首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two novel oxaspiro[4.4]nonane beta-benzamido hydroxamic scaffolds have been synthesized in enantio- and diasteriomerically pure form. These templates proved to be exceptional platforms that have led to the discovery of potent inhibitors of TACE that are active in a cellular assay measuring suppression of LPS-induced TNF-alpha. Furthermore, these inhibitors are selective against related MMPs, demonstrate permeability in a Caco-2 assay, and display good oral bioavailability.  相似文献   

2.
A novel class of pyrimido[4,5-b]-1,4-benzoxazepines is described as inhibitors of epidermal growth factor receptor (EGFR) tyrosine kinase. Two compounds display potent EGFR inhibitory activity of less than 1 microM in cellular phosphorylation assays (IC(50) 0.47-0.69 microM) and are highly selective against a small kinase panel. Such compounds demonstrate anti-EGFR activity within a class that is different from any known EGFR inhibitor scaffolds. They also provide a basis for the design of kinase inhibitors with the desired selectivity profile.  相似文献   

3.
Alpha-keto ester and amides were found to be potent inhibitors of histone deacetylase. Nanomolar inhibitors against the isolated enzyme and sub-micromolar inhibitors of cellular proliferation were obtained. The alpha-keto amide 30 also exhibited significant anti-tumor effects in an in vivo tumor model.  相似文献   

4.
We describe a novel series of potent inhibitors of the kinase activity of mTOR. The compounds display good selectivity relative to other PI3K-related kinase family members and, in cellular assays, inhibit both mTORC1 and mTORC2 complexes and exhibit good antiproliferative activity.  相似文献   

5.
Novel potent derivatives of N-(aryl)-4-(azolylethyl)thiazole-5-carboxamides are described as inhibitors of vascular endothelial growth factor receptor II (VEGFR-2). Several compounds display VEGFR-2 inhibitory activity reaching IC(50)<100 nM in both enzymatic and cellular assays. The compounds also inhibit the related tyrosine kinase, VEGFR-1. By controlling the substitution pattern on the 5-carboxamido pharmacophore, both dual and specific VEGFR-2 thiazoles were identified.  相似文献   

6.
A novel potent derivatives of hetaryl imidazoles were described as inhibitors of vascular endothelial growth factor receptor II (VEGFR-2). Several compounds display VEGFR-2 inhibitory activity reaching IC(50)<100 nM in both enzymatic and cellular assays. The compounds also inhibit the related tyrosine kinase, VEGFR-1. By controlling the substitution pattern on the 5-carboxamido functionality, both dual and specific VEGFR-2 thiazoles were identified.  相似文献   

7.
The inhibition of phosphatidylinositol 3-kinase by quercetin and analogs.   总被引:6,自引:0,他引:6  
Phosphatidylinositol (PtdIns) 3-kinase is an enzyme involved in cellular responses to growth factors. Quercetin (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyrano-4-one), a naturally occuring bioflavinoid, was found to inhibit PtdIns 3-kinase with an IC50 of 1.3 micrograms/ml (3.8 microM); inhibition appears to be directed towards the ATP binding site of the kinase. Analogs of quercetin were also investigated as PtdIns 3-kinase inhibitors, with the most potent compounds exhibiting IC50's in the range of 1.7-8.4 micrograms/ml (5-19 microM). In contrast, genistein, a potent tyrosine kinase inhibitor of the isoflavone class, did not inhibit PtdIns 3-kinase significantly (IC50 greater than 30 micrograms/ml). These findings suggest that flavinoids may serve as potent inhibitors of PtdIns 3-kinase. Furthermore, the enzyme is much more sensitive to substituents at the 3-position of the flavinoid ring than are other protein and PtdIns kinases, suggesting that specific inhibitors of PtdIns 3-kinase can be developed to explore the biological role of the enzyme in cellular proliferation and growth factor response.  相似文献   

8.
A series of isothiazolopyrimidines and isoxazolopyrimidines were synthesized and identified as potent KDR inhibitors. SAR studies led to isothiazolopyrimidine urea analogs that potently inhibit VEGFR tyrosine kinases (KDR enzymatic and cellular IC(50) values below 10 nM) as well as cKIT and TIE2. The selected compounds 8 and 13 display 56% and 48% oral bioavailability in mice, respectively.  相似文献   

9.
Histone deacetylases (HDAC) are promising targets for cancer chemotherapy. HDAC inhibitors are thought to act in part by disrupting normal cell cycle regulation, resulting in apoptosis and/or differentiation of transformed cells. Several HDAC inhibitors, which contain hydrophobic tails and the Zn(2+) chelator hydroxyamic acid as a head group, are potent inhibitors of HDACs both in vitro and in vivo. In this study, a related class of compounds with a N-formyl hydroxylamino head group has been synthesized and their ability to inhibit HDACs have been assayed in biochemical and cellular assays. These compounds were found to have comparable activities to suberoylanilide hydroxyamic acid (SAHA) in HDAC enzymatic assays and histone hyperacetylation cellular assays.  相似文献   

10.
Quinolinones and naphthyridinones with C7 N-t-butyl piperidine substituents were found to be potent p38 MAP kinase inhibitors. These compounds significantly suppress TNF-alpha release in both cellular and LPS-stimulated whole blood assays. They also displayed excellent PK profiles across three animal species. Quinolinone at 10 mpk showed comparable oral efficacy to that of dexamethasone at 1 mpk in a murine collagen-induced arthritis model.  相似文献   

