling arrests proliferation but it is not sufficient to elicit neuronal differentiation. Moreover, after the expression of Delta-1 PNTZ NP continue cycling and induce the expression of Tis21, a gene that is upregulated in neurogenic progenitors, before generating neurons. Together, these experiments unravel a novel function of DELTA-NOTCH signalling that regulates the transition from proliferation to neurogenesis in NP cells. We hypothesize that this novel function is evolutionary conserved.  相似文献   

4.
Adherens junction (AJ) between dopaminergic (DA) progenitors maintains the structure of ventricular zone and polarity of radial glia cells in the ventral midbrain (vMB) during embryonic development. However, it is unclear how loss of N‐cadherin might influence the integrity of the AJ and the process of DA neurogenesis. Here, we used conditional gene targeting approaches to perform the region‐specific removal of N‐cadherin in the neurogenic niche of DA neurons in the vMB. Removal of N‐cadherin in the vMB using Shh‐Cre disrupts the AJs of DA progenitors and radial glia processes in the vMB. Surprisingly, loss of N‐cadherin in the vMB leads to a significant expansion of DA progenitors, including those expressing Sox2, Ngn2, and Otx2. Cell cycle analyses reveal that the cell cycle exit in the progenitor cells is decreased in the mutants from E11.5 to E12.5. In addition, the efficiency of DA progenitors in differentiating into DA neurons is decreased from E10.5 to E12.5, leading to a marked reduction in the number of DA neurons at E11.5, E12.5, and E17.5. Loss of N‐cadherin leads to the diffuse distribution of β‐catenin proteins, which are a critical component of AJ and Wnt signaling, from the AJ throughout the entire cytoplasm in neuroepithelial cells, suggesting that canonical Wnt signaling might be activated in the DA progenitors in vMB. Taken together, these results support the notion that N‐cadherin regulates the proliferation of DA progenitors and the differentiation of DA neurons through canonical Wnt‐β‐catenin signaling in the vMB. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 518–529, 2013  相似文献   

5.
Although Wnt7a has been implicated in axon guidance and synapse formation, investigations of its role in the early steps of neurogenesis have just begun. We show here that Wnt7a is essential for neural stem cell self-renewal and neural progenitor cell cycle progression in adult mouse brains. Loss of Wnt7a expression dramatically reduced the neural stem cell population and increased the rate of cell cycle exit in neural progenitors in the hippocampal dentate gyrus of adult mice. Furthermore, Wnt7a is important for neuronal differentiation and maturation. Loss of Wnt7a expression led to a substantial decrease in the number of newborn neurons in the hippocampal dentate gyrus. Wnt7a−/− dentate granule neurons exhibited dramatically impaired dendritic development. Moreover, Wnt7a activated β-catenin and its downstream target genes to regulate neural stem cell proliferation and differentiation. Wnt7a stimulated neural stem cell proliferation by activating the β-catenin–cyclin D1 pathway and promoted neuronal differentiation and maturation by inducing the β-catenin–neurogenin 2 pathway. Thus, Wnt7a exercised critical control over multiple steps of neurogenesis by regulating genes involved in both cell cycle control and neuronal differentiation.  相似文献   

6.
7.
In the vertebrate embryo, spinal cord elongation requires FGF signaling that promotes the continuous development of the posterior nervous system by maintaining a stem zone of proliferating neural progenitors. Those escaping the caudal neural stem zone, which is expressed to Shh signal, initiate ventral patterning in the neural groove before starting neuronal differentiation in the neural tube. Here we investigated the integration of D-type cyclins, known to govern cell cycle progression under the control of extracellular signals, in the program of spinal cord maturation. In chicken embryo, we find that cyclin D2 is preferentially expressed in the posterior neural plate, whereas cyclin D1 appears in the neural groove. We demonstrated by loss- and gain-of-function experiments that FGF signaling maintains cyclin D2 in the immature caudal neural epithelium, while Shh activates cyclin D1 in the neural groove. Moreover, forced maintenance of cyclin D1 or D2 in the neural tube favors proliferation at the expense of neuronal differentiation. These results contribute to our understanding of how the cell cycle control can be linked to the patterning programs to influence the balance between proliferation and neuronal differentiation in discrete progenitors domains.  相似文献   

