首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The embryonic stem cell differentiation system was used to define the roles of the Activin/Nodal, BMP, and canonical Wnt signaling pathways at three distinct developmental stages during hematopoietic ontogeny: induction of a primitive streak-like population, formation of Flk1(+) mesoderm, and induction of hematopoietic progenitors. Activin/Nodal and Wnt, but not BMP, signaling are required for the induction of the primitive streak. Although BMP is not required for primitive streak induction, it displays a strong posteriorizing effect on this population. All three signaling pathways regulate induction of Flk1(+) mesoderm. The specification of Flk1(+) mesoderm to the hematopoietic lineages requires VEGF and Wnt, but not BMP or Activin/Nodal signaling. Specifically, Wnt signaling is essential for commitment of the primitive erythroid, but not the definitive lineages. These findings highlight dynamic changes in signaling requirements during blood cell development and identify a role for Wnt signaling in the establishment of the primitive erythroid lineage.  相似文献   

3.
4.
Apoptosis is prevalent during development of the central nervous system (CNS), yet very little is known about the signals that specify an apoptotic cell fate. In this paper, we examine the role of Numb/Notch signaling in the development of the serotonin lineage of Drosophila and show that it is necessary for regulating apoptosis. Our results indicate that when Numb inhibits Notch signaling, cells undergo neuronal differentiation, whereas cells that maintain Notch signaling initiate apoptosis. The apoptosis inhibitor p35 can counteract Notch-mediated apoptosis and rescue cells within the serotonin lineage that normally undergo apoptosis. Furthermore, we observe tumor-like overproliferation of cells in the CNS when Notch signaling is reduced. These data suggest that the distribution of Numb during terminal mitotic divisions of the CNS can distinguish between a neuronal cell fate and programmed cell death.  相似文献   

5.
The tumor suppressor genes lethal giant larvae (lgl) and discs large (dlg) act together to maintain the apical basal polarity of epithelial cells in the Drosophila embryo. Neuroblasts that delaminate from the embryonic epithelium require lgl to promote formation of a basal Numb and Prospero crescent, which will be asymmetrically segregated to the basal daughter cell upon division to specify cell fate. Sensory organ precursors (SOPs) also segregate Numb asymmetrically at cell division. Numb functions to inhibit Notch signaling and to specify the fates of progenies of the SOP that constitute the cellular components of the adult sensory organ. We report here that, in contrast to the embryonic neuroblast, lgl is not required for asymmetric localization of Numb in the dividing SOP. Nevertheless, mosaic analysis reveals that lgl is required for cell fate specification within the SOP lineage; SOPs lacking Lgl fail to specify internal neurons and glia. Epistasis studies suggest that Lgl acts to inhibit Notch signaling by functioning downstream or in parallel with Numb. These findings uncover a previously unknown function of Lgl in the inhibition of Notch and reveal different modes of action by which Lgl can influence cell fate in the neuroblast and SOP lineages.  相似文献   

6.
Chen VC  Stull R  Joo D  Cheng X  Keller G 《Nature biotechnology》2008,26(10):1169-1178
To efficiently generate cardiomyocytes from embryonic stem (ES) cells in culture it is essential to identify key regulators of the cardiac lineage and to develop methods to control them. Using a tet-inducible mouse ES cell line to enforce expression of a constitutively activated form of the Notch 4 receptor, we show that signaling through the Notch pathway can efficiently respecify hemangioblasts to a cardiac fate, resulting in the generation of populations consisting of >60% cardiomyocytes. Microarray analyses reveal that this respecification is mediated in part through the coordinated regulation of the BMP and Wnt pathways by Notch signaling. Together, these findings have uncovered a potential role for the Notch pathway in cardiac development and provide an approach for generating large numbers of cardiac progenitors from ES cells.  相似文献   

7.
The Notch regulator Numb links the Notch and TCR signaling pathways   总被引:5,自引:0,他引:5  
Both the Notch and TCR signaling pathways play an important role in T cell development, but the links between these signaling pathways are largely unexplored. The adapter protein Numb is a well-characterized inhibitor of Notch and also contains a phosphotyrosine binding domain, suggesting that Numb could provide a link between these pathways. We explored this possibility by investigating the physical interactions among Notch, Numb, and the TCR signaling apparatus and by examining the consequences of a Numb mutation on T cell development. We found that Notch and Numb cocluster with the TCR at the APC contact during Ag-driven T cell-APC interactions in both immature and mature T cells. Furthermore, Numb coimmunoprecipitates with components of the TCR signaling apparatus. Despite this association, T cell development and T cell activation occur normally in the absence of Numb, perhaps due to the expression of the related protein, Numblike. Together our data suggest that Notch and TCR signals may be integrated at the cell membrane, and that Numb may be an important adapter in this process.  相似文献   