11.
Inhibition of histone deacetylases class I/II enzymes is a new, promising approach for cancer therapy. In the present study, we disclose a new structural class of HDAC inhibitors with the trithiocarbonate motif. A clear structure-activity-relationship was obtained for the cap-linker motif and the putative Zn(2+) complexing head group. Selected analogs display potent inhibition of HDAC enzymatic activity and a cellular potency comparable to that of suberoylanilide hydroxamic acid (SAHA), recently approved for treatment of patients with advanced cutaneous T-cell lymphoma.  相似文献   

12.
A new series of 4-anilinopyrimidines has been synthesized and evaluated as JNK1 inhibitors. SAR studies led to the discovery of potent JNK1 inhibitors with good enzymatic activity as well as cellular potency represented by compound 2b. Kinase selectivity profile and the crystal structure of 2b are also described.  相似文献   

13.
The discovery of 5,5′- and 6,6′-dialkyl-5,6-dihydro-1H-pyridin-2-ones as potent inhibitors of the HCV RNA-dependent RNA polymerase (NS5B) is described. Several of these agents also display potent antiviral activity in cell culture experiments (EC50 <0.10 μM). In vitro DMPK data for selected compounds as well as crystal structures of representative inhibitors complexed with the NS5B protein are also disclosed.  相似文献   

14.
Seven sesterterpene sulfates (1-7) were isolated from the tropical sponge Dysidea sp. and their inhibitory activities against isocitrate lyase (ICL) from Candida albicans were evaluated. Among the isolated natural products compound 6 and 7 were found to be strong ICL inhibitors. The isolated compounds (1-7) also showed potent antibacterial effect against Bacillus subtilis and Proteus vulgaris, but did not display antifungal activity.  相似文献   

15.
Divalent metal ions play a critical role in the removal of N-terminal methionine from nascent proteins by methionine aminopeptidase (MetAP). Being an essential enzyme for bacteria, MetAP is an appealing target for the development of novel antibacterial drugs. Although purified enzyme can be activated by several divalent metal ions, the exact metal ion used by MetAP in cells is unknown. Many MetAP inhibitors are highly potent on purified enzyme, but they fail to show significant inhibition of bacterial growth. One possibility for the failure is a disparity of the metal used in activation of purified MetAP and the metal actually used by MetAP inside bacterial cells. Therefore, the challenge is to elucidate the physiologically relevant metal for MetAP and discover MetAP inhibitors that can effectively inhibit cellular MetAP. We have recently discovered MetAP inhibitors with selectivity toward different metalloforms of Escherichia coli MetAP, and with these unique inhibitors, we characterized their inhibition of MetAP enzyme activity in a cellular environment. We observed that only inhibitors that are selective for the Fe(II)-form of MetAP were potent in this assay. Further, we found that only these Fe(II)-form selective inhibitors showed significant inhibition of growth of five E. coli strains and two Bacillus strains. We confirmed their cellular target as MetAP by analysis of N-terminal processed and unprocessed recombinant glutathione S-transferase proteins. Therefore, we conclude that Fe(II) is the likely metal used by MetAP in E. coli and other bacterial cells.  相似文献   

16.
The development of small molecule therapeutics to combat norovirus infection is of considerable interest from a public health perspective because of the highly contagious nature of noroviruses. A series of amino acid-derived acyclic sulfamide-based norovirus inhibitors has been synthesized and evaluated using a cell-based replicon system. Several compounds were found to display potent anti-norovirus activity, low toxicity, and good aqueous solubility. These compounds are suitable for further optimization of pharmacological and ADMET properties.  相似文献   

17.
A series of structurally novel HDAC inhibitors, in which a hetero aromatic ring connects the spacer with the hydrophobic group, has been designed and synthesized. These new inhibitors are very potent in in vitro enzymatic assays and display antiproliferation activity against two human cancer cell lines.  相似文献   

18.
Leucine rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson’s disease (PD). Inhibition of LRRK2 kinase activity is a therapeutic approach that may lead to new treatments for PD. Herein we report the discovery of a series of cinnoline-3-carboxamides that are potent against both wild-type and mutant LRRK2 kinase activity in biochemical assays. These compounds are also shown to be potent inhibitors in a cellular assay and to have good to excellent CNS penetration.  相似文献   

19.
A novel class of 1,9-dihydro-9-hydroxypyrazolo[3,4-b]quinolin-4-ones as c-Jun-N-terminal kinase (JNK) inhibitors is described. These compounds were synthesized via the condensation of 2-nitrobenzaldehydes and hydroxypyrazoles. The structure-activity relationships (SAR) and kinase selectivity profile of the inhibitors are also discussed. Compound 16 was identified as a potent JNK inhibitor with good cellular potency.  相似文献   

20.
Dipeptidyl peptidase I (DPPI, cathepsin C) is a lysosomal cysteine protease that can activate zymogens of several different serine proteases by one step or sequential removal of dipeptides from the N-termini of the pro-protease protein substrates. To find DPPI inhibitors more suitable for cellular applications than diazomethyl ketones, we synthesized three types of inhibitors: dipeptide acyloxymethyl ketones, fluoromethyl ketones, and vinyl sulfones (VS). The acyloxymethyl ketones inhibited DPPI slowly and are moderate inhibitors of cellular DPPI. The fluoromethyl ketones were potent, but the inhibited DPPI regained activity quickly. The dipeptide vinyl sulfones were effective inhibitors for DPPI, but they also inhibited cathepsins B, H, and L weakly. The best inhibitor, Ala-Hph-VS-Ph, had a k2/K(I) of 2,000,000M(-1)s(-1). The vinyl sulfones also inhibited intracellular DPPI, and for this application the more stable inhibitors exhibit better potency. We conclude that vinyl sulfones are promising inhibitors to study the intracellular functions of DPPI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号