8.
Previous studies have raised the possibility that Wnt?signaling may regulate both neural progenitor maintenance and neuronal differentiation within a single population. Here we investigate the role of Wnt/β-catenin activity in the zebrafish hypothalamus and find that the pathway is first required for the proliferation of unspecified hypothalamic progenitors in the embryo. At later stages, including adulthood, sequential activation and inhibition of Wnt activity is required for the differentiation of neural progenitors and negatively regulates radial glia differentiation. The presence of Wnt activity is conserved in hypothalamic progenitors of the adult mouse, where it plays a conserved role in inhibiting the differentiation of radial glia. This study establishes the vertebrate hypothalamus as a model for Wnt-regulated postembryonic neural progenitor differentiation and defines specific roles for Wnt signaling in neurogenesis.  相似文献   

9.
Multiple signaling pathways regulate proliferation and differentiation of neural progenitor cells during early development of the central nervous system (CNS). In the spinal cord, dorsal signaling by bone morphogenic protein (BMP) acts primarily as a patterning signal, while canonical Wnt signaling promotes cell cycle progression in stem and progenitor cells. However, overexpression of Wnt factors or, as shown here, stabilization of the Wnt signaling component beta-catenin has a more prominent effect in the ventral than in the dorsal spinal cord, revealing local differences in signal interpretation. Intriguingly, Wnt signaling is associated with BMP signal activation in the dorsal spinal cord. This points to a spatially restricted interaction between these pathways. Indeed, BMP counteracts proliferation promoted by Wnt in spinal cord neuroepithelial cells. Conversely, Wnt antagonizes BMP-dependent neuronal differentiation. Thus, a mutually inhibitory crosstalk between Wnt and BMP signaling controls the balance between proliferation and differentiation. A model emerges in which dorsal Wnt/BMP signal integration links growth and patterning, thereby maintaining undifferentiated and slow-cycling neural progenitors that form the dorsal confines of the developing spinal cord.  相似文献   

10.
11.
Neural stem and progenitor cells typically exhibit a density-dependent survival and expansion, such that critical densities are required below which clonogenic progenitors are lost. This suggests that short-range autocrine factors may be critical for progenitor cell maintenance. We report here that purines drive the expansion of ventricular zone neural stem and progenitor cells, and that purine receptor activation is required for progenitor cells to be maintained as such. Neural progenitors expressed P2Y purinergic receptors and mobilized intracellular calcium in response to agonist. Receptor antagonists suppressed proliferation and permitted differentiation into neurons and glia in vitro, while subsequent removal of purinergic inhibition restored progenitor cell expansion. Real-time bioluminescence imaging of extracellular ATP revealed that the source of extracellular nucleotides are the progenitor cells themselves, which appear to release ATP in episodic burst events. Enzyme histochemistry of the adult rat brain for ectonucleotidase activity revealed that NTDPase, which acts to degrade active ATP and thereby clears it from areas of active purinergic transmission, was selectively localized to the subventricular zone and the dentate gyrus, regions in which neuronal differentiation proceeds from the progenitor cell pool. These data suggest that purine nucleotides act as proliferation signals for neural progenitor cells, and thereby serve as negative regulators of terminal neuronal differentiation. As a result, progenitor cell-derived neurogenesis is thus associated with regions of both active purinergic signaling and modulation thereof.  相似文献   

12.
Initial axial patterning of the neural tube into forebrain, midbrain, and hindbrain primordia occurs during gastrulation. After this patterning phase, further diversification within the brain is thought to proceed largely independently in the different primordia. However, mechanisms that maintain the demarcation of brain subdivisions at later stages are poorly understood. In the alar plate of the caudal forebrain there are two principal units, the thalamus and the pretectum, each of which is a developmental compartment. Here we show that proper neuronal differentiation of the thalamus requires Lhx2 and Lhx9 function. In Lhx2/Lhx9-deficient zebrafish embryos the differentiation process is blocked and the dorsally adjacent Wnt positive epithalamus expands into the thalamus. This leads to an upregulation of Wnt signaling in the caudal forebrain. Lack of Lhx2/Lhx9 function as well as increased Wnt signaling alter the expression of the thalamus specific cell adhesion factor pcdh10b and lead subsequently to a striking anterior-posterior disorganization of the caudal forebrain. We therefore suggest that after initial neural tube patterning, neurogenesis within a brain compartment influences the integrity of the neuronal progenitor pool and border formation of a neuromeric compartment.  相似文献   