8.
9.
Wiskott-Aldrich syndrome proteins, encoded by the Wiskott-Aldrich syndrome gene family, bridge signal transduction pathways and the microfilament-based cytoskeleton. Mutations in the Drosophila homologue, Wasp (Wsp), reveal an essential requirement for this gene in implementation of cell fate decisions during adult and embryonic sensory organ development. Phenotypic analysis of Wsp mutant animals demonstrates a bias towards neuronal differentiation, at the expense of other cell types, resulting from improper execution of the program of asymmetric cell divisions which underlie sensory organ development. Generation of two similar daughter cells after division of the sensory organ precursor cell constitutes a prominent defect in the Wsp sensory organ lineage. The asymmetric segregation of key elements such as Numb is unaffected during this division, despite the misassignment of cell fates. The requirement for Wsp extends to additional cell fate decisions in lineages of the embryonic central nervous system and mesoderm. The nature of the Wsp mutant phenotypes, coupled with genetic interaction studies, identifies an essential role for Wsp in lineage decisions mediated by the Notch signaling pathway.  相似文献   

10.
11.
The Notch signaling pathway is an evolutionarily conserved pathway that is critical for tissue morphogenesis during development, but is also involved in tissue maintenance and repair in the adult. In skeletal muscle, regulation of Notch signaling is involved in somitogenesis, muscle development, and the proliferation and cell fate determination of muscle stems cells during regeneration. During each of these processes, the spatial and temporal control of Notch signaling is essential for proper tissue formation. That control is mediated by a series of regulatory proteins and protein complexes that enhance or inhibit Notch signaling by regulating protein processing, localization, activity, and stability. In this review, we focus on the regulation of Notch signaling during postnatal muscle regeneration when muscle stem cells ("satellite cells") must activate, proliferate, progress along a myogenic lineage pathway, and ultimately differentiate to form new muscle. We review the regulators of Notch signaling, such as Numb and Deltex, that have documented roles in myogenesis as well as other regulators that may play a role in modulating Notch signaling during satellite cell activation and postnatal myogenesis.  相似文献   

12.
13.
The asymmetric cell division of stem or progenitor cells generates daughter cells with distinct fates that balance proliferation and differentiation. Asymmetric segregation of Notch signaling regulatory protein Numb plays a crucial role in cell diversification. However, the molecular mechanism remains unclear. Here, we examined the unequal distribution of Numb in the daughter cells of murine erythroleukemia cells (MELCs) that undergo DMSO-induced erythroid differentiation. In contrast to the cytoplasmic localization of Numb during uninduced cell division, Numb is concentrated at the cell boundary in interphase, near the one-spindle pole in metaphase, and is unequally distributed to one daughter cell in anaphase in induced cells. The inheritance of Numb guides this daughter cell toward erythroid differentiation while the other cell remains a progenitor cell. Mitotic spindle orientation, critical for distribution of cell fate determinants, requires complex communication between the spindle microtubules and the cell cortex mediated by the NuMA-LGN-dynein/dynactin complex. Depletion of each individual member of the complex randomizes the position of Numb relative to the mitotic spindle. Gene replacement confirms that multifunctional erythrocyte protein 4.1R (4.1R) functions as a member of the NuMA-LGN-dynein/dynactin complex and is necessary for regulating spindle orientation, in which interaction between 4.1R and NuMA plays an important role. These results suggest that mispositioning of Numb is the result of spindle misorientation. Finally, disruption of the 4.1R-NuMA-LGN complex increases Notch signaling and decreases the erythroblast population. Together, our results identify a critical role for 4.1R in regulating the asymmetric segregation of Numb to mediate erythropoiesis.  相似文献   

14.
Inhibition of Notch signaling by Numb is critical for many cell fate decisions. In this study, we demonstrate a more complex relationship between Notch and the two vertebrate Numb homologues Numb and Numblike. Although Numb and Numblike at low levels of Notch signaling negatively regulated Notch, high levels of Notch signaling conversely led to a reduction of Numb and Numblike protein levels in cultured cells and in the developing chick central nervous system. The Notch intracellular domain but not the canonical Notch downstream proteins Hes 1 and Hey 1 caused a reduction of Numb and Numblike. The Notch-mediated reduction of Numblike required the PEST domain in the Numblike protein and was blocked by the proteasome inhibitor MG132. Collectively, these observations reveal a reciprocal negative regulation between Notch and Numb/Numblike, which may be of relevance for stabilizing asymmetric cell fate switches and for tumor development.  相似文献   

15.
Multiple roles of mouse Numb in tuning developmental cell fates.   总被引:8,自引:0,他引:8  
BACKGROUND: Notch signaling regulates multiple differentiation processes and cell fate decisions during both invertebrate and vertebrate development. Numb encodes an intracellular protein that was shown in Drosophila to antagonize Notch signaling at binary cell fate decisions of certain cell lineages. Although overexpression experiments suggested that Numb might also antagonize some Notch activity in vertebrates, the developmental processes in which Numb is involved remained elusive. RESULTS: We generated mice with a homozygous inactivation of Numb. These mice died before embryonic day E11.5, probably because of defects in angiogenic remodeling and placental dysfunction. Mutant embryos had an open anterior neural tube and impaired neuronal differentiation within the developing cranial central nervous system (CNS). In the developing spinal cord, the number of differentiated motoneurons was reduced. Within the peripheral nervous system (PNS), ganglia of cranial sensory neurons were formed. Trunk neural crest cells migrated and differentiated into sympathetic neurons. In contrast, a selective differentiation anomaly was observed in dorsal root ganglia, where neural crest--derived progenitor cells had migrated normally to form ganglionic structures, but failed to differentiate into sensory neurons. CONCLUSIONS: Mouse Numb is involved in multiple developmental processes and required for cell fate tuning in a variety of lineages. In the nervous system, Numb is required for the generation of a large subset of neuronal lineages. The restricted requirement of Numb during neural development in the mouse suggests that in some neuronal lineages, Notch signaling may be regulated independently of Numb.  相似文献   