13.
Wnt2b controls retinal cell differentiation at the ciliary marginal zone   总被引:5,自引:0,他引:5  
The ciliary marginal zone of the vertebrate retina contains undifferentiated progenitor cells that continue to proliferate and add new neurons and glia peripherally during the embryonic stages - even after the formation of a functional retina. To understand the molecular mechanism that controls the prolonged progenitor cell proliferation in the ciliary marginal zone, we employed a candidate molecule approach, focusing on Wnt2b (formerly know as Wnt13), which is expressed in the marginal most tip of the retina. Frizzled 4 and 5, seven-pass transmembrane Wnt receptors, were expressed in the peripheral and central part of the retina, respectively. LEF1, a downstream Wnt signaling component, was expressed at high levels in the ciliary marginal zone with expression gradually decreasing towards the central retina. The LEF1-expressing region, which is where Wnt signaling is supposedly activated, expressed a set of molecular markers that are characteristic of the progenitor cells in the ciliary marginal zone. Overexpression of Wnt2b by use of in ovo electroporation in the central retina inhibited neuronal differentiation and induced the progenitor cell markers. Blocking of the Wnt downstream signaling pathway by a dominant-negative LEF1 inhibited proliferation of the cells in the marginal area, which resulted in their premature neuronal differentiation. The progenitor cells in the ciliary marginal zone differentiated into all the neuronal and glial cell types when cultured in vitro, and they proliferated for a longer period than did centrally located progenitor cells that underwent a limited number of cell divisions. In addition, the proliferation of these progenitor cells was promoted in the presence of Wnt2b. These results suggest that Wnt2b functions to maintain undifferentiated progenitor cells in the ciliary marginal zone, and thus serves as a putative stem cell factor in the retina.  相似文献   

14.
SOX2 functions to maintain neural progenitor identity   总被引:30,自引:0,他引:30  
Graham V  Khudyakov J  Ellis P  Pevny L 《Neuron》2003,39(5):749-765
  相似文献   

15.
Numerous lines of evidence suggest that Notch signaling plays a pivotal role in controlling the production of neurons from progenitor cells. However, most experiments have relied on gain-of-function approaches because perturbation of Notch signaling results in death prior to the onset of neurogenesis. Here, we examine the requirement for Notch signaling in the development of the striatum through the analysis of different single and compound Notch1 conditional and Notch3 null mutants. We find that normal development of the striatum depends on the presence of appropriate Notch signals in progenitors during a critical window of embryonic development. Early removal of Notch1 prior to neurogenesis alters early-born patch neurons but not late-born matrix neurons in the striatum. We further show that the late-born striatal neurons in these mutants are spared as a result of functional compensation by Notch3. Notably, however, the removal of Notch signaling subsequent to cells leaving the germinal zone has no obvious effect on striatal organization and patterning. These results indicate that Notch signaling is required in neural progenitor cells to control cell fate in the striatum, but is dispensable during subsequent phases of neuronal migration and differentiation.  相似文献   

16.
The cerebral cortex is the multilayered sheet of neurons that underlies our highest cognitive abilities. Canonical Wnt/β-catenin signaling has well-known activities in tissue patterning in regulating rostral-caudal and medial-lateral patterning in the developing cortex. In addition, recent studies suggest that Wnt/β-catenin signaling also plays important roles in establishing the radial inside to outside organization of the cerebral cortex. Different Wnts, Wnt receptors and inhibitors are expressed in overlapping radial compartments of the cerebral cortex, and in vivo functional studies have provided evidence for Wnt/β-catenin regulation of neural precursor self-renewal, laminar fate determination and establishing or stabilizing the patterns of neuronal communication of cortical neurons. Wnt/β-catenin alterations have been observed in human brain tumors, and understanding its many diverse functions during normal neural development may provide greater insight into the mechanisms underlying the development and progression of neural tumors.Key words: cerebral cortex, neural stem cell, neural precursor, ventricular zone, laminar fate, regional specification, radial patterning  相似文献   

17.
Fibroblast growth factor 2 (FGF-2) is a neurotrophic factor participating in regulation of proliferation, differentiation, apoptosis and neuroprotection in the central nervous system. With regard to dopaminergic (DA) neurons of substantia nigra pars compacta (SNpc), which degenerate in Parkinson's disease, FGF-2 improves survival of mature DA neurons in vivo and regulates expansion of DA progenitors in vitro. To address the physiological role of FGF-2 in SNpc development, embryonic (E14.5), newborn (P0) and juvenile (P28) FGF-2-deficient mice were investigated. Stereological quantification of DA neurons identified normal numbers in the ventral tegmental area, whereas the SNpc of FGF-2-deficient mice displayed a 35% increase of DA neurons at P0 and P28, but not at earlier stage E14.5. Examination of DA marker gene expression by quantitative RT-PCR and in situ hybridization revealed a normal patterning of embryonic ventral mesencephalon. However, an increase of proliferating Lmx1a DA progenitors in the subventricular zone of the ventral mesencephalon of FGF-2-deficient embryos indicated altered cell cycle progression of neuronal progenitors. Increased levels of nuclear FgfR1 in E14.5 FGF-2-deficient mice suggest alterations of integrative nuclear FgfR1 signaling (INFS). In summary, FGF-2 restricts SNpc DA neurogenesis in vivo during late stages of embryonic development.  相似文献   

18.
We have previously shown that a combination of the cytokines interleukin (IL)-1, IL-11, leukemia inhibitory factor (LIF), and glial cell line-derived neurotrophic factor (GDNF) can convert rat fetal (E14.5) mesencephalic progenitor cells into tyrosine hydroxylase (TH)-immunoreactive (ir) neurons in vitro. The experiments described here characterize the mesencephalic progenitor cells and their cytokine-induced conversion into dopamine (DA) neurons. For all experiments, we used bromodeoxyuridine (BrdU)-ir cultures of (E14.5) mesencephalic progenitor cells that had been expanded at least 21 days. We first demonstrated that IL-1 induced DA neuron conversion in mesencephalic progenitors, but not in striatal progenitors (P < 0.001). Thus, these cells should be classified as lineage-restricted progenitors, and not omnipotent stem cells. To further characterize cell populations in these cultures, we used monoclonal antibodies against Hu (an early marker for neurons), growth-associated protein (GAP)-43 (a marker for neuronal process extension), TH (a marker for DA neurons), and glial fibrillary acidic protein (GFAP, a marker for astrocytes). We assessed (E14.5) mesencephalic progenitor cell cultures (plated at 125,000 cells/cm2) incubated in the cytokine mixture (described above) or in complete media (CM, negative control). Following 7 days incubation, GFAP-positive cells formed a nearly confluent carpet in both types of cultures. However, numbers of Hu-ir and GAP-43-ir cells in the cytokine-incubated cultures far exceeded those in CM-incubated controls (P = 0.0003, P = 0.0001, respectively), while numbers of TH-ir cells were 58-fold greater in the cytokine-incubated cultures versus CM-incubated controls. The TH phenotype persisted for 7 days following withdrawal of the differentiation media. Numerous double-labeled cells that were BrdU-ir and also TH-ir, or Hu-ir and also TH-ir, were observed in the cytokine-incubated cultures. These data suggest that cytokines "drive" the conversion of progenitor cells into DA neurons.  相似文献   

19.
Permanent functional deficit in patients with spinal cord injury (SCI) is in part due to severe neural cell death. Therefore, cell replacement using stem cells and neural progenitors that give rise to neurons and glia is thought to be a potent strategy to promote tissue repair after SCI. Many studies have shown that stem cells and neural progenitors can be isolated from embryonic, postnatal and adult spinal cords. Recently, we isolated neural progenitors from newborn rat spinal cords. In general, the neural progenitors grew as spheres in culture, and showed immunoreactivity to a neural progenitor cellular marker, nestin. They were found to proliferate and differentiate into glial fibrillary acidic protein-positive astroglia and multiple neuronal populations, including GABAergic and cholinergic neurons. Neurotrophin 3 and neurotrophin 4 enhanced the differentiation of neural progenitors into neurons. Furthermore, the neural progenitors that were transplanted into contusive spinal cords were found to survive and have migrated in the spinal cord rostrally and caudally over 8 mm to the lesion center 7 days after injury. Thus, the neural progenitors isolated from newborn rat spinal cords in combination with neurotrophic factors may provide a tool for cell therapy in SCI patients.  相似文献   

20.
Roles of Wnt proteins in neural development and maintenance   总被引:11,自引:0,他引:11  
Many constituents of Wnt signaling pathways are expressed in the developing and mature nervous systems. Recent work has shown that Wnt signaling controls initial formation of the neural plate and many subsequent patterning decisions in the embryonic nervous system, including formation of the neural crest. Wnt signaling continues to be important at later stages of development. Wnts have been shown to regulate the anatomy of the neuronal cytoskeleton and the differentiation of synapses in the cerebellum. Wnt signaling has been demonstrated to regulate apoptosis and may participate in degenerative processes leading to cell death in the aging brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号