16.
The Wnt family of secreted glycoproteins has been implicated in many aspects of development, but its contribution to blood cell formation is controversial. We overexpressed Wnt3a, Wnt5a, and Dickkopf 1 in stromal cells from osteopetrotic mice and used them in coculture experiments with highly enriched stem and progenitor cells. The objective was to learn whether and how particular stages of B lymphopoiesis are responsive to these Wnt family ligands. We found that canonical Wnt signaling, through Wnt3a, inhibited B and plasmacytoid dendritic cell, but not conventional dendritic cell development. Wnt5a, which can oppose canonical signaling or act through a different pathway, increased B lymphopoiesis. Responsiveness to both Wnt ligands diminished with time in culture and stage of development. That is, only hematopoietic stem cells and very primitive progenitors were affected. Although Wnt3a promoted retention of hematopoietic stem cell markers, cell yields and dye dilution experiments indicated it was not a growth stimulus. Other results suggest that lineage instability results from canonical Wnt signaling. Lymphoid progenitors rapidly down-regulated RAG-1, and some acquired stem cell-staining characteristics as well as myeloid and erythroid potential when exposed to Wnt3a-producing stromal cells. We conclude that at least two Wnt ligands can differentially regulate early events in B lymphopoiesis, affecting entry and progression in distinct differentiation lineages.  相似文献   

17.
The temporal switch from progenitor cell proliferation to differentiation is essential for effective adult tissue repair. We previously reported the critical role of Notch signaling in the proliferative expansion of myogenic progenitors in mammalian postnatal myogenesis. We now show that the onset of differentiation is due to a transition from Notch signaling to Wnt signaling in myogenic progenitors and is associated with an increased expression of Wnt in the tissue and an increased responsiveness of progenitors to Wnt. Crosstalk between these two pathways occurs via GSK3beta, which is maintained in an active form by Notch but is inhibited by Wnt in the canonical Wnt signaling cascade. These results demonstrate that the temporal balance between Notch and Wnt signaling orchestrates the precise progression of muscle precursor cells along the myogenic lineage pathway, through stages of proliferative expansion and then differentiation, during postnatal myogenesis.  相似文献   

18.
Activation of the Notch signaling pathway segregates the non-skeletogenic mesoderm (NSM) from the endomesoderm during sea urchin embryo development. Subsequently, Notch signaling helps specify the four subpopulations of NSM, and influences endoderm specification. To gain further insight into how the Notch signaling pathway is regulated during these cell specification events, we identified a sea urchin homologue of Numb (LvNumb). Previous work in other model systems showed that Numb functions as a Notch signaling pathway antagonist, possibly by mediating the endocytosis of other key Notch interacting proteins. In this study, we show that the vegetal endomesoderm expresses lvnumb during the blastula and gastrula stages, and that the protein is localized to the presumptive NSM. Injections of lvnumb mRNA and antisense morpholinos demonstrate that LvNumb is necessary for the specification of mesodermal cell types, including pigment cells, blastocoelar cells and muscle cells. Functional analysis of the N-terminal PTB domain and the C-terminal PRR domain of LvNumb shows that the PTB domain, but not the PRR domain, is sufficient to recapitulate the demonstrable function of full-length LvNumb. Experiments show that LvNumb requires an active Notch signal to function during NSM specification and that LvNumb functions in the cells responding to Delta and not in the cells presenting the Delta ligand. Furthermore, injection of mRNA encoding the intracellular domain of Notch rescues the LvNumb morpholino phenotype, suggesting that the constitutive intracellular Notch signal overcomes, or bypasses, the absence of Numb during NSM specification.  相似文献   

19.
The Notch signaling pathway plays essential roles in both animal development and human disease. Regulation of Notch receptor levels in membrane compartments has been shown to affect signaling in a variety of contexts. Here we used steady-state and pulse-labeling techniques to follow Notch receptors in sensory organ precursor cells in Drosophila. We find that the endosomal adaptor protein Numb regulates levels of Notch receptor trafficking to Rab7-labeled late endosomes but not early endosomes. Using an assay we developed that labels different pools of Notch receptors as they move through the endocytic system, we show that Numb specifically suppresses a recycled Notch receptor subpopulation and that excess Notch signaling in numb mutants requires the recycling endosome GTPase Rab11 activity. Our data therefore suggest that Numb controls the balance between Notch receptor recycling and receptor targeting to late endosomes to regulate signaling output after asymmetric cell division in Drosophila neural progenitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号